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Preface

In the last few years, we have seen spectacular growth in the field of data science. Almost every 
day there is some kind of new development, for example, a research paper announcing a new or 
improved machine learning or deep learning algorithm, or a new library for one of the most popular 
programming languages.

In the past, many of those advances did not make it to mainstream media. But that is also changing 
rapidly. Some of the recent examples include the AlphaGo program beating the 18-time world champion 
at Go, using deep learning to generate realistic faces of humans that never existed, or the beautiful 
digital art created from a text caption using models such as DALL-E 2 or Stable Diffusion.

Another example of recent and spectacular development is OpenAI’s ChatGPT. It is a language model 
with which we can engage in natural-sounding conversations. The model is able to keep track of past 
questions and follow up on them, admit its mistakes, or reject inappropriate requests. What is more, 
it is not only restricted to natural language, we can ask it to write actual code snippets in various 
programming languages.

Aside from those newsworthy achievements, in the last decades AI has been adopted in virtually 
every industry. We can see it all around us, for example, the recommendations we get on Netflix or 
the emails we receive about an extra discount from an online shop that we have not used recently. 
As such, businesses all over the world employ AI to gain a competitive edge in the following ways:

•	 Making better, data-driven decisions
•	 Increasing their profits by efficient targeting or spot-on recommendations
•	 Reducing customer churn by early identification of customers at risk
•	 Automating repetitive tasks that AI can complete much faster (and potentially more accurately) 

than a human employee

The very same AI revolution is affecting the financial industry. In a 2020 article, Forbes reported 
that “70% of all financial services firms are using machine learning to predict cash flow events, fine-
tune credit scores and detect fraud”. Additionally, various aspects of data science are also used for 
algorithmic trading, robo-advisory services, personalized banking, process automation, and more.
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This book presents a recipe-based guide on how to solve various tasks within the financial domain 
using modern Python libraries. As such, we try to reduce the amount of code that needs to be written 
by leveraging mature and “battle-tested” libraries used by professionals in many industries. While the 
book assumes some prior knowledge and does not explain all the concepts from the theoretical point 
of view, it provides relevant references that allow the readers to dive deeper into the topics.

In this preface, you will find an outline of what you can expect from the book, how the content is 
organized, and what you need to meet your goals while having hands-on fun on the way. I hope you 
will enjoy it!

Who this book is for
This book is intended for data analysts, financial analysts, data scientists, or ML engineers who want 
to learn how to implement a broad range of tasks in a financial context. The book assumes that the 
readers have some understanding of financial markets and trading strategies. They should also be 
comfortable with using Python and its popular libraries oriented towards data science (for example, 
pandas, numpy, and scikit-learn).

The book will help readers to correctly use advanced approaches to data analysis within the financial 
domain, avoid potential pitfalls and common mistakes, and reach correct conclusions for the problems 
they might be trying to solve. Additionally, as the data science and financial fields are dynamically 
changing and expanding, the book contains references to academic papers and other relevant resources 
to broaden the understanding of the covered topics.

What this book covers
Chapter 1, Acquiring Financial Data, covers a few of the most popular sources of high-quality financial 
data, including Yahoo Finance, Nasdaq Data Link, Intrinio, and Alpha Vantage. It focuses on leveraging 
dedicated Python libraries and processing data for further analysis.

Chapter 2, Data Preprocessing, describes various techniques used to preprocess data. It describes 
the crucial steps between obtaining the data and using it for building machine learning models or 
investigating trading strategies. As such, it covers topics such as converting prices to returns, adjusting 
them for inflation, imputing missing values, or aggregating trade data into various kinds of bars.

Chapter 3, Visualizing Financial Time Series, focuses on visualizing financial (and not only) time series 
data. By plotting the data, we can visually identify some patterns, such as trends, seasonality, and 
changepoints, which we can further confirm using statistical tests. The insights gathered at this point 
can lead to making better decisions while choosing the modeling approach.

Chapter 4, Exploring Financial Time Series Data, shows how to use various algorithms and statistical 
tests to automatically identify potential issues with time series data, such as the existence of outliers. 
Additionally, it covers analyzing data for the existence of trends or other patterns such as mean-
reversion. Lastly, it explores the stylized facts of asset returns. Together, those concepts are crucial 
while working with financial data, as we want to make sure that the models/strategies we are building 
can accurately capture the dynamics of asset returns.
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Chapter 5, Technical Analysis and Building Interactive Dashboards, explains the basics of technical analysis 
in Python by showing how to calculate some of the most popular indicators and automatically recognize 
patterns in candlestick data. It also demonstrates how to create a Streamlit-based web app, which 
enables us to visualize and inspect the predefined TA indicators in an interactive fashion.

Chapter 6, Time Series Analysis and Forecasting, introduces the basics of time series modeling. It starts by 
looking into the building blocks of time series and how to separate them using various decomposition 
methods. Then, it covers the concept of stationarity, how to test for it, and how to achieve it in case 
the original series is not stationary. Lastly, it shows how to use two of the most widely used statistical 
approaches to time series modeling—the exponential smoothing methods and ARIMA class models.

Chapter 7, Machine Learning-Based Approaches to Time Series Forecasting, starts by explaining different 
ways of validating time series models. Then, it provides an overview of feature engineering approaches. 
It also introduces a tool for automatic feature extraction which generates hundreds or thousands of 
features with a few lines of code. Furthermore, it explains the concept of reduced regression and how 
to use Meta’s popular Prophet algorithm. The chapter concludes with an introduction to one of the 
popular AutoML frameworks for time series forecasting.

Chapter 8, Multi-Factor Models, covers estimating various factor models, starting with the simplest one-
factor model (CAPM) and then extending it to the more advanced three-, four-, and five-factor models.

Chapter 9, Modeling Volatility with GARCH Class Models, focuses on volatility and the concept of 
conditional heteroskedasticity. It shows how to use univariate and multivariate GARCH models, which 
are one of the most popular ways of modeling and forecasting volatility.

Chapter 10, Monte Carlo Simulations in Finance, explains how to use Monte Carlo methods for various 
tasks, such as simulating stock prices, pricing derivatives with no closed-form solution (American/
Exotic options), or estimating the uncertainty of a portfolio (for example, by calculating Value-at-Risk 
and Expected Shortfall).

Chapter 11, Asset Allocation, starts by explaining the most basic asset allocation strategy, and on its basis, 
showing how to evaluate the performance of portfolios. Then it shows three different approaches to 
obtaining the efficient frontier. Lastly, it explores Hierarchical Risk Parity, which is a novel approach 
to asset allocation based on the combination of graph theory and machine learning.

Chapter 12, Backtesting Trading Strategies, presents how to run backtests of various trading strategies 
using two approaches (vectorized and event-driven) with the help of popular Python libraries. To do 
so, it uses a few examples of strategies built on the basis of popular technical indicators or mean-
variance portfolio optimization.

Chapter 13, Applied Machine Learning: Identifying Credit Default, shows how to approach a real-life 
machine learning task of predicting loan defaults. It covers the entire scope of a machine learning 
project, from gathering and cleaning data to building and tuning a classifier. An important takeaway 
from this chapter is understanding the general approach to machine learning projects, which can 
then be applied to many different tasks, be it churn prediction or estimating the price of new real 
estate in a neighborhood.
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Chapter 14, Advanced Concepts for Machine Learning Projects, continues from the workflow introduced 
in the preceding chapter and demonstrates possible extensions to the MVP stage of ML projects. It 
starts with presenting more advanced classifiers. Then, it covers alternative approaches to encoding 
categorical features and describes a few methods of dealing with imbalanced data. 

Furthermore, it shows how to create stacked ensembles of ML models and leverage Bayesian 
hyperparameter tuning to improve upon exhaustive grid search. It also explores various approaches 
to calculating feature importance and using it to select the most informative predictors. Lastly, it 
touches upon the rapidly developing field of explainable AI.

Chapter 15, Deep Learning in Finance, describes how to apply some of the recent neural network 
architectures to two possible use cases in the financial domain—predicting credit card default (a 
classification task) and forecasting time series.

To get the most out of this book
In this book, we attempt to give the readers a high-level overview of various techniques used in the 
financial domain, while focusing on the practical applications of these methods. That is why we put 
special emphasis on showing how to use various popular Python libraries to make the work of an 
analyst or data scientist much easier and less prone to errors.

As the best way to learn anything is by doing, we highly encourage the readers to experiment with 
the code samples provided (the code can be found in the accompanying GitHub repository), apply the 
techniques to different datasets, and explore possible extensions (some of them mentioned in the See 
also sections of the recipes).

For a deeper dive into the theoretical foundations, we provide references for further reading. Those 
also include even more advanced techniques that are outside of the scope of this book.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/Python-
for-Finance-Cookbook-2E. We also have other code bundles from our rich catalog of books and videos 
available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You 
can download it here: https://packt.link/JnpTe.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, names of Python libraries, database table names, folder 
names, filenames, file extensions, and pathnames. For example: “We can also use the get_by_id 
function to download a particular CPI series.”

https://github.com/PacktPublishing/Python-for-Finance-Cookbook-2E
https://github.com/PacktPublishing/Python-for-Finance-Cookbook-2E
https://github.com/PacktPublishing/
https://packt.link/JnpTe
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A block of code is set as follows:

def realized_volatility(x): 
    return np.sqrt(np.sum(x**2))

Any command-line input or output is written as follows:

Downloaded 2769 rows of data.

Bold: Indicates a new term or an important word. For example: “Volume bars are an attempt at 
overcoming this problem “

Furthermore, at the very beginning of each Jupyter Notebook (available on the book’s GitHub repository), 
we run a few cells that import and set up plotting with matplotlib. For brevity’s sake, we will not 
mention this later on in the book. So at any time, assume that the following commands were executed.

First, we (optionally) increased the resolution of the generated figures using the following snippet:

%config InlineBackend.figure_format = "retina"

Then we execute the second snippet:

import matplotlib.pyplot as plt
import seaborn as sns
 
import warnings
from pandas.core.common import SettingWithCopyWarning
warnings.simplefilter(action="ignore", category=FutureWarning)
warnings.simplefilter(action="ignore", category=SettingWithCopyWarning)
 
# feel free to modify, for example, change the context to "notebook"
sns.set_theme(context="talk", style="whitegrid",
              palette="colorblind", color_codes=True,
              rc={"figure.figsize": [12, 8]})

Information boxes appear like this.

Tips and tricks appear like this.
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In this cell, we import matplotlib, warnings, and seaborn. Then, we disabled some of the warnings 
and set up the style of the plots. In some chapters, we might modify these settings for better readability 
of the figures (especially in black and white).

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your 
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit 
http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are 
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Share your thoughts
Once you’ve read Python for Finance Cookbook - Second Edition, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
https://www.packtpub.com/
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Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free 
content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803243191

2.	 Submit your proof of purchase
3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803243191
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Acquiring Financial Data

The first chapter of this book is dedicated to a very important (some may say the most important) 
part of any data science/quantitative finance project—gathering data. In line with the famous adage 

“garbage in, garbage out,” we should strive to obtain data of the highest possible quality and then cor-
rectly preprocess it for later use with statistical and machine learning algorithms. The reason for this 
is simple—the results of our analyses are highly dependent on the input data and no sophisticated 
model will be able to compensate for that. That is also why in our analyses, we should be able to use 
our (or someone else’s) understanding of the economic/financial domain to motivate certain data for, 
for example, modeling stock returns.

One of the most frequently reported issues among the readers of the first edition of this book was 
getting high-quality data. That is why in this chapter we spend more time exploring different sources 
of financial data. While quite a few of these vendors offer similar information (prices, fundamentals, 
and so on), they also offer additional, unique data that can be downloaded via their APIs. An example 
could be company-related news articles or pre-computed technical indicators. That is why we will 
download different types of data depending on the recipe. However, be sure to inspect the documen-
tation of the library/API, as most likely its vendor also provides standard data such as prices.

The data sources in this chapter were selected intentionally not only to showcase how easy it can be 
to gather high-quality data using Python libraries but also to show that the gathered data comes in 
many shapes and sizes. 

Sometimes we will get a nicely formatted pandas DataFrame, while other times it might be in JSON 
format or even bytes that need to be processed and then loaded as a CSV. Hopefully, these recipes will 
sufficiently prepare you to work with any kind of data you might encounter online.

Additional examples are also covered in the Jupyter notebooks, which you can find in the 
accompanying GitHub repository.
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Something to bear in mind while reading this chapter is that data differs among sources. This means 
that the prices we downloaded from two vendors will most likely differ, as those vendors also get their 
data from different sources and might use other methods to adjust the prices for corporate actions. 
The best practice is to find a source you trust the most concerning a particular type of data (based on, 
for example, opinion on the internet) and then use it to download the data you need. One additional 
thing to keep in mind is that when building algorithmic trading strategies, the data we use for modeling 
should align with the live data feed used for executing the trades.

This chapter does not cover one important type of data—alternative data. This could be any type of data 
that can be used to generate some insights into predicting asset prices. Alternative data can include 
satellite images (for example, tracking shipping routes, or the development of a certain area), sensor 
data, web traffic data, customer reviews, etc. While there are many vendors specializing in alternative 
data (for example, Quandl/Nasdaq Data Link), you can also get some by accessing publicly available 
information via web scraping. As an example, you could scrape customer reviews from Amazon or Yelp. 
However, those are often bigger projects and are unfortunately outside of the scope of this book. Also, 
you need to make sure that web scraping a particular website is not against its terms and conditions!

In this chapter, we cover the following recipes:

•	 Getting data from Yahoo Finance
•	 Getting data from Nasdaq Data Link
•	 Getting data from Intrinio
•	 Getting data from Alpha Vantage
•	 Getting data from CoinGecko

Getting data from Yahoo Finance
One of the most popular sources of free financial data is Yahoo Finance. It contains not only historical 
and current stock prices in different frequencies (daily, weekly, and monthly), but also calculated met-
rics, such as the beta (a measure of the volatility of an individual asset in comparison to the volatility 
of the entire market), fundamentals, earnings information/calendars, and many more.

Using the vendors mentioned in this chapter, you can get quite a lot of information for 
free. But most of those providers also offer paid tiers. Remember to do thorough research 
on what the data suppliers actually provide and what your needs are before signing up 
for any of the services.

For a long period of time, the go-to tool for downloading data from Yahoo Finance was 
the pandas-datareader library. The goal of the library was to extract data from a variety 
of sources and store it in the form of a pandas DataFrame. However, after some changes 
to the Yahoo Finance API, this functionality was deprecated. It is definitely good to be 
familiar with this library, as it facilitates downloading data from sources such as FRED 
(Federal Reserve Economic Data), the Fama/French Data Library, or the World Bank. Those 
might come in handy for different kinds of analyses and some of them are presented in 
the following chapters.
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As of now, the easiest and fastest way of downloading historical stock prices is to use the yfinance 
library (formerly known as fix_yahoo_finance).

For the sake of this recipe, we are interested in downloading Apple’s stock prices from the years 2011 
to 2021.

How to do it…
Execute the following steps to download data from Yahoo Finance:

1.	 Import the libraries:

import pandas as pd
import yfinance as yf

2.	 Download the data:

df = yf.download("AAPL",
                 start="2011-01-01",
                 end="2021-12-31",
                 progress=False)

3.	 Inspect the downloaded data:

print(f"Downloaded {len(df)} rows of data.")
df

Running the code generates the following preview of the DataFrame:

Figure 1.1: Preview of the DataFrame with downloaded stock prices
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The result of the request is a pandas DataFrame (2,769 rows) containing daily Open, High, Low, and 
Close (OHLC) prices, as well as the adjusted close price and volume.

Yahoo Finance automatically adjusts the close price for stock splits, that is, when a company divides 
the existing shares of its stock into multiple new shares, most frequently to boost the stock’s liquidity. 
The adjusted close price takes into account not only splits but also dividends.

How it works…
The download function is very intuitive. In the most basic case, we just need to provide the ticker 
(symbol), and it will try to download all available data since 1950.

In the preceding example, we downloaded daily data from a specific range (2011 to 2021).

Some additional features of the download function are:

•	 We can download information for multiple tickers at once by providing a list of tickers (["AAPL", 
"MSFT"]) or multiple tickers as a string ("AAPL MSFT").

•	 We can set auto_adjust=True to download only the adjusted prices.
•	 We can additionally download dividends and stock splits by setting actions='inline'. Those 

actions can also be used to manually adjust the prices or for other analyses.
•	 Specifying progress=False disables the progress bar.
•	 The interval argument can be used to download data in different frequencies. We could also 

download intraday data as long as the requested period is shorter than 60 days.

There’s more…
yfinance also offers an alternative way of downloading the data—via the Ticker class. First, we need 
to instantiate the object of the class:

aapl_data = yf.Ticker("AAPL")

To download the historical price data, we can use the history method:

aapl_data.history()

By default, the method downloads the last month of data. We can use the same arguments as in the 
download function to specify the range and frequency.

The main benefit of using the Ticker class is that we can download much more information than just 
the prices. Some of the available methods include:

•	 info—outputs a JSON object containing detailed information about the stock and its company, 
for example, the company’s full name, a short business summary, which exchange it is listed 
on, as well as a selection of financial metrics such as the beta coefficient

•	 actions—outputs corporate actions such as dividends and splits
•	 major_holders—presents the names of the major holders
•	 institutional_holders—shows the institutional holders
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•	 calendar—shows the incoming events, such as the quarterly earnings
•	 earnings/quarterly_earnings—shows the earnings information from the last few years/

quarters
•	 financials/quarterly_financials—contains financial information such as income before 

tax, net income, gross profit, EBIT, and much more

See also
For a complete list of downloadable data, please refer to the GitHub repo of yfinance  
(https://github.com/ranaroussi/yfinance).

You can check out some alternative libraries for downloading data from Yahoo Finance:

•	 yahoofinancials—similarly to yfinance, this library offers the possibility of downloading a 
wide range of data from Yahoo Finance. The biggest difference is that all the downloaded data 
is returned as JSON.

•	 yahoo_earnings_calendar—a small library dedicated to downloading the earnings calendar.

Getting data from Nasdaq Data Link
Alternative data can be anything that is considered non-market data, for example, weather data for 
agricultural commodities, satellite images that track oil shipments, or even customer feedback that 
reflects a company’s service performance. The idea behind using alternative data is to get an “informa-
tional edge” that can then be used for generating alpha. In short, alpha is a measure of performance 
describing an investment strategy’s, trader’s, or portfolio manager’s ability to beat the market.

Quandl was the leading provider of alternative data products for investment professionals (including 
quant funds and investment banks). Recently, it was acquired by Nasdaq and is now part of the Nas-
daq Data Link service. The goal of the new platform is to provide a unified source of trusted data and 
analytics. It offers an easy way to download data, also via a dedicated Python library.

A good starting place for financial data would be the WIKI Prices database, which contains stock prices, 
dividends, and splits for 3,000 US publicly traded companies. The drawback of this database is that as of 
April 2018, it is no longer supported (meaning there is no recent data). However, for purposes of getting 
historical data or learning how to access the databases, it is more than enough.

We use the same example that we used in the previous recipe—we download Apple’s stock prices for 
the years 2011 to 2021.

Please see the corresponding Jupyter notebook for more examples and outputs of those 
methods.

https://github.com/ranaroussi/yfinance
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Getting ready
Before downloading the data, we need to create an account at Nasdaq Data Link (https://data.
nasdaq.com/) and then authenticate our email address (otherwise, an exception is likely to occur 
while downloading the data). We can find our personal API key in our profile (https://data.nasdaq.
com/account/profile).

How to do it…
Execute the following steps to download data from Nasdaq Data Link:

1.	 Import the libraries:

import pandas as pd
import nasdaqdatalink

2.	 Authenticate using your personal API key:

nasdaqdatalink.ApiConfig.api_key = "YOUR_KEY_HERE"

You need to replace YOUR_KEY_HERE with your own API key.

3.	 Download the data:

df = nasdaqdatalink.get(dataset="WIKI/AAPL",
                        start_date="2011-01-01", 
                        end_date="2021-12-31")

4.	 Inspect the downloaded data:

print(f"Downloaded {len(df)} rows of data.")
df.head()

Running the code generates the following preview of the DataFrame:

Figure 1.2: Preview of the downloaded price information

The result of the request is a DataFrame (1,818 rows) containing the daily OHLC prices, the adjusted 
prices, dividends, and potential stock splits. As we mentioned in the introduction, the data is limited 
and is only available until April 2018—the last observation actually comes from March, 27 2018.

https://data.nasdaq.com/
https://data.nasdaq.com/
https://data.nasdaq.com/account/profile
https://data.nasdaq.com/account/profile
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How it works…
The first step after importing the required libraries was authentication using the API key. When pro-
viding the dataset argument, we used the following structure: DATASET/TICKER.

Some additional details on the get function are:

•	 We can specify multiple datasets at once using a list such as ["WIKI/AAPL", "WIKI/MSFT"].
•	 The collapse argument can be used to define the frequency (available options are daily, weekly, 

monthly, quarterly, or annually).
•	 The transform argument can be used to carry out some basic calculations on the data prior to 

downloading. For example, we could calculate row-on-row change (diff), row-on-row percent-
age change (rdiff), or cumulative sum (cumul) or scale the series to start at 100 (normalize). 
Naturally, we can easily do the very same operation using pandas.

There’s more...
Nasdaq Data Link distinguishes two types of API calls for downloading data. The get function we used 
before is classified as a time-series API call. We can also use the tables API call with the get_table 
function.

1.	 Download the data for multiple tickers using the get_table function:

COLUMNS = ["ticker", "date", "adj_close"]
df = nasdaqdatalink.get_table("WIKI/PRICES", 
                              ticker=["AAPL", "MSFT", "INTC"], 
                              qopts={"columns": COLUMNS}, 
                              date={"gte": "2011-01-01", 
                                    "lte": "2021-12-31"}, 
                              paginate=True)
df.head()

We should keep the API keys secure and private, that is, not share them in public 
repositories, or anywhere else. One way to make sure that the key stays private is to create 
an environment variable (how to do it depends on your operating system) and then load 
it in Python. To do so, we can use the os module. To load the NASDAQ_KEY variable, we 
could use the following code: os.environ.get("NASDAQ_KEY").
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2.	 Running the code generates the following preview of the DataFrame:

Figure 1.3: Preview of the downloaded price data

This function call is a bit more complex than the one we did with the get function. We first 
specified the table we want to use. Then, we provided a list of tickers. As the next step, we 
specified which columns of the table we were interested in. We also provided the range of 
dates, where gte stands for greater than or equal to, while lte is less than or equal to. Lastly, we 
also indicated we wanted to use pagination. The tables API is limited to 10,000 rows per call. 
However, by using paginate=True in the function call we extend the limit to 1,000,000 rows.

3.	 Pivot the data from long format to wide:

df = df.set_index("date")
df_wide = df.pivot(columns="ticker")
df_wide.head()

Running the code generates the following preview of the DataFrame:

Figure 1.4: Preview of the pivoted DataFrame

The output of the get_tables function is in the long format. However, to make our analyses easier, we 
might be interested in the wide format. To reshape the data, we first set the date column as an index 
and then used the pivot method of a pd.DataFrame.

Please bear in mind that this is not the only way to do so, and pandas contains at least a 
few helpful methods/functions that can be used for reshaping the data from long to wide 
and vice versa.



Chapter 1 9

See also
•	 https://docs.data.nasdaq.com/docs/python—the documentation of the nasdaqdatalink 

library for Python.
•	 https://data.nasdaq.com/publishers/zacks—Zacks Investment Research is a provider of 

various financial data that might be relevant for your projects. Please bear in mind that the 
data is not free (you can always get a preview of the data before purchasing access).

•	 https://data.nasdaq.com/publishers—a list of all the available data providers.

Getting data from Intrinio
Another interesting source of financial data is Intrinio, which offers access to its free (with limits) 
database. The following list presents just a few of the interesting data points that we can download 
using Intrinio:

•	 Intraday historical data
•	 Real-time stock/option prices
•	 Financial statement data and fundamentals
•	 Company news
•	 Earnings-related information
•	 IPOs
•	 Economic data such as the Gross Domestic Product (GDP), unemployment rate, federal funds 

rate, etc.
•	 30+ technical indicators

Most of the data is free of charge, with some limits on the frequency of calling the APIs. Only the 
real-time price data of US stocks and ETFs requires a different kind of subscription.

In this recipe, we follow the preceding example of downloading Apple’s stock prices for the years 2011 
to 2021. That is because the data returned by the API is not simply a pandas DataFrame and requires 
some interesting preprocessing.

Getting ready
Before downloading the data, we need to register at https://intrinio.com to obtain the API key.

Please see the following link (https://docs.intrinio.com/developer-sandbox) to understand what 
information is included in the sandbox API key (the free one).

How to do it…
Execute the following steps to download data from Intrinio: 

1.	 Import the libraries:

import intrinio_sdk as intrinio
import pandas as pd

https://docs.data.nasdaq.com/docs/python
https://data.nasdaq.com/publishers/zacks
https://data.nasdaq.com/publishers
https://intrinio.com
https://docs.intrinio.com/developer-sandbox
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2.	 Authenticate using your personal API key, and select the API:

intrinio.ApiClient().set_api_key("YOUR_KEY_HERE")
security_api = intrinio.SecurityApi()

You need to replace YOUR_KEY_HERE with your own API key.

3.	 Request the data:

r = security_api.get_security_stock_prices(
    identifier="AAPL", 
    start_date="2011-01-01",
    end_date="2021-12-31", 
    frequency="daily",
    page_size=10000
)

4.	 Convert the results into a DataFrame:

df = (
    pd.DataFrame(r.stock_prices_dict)
    .sort_values("date")
    .set_index("date")
)

5.	 Inspect the data:

print(f"Downloaded {df.shape[0]} rows of data.")
df.head()

The output looks as follows:

Figure 1.5: Preview of the downloaded price information

The resulting DataFrame contains the OHLC prices and volume, as well as their adjusted counterparts. 
However, that is not all, and we had to cut out some additional columns to make the table fit the page. 
The DataFrame also contains information, such as split ratio, dividend, change in value, percentage 
change, and the 52-week rolling high and low values.
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How it works…
The first step after importing the required libraries was to authenticate using the API key. Then, we 
selected the API we wanted to use for the recipe—in the case of stock prices, it was the SecurityApi.

To download the data, we used the get_security_stock_prices method of the SecurityApi class. 
The parameters we can specify are as follows:

•	 identifier—stock ticker or another acceptable identifier
•	 start_date/end_date—these are self-explanatory
•	 frequency—which data frequency is of interest to us (available choices: daily, weekly, monthly, 

quarterly, or yearly)
•	 page_size—defines the number of observations to return on one page; we set it to a high 

number to collect all the data we need in one request with no need for the next_page token

The API returns a JSON-like object. We accessed the dictionary form of the response, which we then 
transformed into a DataFrame. We also set the date as an index using the set_index method of a 
pandas DataFrame.

There’s more...
In this section, we show some more interesting features of Intrinio.

Get Coca-Cola’s real-time stock price
You can use the previously defined security_api to get the real-time stock prices:

security_api.get_security_realtime_price("KO")

The output of the snippet is the following JSON:

{'ask_price': 57.57,
 'ask_size': 114.0,
 'bid_price': 57.0,
 'bid_size': 1.0,
 'close_price': None,
 'exchange_volume': 349353.0,
 'high_price': 57.55,
 'last_price': 57.09,
 'last_size': None,
 'last_time': datetime.datetime(2021, 7, 30, 21, 45, 38, tzinfo=tzutc()),
 'low_price': 48.13,

Not all information is included in the free tier. For a more thorough overview of what data 
we can download for free, please refer to the following documentation page: https://
docs.intrinio.com/developer-sandbox.

https://docs.intrinio.com/developer-sandbox
https://docs.intrinio.com/developer-sandbox
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 'market_volume': None,
 'open_price': 56.91,
 'security': {'composite_figi': 'BBG000BMX289',
              'exchange_ticker': 'KO:UN',
              'figi': 'BBG000BMX4N8',
              'id': 'sec_X7m9Zy',
              'ticker': 'KO'},
 'source': 'bats_delayed',
 'updated_on': datetime.datetime(2021, 7, 30, 22, 0, 40, 758000, 
tzinfo=tzutc())}

Download news articles related to Coca-Cola
One of the potential ways to generate trading signals is to aggregate the market’s sentiment on the given 
company. We could do it, for example, by analyzing news articles or tweets. If the sentiment is posi-
tive, we can go long, and vice versa. Below, we show how to download news articles about Coca-Cola:

r = intrinio.CompanyApi().get_company_news(
    identifier="KO", 
    page_size=100
)
 
df = pd.DataFrame(r.news_dict)
df.head()

This code returns the following DataFrame:

Figure 1.6: Preview of the news about the Coca-Cola company

Search for companies connected to the search phrase
Running the following snippet returns a list of companies that Intrinio’s Thea AI recognized based 
on the provided query string:

r = intrinio.CompanyApi().recognize_company("Intel")
df = pd.DataFrame(r.companies_dict)
df
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As we can see, there are quite a few companies that also contain the phrase “intel” in their names, 
other than the obvious search result.

Figure 1.7: Preview of the companies connected to the phrase “intel”

Get Coca-Cola’s intraday stock prices
We can also retrieve intraday prices using the following snippet:

response = (
    security_api.get_security_intraday_prices(identifier="KO", 
                                              start_date="2021-01-02",
                                              end_date="2021-01-05",
                                              page_size=1000)
)
df = pd.DataFrame(response.intraday_prices_dict)
df
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Which returns the following DataFrame containing intraday price data. 

Figure 1.8: Preview of the downloaded intraday prices

Get Coca-Cola’s latest earnings record
Another interesting usage of the security_api is to recover the latest earnings records. We can do 
this using the following snippet:

r = security_api.get_security_latest_earnings_record(identifier="KO")
print(r)

The output of the API call contains quite a lot of useful information. For example, we can see what 
time of day the earnings call happened. This information could potentially be used for implementing 
trading strategies that act when the market opens.
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Figure 1.9: Coca-Cola’s latest earnings record
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See also
•	 https://docs.intrinio.com/documentation/api_v2/getting_started—the starting point 

for exploring the API
•	 https://docs.intrinio.com/documentation/api_v2/limits—an overview of the querying 

limits
•	 https://docs.intrinio.com/developer-sandbox—an overview of what is included in the 

free sandbox environment
•	 https://docs.intrinio.com/documentation/python—thorough documentation of the Py-

thon SDK

Getting data from Alpha Vantage
Alpha Vantage is another popular data vendor providing high-quality financial data. Using their API, 
we can download the following:

•	 Stock prices, including intraday and real-time (paid access)
•	 Fundamentals: earnings, income statement, cash flow, earnings calendar, IPO calendar
•	 Forex and cryptocurrency exchange rates
•	 Economic indicators such as real GDP, Federal Funds Rate, Consumer Price Index, and con-

sumer sentiment
•	 50+ technical indicators

In this recipe, we show how to download a selection of crypto-related data. We start with historical 
daily Bitcoin prices, and then show how to query the real-time crypto exchange rate.

Getting ready
Before downloading the data, we need to register at https://www.alphavantage.co/support/#api-key 
to obtain the API key. Access to the API and all the endpoints is free of charge (excluding the real-time 
stock prices) within some bounds (5 API requests per minute; 500 API requests per day).

How to do it…
Execute the following steps to download data from Alpha Vantage:

1.	 Import the libraries:

from alpha_vantage.cryptocurrencies import CryptoCurrencies

2.	 Authenticate using your personal API key and select the API:

ALPHA_VANTAGE_API_KEY = "YOUR_KEY_HERE"

crypto_api = CryptoCurrencies(key=ALPHA_VANTAGE_API_KEY,
                              output_format= "pandas")

https://docs.intrinio.com/documentation/api_v2/getting_started
https://docs.intrinio.com/documentation/api_v2/limits
https://docs.intrinio.com/developer-sandbox
https://docs.intrinio.com/documentation/python
https://www.alphavantage.co/support/#api-key


Chapter 1 17

3.	 Download the daily prices of Bitcoin, expressed in EUR:

data, meta_data = crypto_api.get_digital_currency_daily(
    symbol="BTC", 
    market="EUR"
)

The meta_data object contains some useful information about the details of the query. You 
can see it below:

{'1. Information': 'Daily Prices and Volumes for Digital Currency',
 '2. Digital Currency Code': 'BTC',
 '3. Digital Currency Name': 'Bitcoin',
 '4. Market Code': 'EUR',
 '5. Market Name': 'Euro',
 '6. Last Refreshed': '2022-08-25 00:00:00',
 '7. Time Zone': 'UTC'}

The data DataFrame contains all the requested information. We obtained 1,000 daily OHLC 
prices, the volume, and the market capitalization. What is also noteworthy is that all the OHLC 
prices are provided in two currencies: EUR (as we requested) and USD (the default one).

Figure 1.10: Preview of the downloaded prices, volume, and market cap

4.	 Download the real-time exchange rate:

crypto_api.get_digital_currency_exchange_rate(
    from_currency="BTC", 
    to_currency="USD"
)[0].transpose()
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Running the command returns the following DataFrame with the current exchange rate:

Figure 1.11: BTC-USD exchange rate

How it works…
After importing the alpha_vantage library, we had to authenticate using the personal API key. We did 
so while instantiating an object of the CryptoCurrencies class. At the same time, we specified that we 
would like to obtain output in the form of a pandas DataFrame. The other possibilities are JSON and CSV.

In Step 3, we downloaded the daily BTC prices using the get_digital_currency_daily method. Addi-
tionally, we specified that we wanted to get the prices in EUR. By default, the method will return the 
requested EUR prices, as well as their USD equivalents.

Lastly, we downloaded the real-time BTC/USD exchange rate using the  
get_digital_currency_exchange_rate method.

There’s more...
So far, we have used the alpha_vantage library as a middleman to download information from Alpha 
Vantage. However, the functionalities of the data vendor evolve faster than the third-party library and 
it might be interesting to learn an alternative way of accessing their API.

1.	 Import the libraries:

import requests
import pandas as pd
from io import BytesIO

2.	 Download Bitcoin’s intraday data:

AV_API_URL = "https://www.alphavantage.co/query"
parameters = {
    "function": "CRYPTO_INTRADAY",
    "symbol": "ETH",
    "market": "USD",
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    "interval": "30min",
    "outputsize": "full",
    "apikey": ALPHA_VANTAGE_API_KEY
}
r = requests.get(AV_API_URL, params=parameters)
data = r.json()
df = (
    pd.DataFrame(data["Time Series Crypto (30min)"])
    .transpose()
)
df

Running the snippet above returns the following preview of the downloaded DataFrame:

Figure 1.12: Preview of the DataFrame containing Bitcoin’s intraday prices

We first defined the base URL used for requesting information via Alpha Vantage’s API. Then, 
we defined a dictionary containing the additional parameters of the request, including the per-
sonal API key. In our function call, we specified that we want to download intraday ETH prices 
expressed in USD and sampled every 30 minutes. We also indicated we want a full output (by 
specifying the outputsize parameter). The other option is compact output, which downloads 
the 100 most recent observations.

Having prepared the request’s parameters, we used the get function from the requests library. 
We provide the base URL and the parameters dictionary as arguments. After obtaining the 
response to the request, we can access it in JSON format using the json method. Lastly, we 
convert the element of interest into a pandas DataFrame.

Alpha Vantage’s documentation shows a slightly different approach to downloading 
this data, that is, by creating a long URL with all the parameters specified there. 
Naturally, that is also a possibility, however, the option presented above is a bit 
neater. To see the very same request URL as presented by the documentation, you 
can run r.request.url.
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3.	 Download the upcoming earnings announcements within the next three months:

AV_API_URL = "https://www.alphavantage.co/query"
parameters = {
    "function": "EARNINGS_CALENDAR",
    "horizon": "3month",
    "apikey": ALPHA_VANTAGE_API_KEY
}

r = requests.get(AV_API_URL, params=parameters)
pd.read_csv(BytesIO(r.content))

Running the snippet returns the following output:

Figure 1.13: Preview of a DataFrame containing the downloaded earnings information

While getting the response to our API request is very similar to the previous example, handling the 
output is much different. 

The output of r.content is a bytes object containing the output of the query as text. To mimic a nor-
mal file in-memory, we can use the BytesIO class from the io module. Then, we can normally load 
that mimicked file using the pd.read_csv function.

In the accompanying notebook, we present a few more functionalities of Alpha Vantage, 
such as getting the quarterly earnings data, downloading the calendar of the upcoming 
IPOs, and using alpha_vantage's TimeSeries module to download stock price data.
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See also
•	 https://www.alphavantage.co/—Alpha Vantage homepage
•	 https://www.alphavantage.co/documentation/—the API documentation
•	 https://github.com/RomelTorres/alpha_vantage—the GitHub repo of the third-party library 

used for accessing data from Alpha Vantage

Getting data from CoinGecko
The last data source we will cover is dedicated purely to cryptocurrencies. CoinGecko is a popular data 
vendor and crypto-tracking website, on which you can find real-time exchange rates, historical data, 
information about exchanges, upcoming events, trading volumes, and much more.

We can list a few of the advantages of CoinGecko:

•	 Completely free, and no need to register for an API key
•	 Aside from prices, it also provides updates and news about crypto
•	 It covers many coins, not only the most popular ones

In this recipe, we download Bitcoin’s OHLC from the last 14 days.

How to do it…
Execute the following steps to download data from CoinGecko:

1.	 Import the libraries:

from pycoingecko import CoinGeckoAPI
from datetime import datetime
import pandas as pd

2.	 Instantiate the CoinGecko API:

cg = CoinGeckoAPI()

3.	 Get Bitcoin’s OHLC prices from the last 14 days:

ohlc = cg.get_coin_ohlc_by_id(
    id="bitcoin", vs_currency="usd", days="14"
)
ohlc_df = pd.DataFrame(ohlc)
ohlc_df.columns = ["date", "open", "high", "low", "close"]
ohlc_df["date"] = pd.to_datetime(ohlc_df["date"], unit="ms")
ohlc_df

https://www.alphavantage.co/
https://www.alphavantage.co/documentation/
https://github.com/RomelTorres/alpha_vantage
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Running the snippet above returns the following DataFrame:

Figure 1.14: Preview of the DataFrame containing the requested Bitcoin prices

In the preceding table, we can see that we have obtained the requested 14 days of data, sampled every 
4 hours.

How it works…
After importing the libraries, we instantiated the CoinGeckoAPI object. Then, using its  
get_coin_ohlc_by_id method we downloaded the last 14 days’ worth of BTC/USD exchange rates. 
It is worth mentioning there are some limitations of the API:

•	 We can only download data for a predefined number of days. We can select one of the following 
options: 1/7/14/30/90/180/365/max.

•	 The OHLC candles are sampled with a varying frequency depending on the requested horizon. 
They are sampled every 30 minutes for requests of 1 or 2 days. Between 3 and 30 days they are 
sampled every 4 hours. Above 30 days, they are sampled every 4 days.

The output of the get_coin_ohlc_by_id is a list of lists, which we can convert into a pandas DataFrame. 
We had to manually create the column names, as they were not provided by the API.

There’s more...
We have seen that getting the OHLC prices can be a bit more difficult using the CoinGecko API as 
compared to the other vendors. However, CoinGecko has additional interesting information we can 
download using its API. In this section, we show a few possibilities.
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Get the top 7 trending coins
We can use CoinGecko to acquire the top 7 trending coins—the ranking is based on the number of 
searches on CoinGecko within the last 24 hours. While downloading this information, we also get the 
coins’ symbols, their market capitalization ranking, and the latest price in BTC:

trending_coins = cg.get_search_trending()
(
    pd.DataFrame([coin["item"] for coin in trending_coins["coins"]])
    .drop(columns=["thumb", "small", "large"])
)

Using the snippet above, we obtain the following DataFrame:

Figure 1.15: Preview of the DataFrame containing the 7 trending coins and some information about 
them

Get Bitcoin’s current price in USD
We can also extract current crypto prices in various currencies:

cg.get_price(ids="bitcoin", vs_currencies="usd")

Running the snippet above returns Bitcoin’s real-time price:

{'bitcoin': {'usd': 47312}}

In the accompanying notebook, we present a few more functionalities of pycoingecko, such as get-
ting the crypto price in different currencies than USD, downloading the entire list of coins supported 
on CoinGecko (over 9,000 coins), getting each coin’s detailed market data (market capitalization, 24h 
volume, the all-time high, and so on), and loading the list of the most popular exchanges.

See also
You can find the documentation of the pycoingecko library here: https://github.com/man-c/
pycoingecko.

https://github.com/man-c/pycoingecko
https://github.com/man-c/pycoingecko
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Summary
In this chapter, we have covered a few of the most popular sources of financial data. However, this is 
just the tip of the iceberg. Below, you can find a list of other interesting data sources that might suit 
your needs even better.

Additional data sources are:

•	 IEX Cloud (https://iexcloud.io/)—a platform providing a vast trove of different financial 
data. A notable feature that is unique to the platform is a daily and minutely sentiment score 
based on the activity on Stocktwits—an online community for investors and traders. However, 
that API is only available in the paid plan. You can access the IEX Cloud data using pyex, the 
official Python library.

•	 Tiingo (https://www.tiingo.com/) and the tiingo library.
•	 CryptoCompare (https://www.cryptocompare.com/)—the platform offers a wide range of 

crypto-related data via their API. What stands out about this data vendor is that they provide 
order book data.

•	 Twelve Data (https://twelvedata.com/).
•	 polygon.io (https://polygon.io/)—a trusted data vendor for real-time and historical data 

(stocks, forex, and crypto). Trusted by companies such as Google, Robinhood, and Revolut.
•	 Shrimpy (https://www.shrimpy.io/) and shrimpy-python—the official Python library for the 

Shrimpy Developer API.

In the next chapter, we will learn how to preprocess the downloaded data for further analysis.

Join us on Discord!
To join the Discord community for this book – where you can share feedback, ask questions to the 
author, and learn about new releases – follow the QR code below:

https://packt.link/ips2H

https://iexcloud.io/
https://www.tiingo.com/
https://www.cryptocompare.com/
https://twelvedata.com/
https://polygon.io/
https://www.shrimpy.io/
https://packt.link/ips2H
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Data Preprocessing

You often hear in the data science industry that a data scientist typically spends close to 80% of their 
time on getting the data, processing it, cleaning it, and so on. And only then the remaining 20% of the 
time is actually spent on modeling, which is often considered to be the most interesting part. In the 
previous chapter, we have already learned how to download data from various sources. We still need 
to go through a few steps before we can draw actual insights from the data.

In this chapter, we will cover data preprocessing, that is, general wrangling/manipulation applied to 
the data before using it. The goal is not only to enhance the model’s performance but also to ensure 
the validity of any analysis based on that data. In this chapter, we will focus on the financial time series, 
while in the subsequent chapters, we will also show how to work with other kinds of data.

In this chapter, we cover the following recipes:

•	 Converting prices to returns
•	 Adjusting the returns for inflation
•	 Changing the frequency of time series data
•	 Different ways of imputing missing data
•	 Changing currencies
•	 Different ways of aggregating trade data

Converting prices to returns
Many of the models and approaches used for time series modeling require the time series to be sta-
tionary. We will cover that topic in depth in Chapter 6, Time Series Analysis and Forecasting, however, 
we can get a quick glimpse of it now. 

Stationarity assumes that the statistics (mathematical moments) of a process, such as the series’ mean 
and variance, do not change over time. Using that assumption, we can build models that aim to fore-
cast the future values of the process.
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However, asset prices are usually non-stationary. Their statistics not only change over time, but we 
can also observe some trends (general patterns over time) or seasonality (patterns repeating over fixed 
time intervals). By transforming the prices into returns, we attempt to make the time series stationary.

Another benefit of using returns, as opposed to prices, is normalization. It means that we can easily 
compare various return series, which would not be that simple with raw stock prices, as one stock 
might start selling at $10, while another at $1,000.

There are two types of returns:

•	 Simple returns: They aggregate over assets—the simple return of a portfolio is the weighted 
sum of the returns of the individual assets in the portfolio. Simple returns are defined as:

Rt = (Pt - Pt-1)/Pt-1 = Pt/Pt-1 -1

•	 Log returns: They aggregate over time. It is easier to understand with the help of an example—
the log return for a given month is the sum of the log returns of the days within that month. 
Log returns are defined as:

rt = log(Pt/Pt-1) = log(Pt) - log(Pt-1)

Pt is the price of an asset in time t. In the preceding case, we do not consider dividends, which obvi-
ously impact the returns and require a small modification of the formulas.

In general, log returns are often preferred over simple returns. Probably the most important reason 
for that is the fact that if we assume that the stock prices are log-normally distributed (which might or 
might not be the case for the particular time series), then the log returns would be normally distributed. 
And the normal distribution would work well with quite a lot of classic statistical approaches to time 
series modeling. Also, the difference between simple and log returns for daily/intraday data will be very 
small, in accordance with the general rule that log returns are smaller in value than simple returns.

In this recipe, we show how to calculate both types of returns using Apple’s stock prices.

How to do it…
Execute the following steps to download Apple’s stock prices and calculate simple/log returns:

1.	 Import the libraries:

import pandas as pd
import numpy as np
import yfinance as yf

The best practice while working with stock prices is to use adjusted values as they account 
for possible corporate actions, such as stock splits.
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2.	 Download the data and keep the adjusted close prices only: 

df = yf.download("AAPL",
                 start="2010-01-01",
                 end="2020-12-31",
                 progress=False)
df = df.loc[:, ["Adj Close"]]

3.	 Calculate the simple and log returns using the adjusted close prices: 

df["simple_rtn"] = df["Adj Close"].pct_change()
df["log_rtn"] = np.log(df["Adj Close"]/df["Adj Close"].shift(1))

4.	 Inspect the output:

df.head()

The resulting DataFrame looks as follows:

Figure 2.1: Snippet of the DataFrame containing Apple’s adjusted close prices and simple/
log returns

The first row will always contain a NaN (not a number) value, as there is no previous price to use for 
calculating the returns.

How it works…
In Step 2, we downloaded price data from Yahoo Finance and only kept the adjusted close price for 
the calculation of the returns.

To calculate the simple returns, we used the pct_change method of pandas Series/DataFrame. It cal-
culates the percentage change between the current and prior element (we can specify the number 
of lags, but for this specific case the default value of 1 suffices). Please bear in mind that the prior 
element is defined as the one in the row above the given row. In the case of working with time series 
data, we need to make sure that the data is sorted by the time index.
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To calculate the log returns, we followed the formula given in the introduction to this recipe. When 
dividing each element of the series by its lagged value, we used the shift method with a value of 1 
to access the prior element. In the end, we took the natural logarithm of the divided values by using 
the np.log function.

Adjusting the returns for inflation
When doing different kinds of analyses, especially long-term ones, we might want to consider inflation. 
Inflation is the general rise of the price level of an economy over time. Or to phrase it differently, the 
reduction of the purchasing power of money. That is why we might want to decouple the inflation 
from the increase of the stock prices caused by, for example, the companies’ growth or development.

We can naturally adjust the prices of stocks directly, but in this recipe, we will focus on adjusting the 
returns and calculating the real returns. We can do so using the following formula:𝑅𝑅𝑡𝑡𝑟𝑟 = 1 + 𝑅𝑅𝑡𝑡1 + 𝜋𝜋𝑡𝑡 − 1 

where Rr
t is the real return, Rt is the time t simple return, and 𝜋𝜋𝑡𝑡  stands for the inflation rate.

For this example, we use Apple’s stock prices from the years 2010 to 2020 (downloaded as in the pre-
vious recipe).

How to do it…
Execute the following steps to adjust the returns for inflation:

1.	 Import libraries and authenticate:

import pandas as pd
import nasdaqdatalink

nasdaqdatalink.ApiConfig.api_key = "YOUR_KEY_HERE"

2.	 Resample daily prices to monthly:

df = df.resample("M").last()

3.	 Download inflation data from Nasdaq Data Link:

df_cpi = (
    nasdaqdatalink.get(dataset="RATEINF/CPI_USA", 
                       start_date="2009-12-01", 
                       end_date="2020-12-31")
    .rename(columns={"Value": "cpi"})
)

df_cpi
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Running the code generates the following table:

Figure 2.2: Snippet of the DataFrame containing the values of the Consumer Price Index (CPI)

4.	 Join inflation data to prices:

df = df.join(df_cpi, how="left")

5.	 Calculate simple returns and inflation rate:

df["simple_rtn"] = df["Adj Close"].pct_change()
df["inflation_rate"] = df["cpi"].pct_change()

6.	 Adjust the returns for inflation and calculate the real returns:

df["real_rtn"] = (
    (df["simple_rtn"] + 1) / (df["inflation_rate"] + 1) - 1
)
df.head()

Running the code generates the following table:

Figure 2.3: Snippet of the DataFrame containing the calculated inflation-adjusted returns
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How it works…
First, we imported the libraries and authenticated with Nasdaq Data Link, which we used for download-
ing the inflation-related data. Then, we had to resample Apple’s stock prices to a monthly frequency, 
as the inflation data is provided monthly. To do so, we chained the resample method with the last 
method. This way, we took the last price of the given month. 

In Step 3, we downloaded the monthly Consumer Price Index (CPI) values from Nasdaq Data Link. It 
is a metric that examines the weighted average of prices of a basket of consumer goods and services, 
such as food, transportation, and so on.

Then, we used a left join to merge the two datasets (prices and CPI). A left join is a type of operation 
used for merging tables that returns all rows from the left table and the matched rows from the right 
table while leaving the unmatched rows empty. 

By default, the join method uses the indices of the tables to carry out the actual joining. We can use 
the on argument to specify which column/columns to use otherwise.

Having all the data in one DataFrame, we used the pct_change method to calculate the simple returns 
and the inflation rate. Lastly, we used the formula presented in the introduction to calculate the real 
returns.

There’s more…
We have already explored how to download the inflation data from Nasdaq Data Link. Alternatively, 
we can use a handy library called cpi.

1.	 Import the library:

import cpi

At this point, we might encounter the following warning:

StaleDataWarning: CPI data is out of date

If that is the case, we just need to run the following line of code to update the data:

cpi.update()

2.	 Obtain the default CPI series:

cpi_series = cpi.series.get()

Here we download the default CPI index (CUUR0000SA0: All items in U.S. city average, 
all urban consumers, not seasonally adjusted), which will work for most of the cases. 
Alternatively, we can provide the items and area arguments to download a more tailor-made 
series. We can also use the get_by_id function to download a particular CPI series.

3.	 Convert the object into a pandas DataFrame:

df_cpi_2 = cpi_series.to_dataframe()
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4.	 Filter the DataFrame and view the top 12 observations:

df_cpi_2.query("period_type == 'monthly' and year >= 2010") \
        .loc[:, ["date", "value"]] \
        .set_index("date") \
        .head(12)

Running the code generates the following output:

Figure 2.4: The first 12 values of the DataFrame containing the downloaded values of the CPI

In this step, we used some filtering to compare the data to the data downloaded before from Nasdaq 
Data Link. We used the query method to only keep the monthly data from the year 2010 onward. We 
displayed only two selected columns and the first 12 observations, for comparison’s sake.

We will also be using the cpi library in later chapters to directly inflate the prices using the inflate 
function.

See also
•	 https://github.com/palewire/cpi—the GitHub repo of the cpi library

Changing the frequency of time series data
When working with time series, and especially financial ones, we often need to change the frequency 
(periodicity) of the data. For example, we receive daily OHLC prices, but our algorithm works with 
weekly data. Or we have daily alternative data, and we want to match it with our live feed of intraday data.

https://github.com/palewire/cpi
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The general rule of thumb for changing frequency can be broken down into the following: 

•	 Multiply/divide the log returns by the number of time periods.
•	 Multiply/divide the volatility by the square root of the number of time periods.

In this recipe, we present an example of how to calculate the monthly realized volatilities for Apple 
using daily returns and then annualize the values. We can often encounter annualized volatility when 
looking at the risk-adjusted performance of an investment.

The formula for realized volatility is as follows:

𝑅𝑅𝑅𝑅 = √∑𝑟𝑟𝑡𝑡2𝑇𝑇
𝑖𝑖𝑖𝑖  

Realized volatility is frequently used for calculating the daily volatility using intraday returns.

The steps we need to take are as follows:

•	 Download the data and calculate the log returns
•	 Calculate the realized volatility over the months
•	 Annualize the values by multiplying by √12 , as we are converting from monthly values

Getting ready
We assume you have followed the instructions from the previous recipes and have a DataFrame called 
df with a single log_rtn column and timestamps as the index.

How to do it…
Execute the following steps to calculate and annualize the monthly realized volatility:

1.	 Import the libraries:

import pandas as pd
import numpy as np

2.	 Define the function for calculating the realized volatility:

def realized_volatility(x):
    return np.sqrt(np.sum(x**2))

For any process with independent increments (for example, the geometric 
Brownian motion), the variance of the logarithmic returns is proportional to 
time. For example, the variance of rt3 - rt1 is going to be the sum of the following 
two variances: rt2−rt1 and rt3−rt2, assuming t1≤t2≤t3. In such a case, when we also 
assume that the parameters of the process do not change over time (homogeneity) 
we arrive at the proportionality of the variance to the length of the time interval. 
Which in practice means that the standard deviation (volatility) is proportional 
to the square root of time.
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3.	 Calculate the monthly realized volatility:

df_rv = (
    df.groupby(pd.Grouper(freq="M"))
    .apply(realized_volatility)
    .rename(columns={"log_rtn": "rv"})
)

4.	 Annualize the values:

df_rv.rv = df_rv["rv"] * np.sqrt(12)

5.	 Plot the results:

fig, ax = plt.subplots(2, 1, sharex=True)
ax[0].plot(df)
ax[0].set_title("Apple's log returns (2000-2012)")
ax[1].plot(df_rv)
ax[1].set_title("Annualized realized volatility")

plt.show()

Executing the snippet results in the following plots:

Figure 2.5: Apple’s log return series and the corresponding realized volatility 
(annualized)
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We can see that the spikes in the realized volatility coincide with some extreme returns (which might 
be outliers).

How it works…
Normally, we could use the resample method of a pandas DataFrame. Supposing we wanted to calculate 
the average monthly return, we could use df["log_rtn"].resample("M").mean().

With the resample method, we can use any built-in aggregate function of pandas, such as mean, sum, min, 
and max. However, our case at hand is a bit more complex so we first defined a helper function called 
realized_volatility. Because we wanted to use a custom function for aggregation, we replicated 
the behavior of resample by using a combination of groupby, Grouper, and apply.

We presented the most basic visualization of the results (please refer to Chapter 3, Visualizing Financial 
Time Series, for information about visualizing time series).

Different ways of imputing missing data
While working with any time series, it can happen that some data is missing, due to many possible 
reasons (someone forgot to input the data, a random issue with the database, and so on). One of the 
available solutions would be to discard observations with missing values. However, imagine a scenario 
in which we are analyzing multiple time series at once, and only one of the series is missing a value 
due to some random mistake. Do we still want to remove all the other potentially valuable pieces of 
information because of this single missing value? Probably not. And there are many other potential 
scenarios in which we would rather treat the missing values somehow, rather than discarding those 
observations.

Two of the simplest approaches to imputing missing time series data are:

•	 Backward filling—fill the missing value with the next known value
•	 Forward filling—fill the missing value with the previous known value

In this recipe, we show how to use those techniques to easily deal with missing values in the example 
of the CPI time series.

How to do it…
Execute the following steps to try out different ways of imputing missing data:

1.	 Import the libraries:

import pandas as pd
import numpy as np
import nasdaqdatalink
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2.	 Download the inflation data from Nasdaq Data Link:

nasdaqdatalink.ApiConfig.api_key = "YOUR_KEY_HERE"
 df = (
    nasdaqdatalink.get(dataset="RATEINF/CPI_USA", 
                       start_date="2015-01-01", 
                       end_date="2020-12-31")
    .rename(columns={"Value": "cpi"})
)

3.	 Introduce five missing values at random:

np.random.seed(42)
rand_indices = np.random.choice(df.index, 5, replace=False)

df["cpi_missing"] = df.loc[:, "cpi"]
df.loc[rand_indices, "cpi_missing"] = np.nan
df.head()

In the following table, we can see we have successfully introduced missing values into the data:

Figure 2.6: Preview of the DataFrame with downloaded CPI data and the added missing 
values

4.	 Fill in the missing values using different methods:

for method in ["bfill", "ffill"]:
    df[f"method_{method}"] = (
        df[["cpi_missing"]].fillna(method=method)
    )

5.	 Inspect the results by displaying the rows in which we created the missing values:

df.loc[rand_indices].sort_index()
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Running the code results in the following output:

Figure 2.7: Preview of the DataFrame after imputing the missing values

We can see that backward filling worked for all the missing values we created. However, for-
ward filling failed to impute one value. That is because this is the first data point in the series, 
so there is no available value to fill forward.

6.	 Plot the results for the years 2015 to 2016:

df.loc[:"2017-01-01"] \
  .drop(columns=["cpi_missing"]) \
  .plot(title="Different ways of filling missing values");

Running the snippet generates the following plot:

Figure 2.8: The comparison of backward and forward filling on the CPI time series



Chapter 2 37

In Figure 2.8, we can clearly see how both forward and backward filling work in practice.

How it works…
After importing the libraries, we downloaded the 6 years of monthly CPI data from Nasdaq Data Link. 
Then, we selected 5 random indices from the DataFrame to artificially create missing values. To do 
so, we replaced those values with NaNs.

In Step 4, we applied two different imputation methods to our time series. We used the fillna meth-
od of a pandas DataFrame and specified the method argument as bfill (backward filling) or ffill 
(forward filling). We saved the imputed series as new columns, in order to clearly compare the results. 
Please remember that the fillna method replaces the missing values and keeps the other values intact. 

Instead of providing a method of filling the missing data, we could have specified a value of our choice, 
for example, 0 or 999. However, using an arbitrary number might not make much sense in the case 
of time series data, so that is not advised.

In Step 5, we inspected the imputed values. For brevity, we have only displayed the indices we have 
randomly selected. We used the sort_index method to sort them by the date. This way, we can clearly 
see that the first value was not filled using the forward filling, as it is the very first observation in the 
time series.

Lastly, we plotted all the time series from the years 2015 to 2016. In the plot, we can clearly see how 
backward/forward filling imputes the missing values.

There’s more…
In this recipe, we have explored some simple methods of imputing missing data. Another possibility 
is to use interpolation, to which there are many different approaches. As such, in this example, we 
will use the linear one. Please refer to the pandas documentation (the link is available in the See also 
subsection) for more information about the available methods of interpolation. 

1.	 Use linear interpolation to fill the missing values:

df["method_interpolate"] = df[["cpi_missing"]].interpolate()

2.	 Inspect the results:

df.loc[rand_indices].sort_index()

We used np.random.seed(42) to make the experiment reproducible. Each time 
you run this cell, you will get the same random numbers. You can use any number 
for the seed and the random choice will be different for each of those.
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Running the snippet generates the following output:

Figure 2.9: Preview of the DataFrame after imputing the missing values with linear inter-
polation

Unfortunately, linear interpolation also cannot deal with the missing value located at the very 
beginning of the time series.

3.	 Plot the results:

df.loc[:"2017-01-01"] \
  .drop(columns=["cpi_missing"]) \
  .plot(title="Different ways of filling missing values");

Running the snippet generates the following plot:

Figure 2.10: The comparison of backward and forward filling on the CPI time series, including 
interpolation
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In Figure 2.10, we can see how linear interpolation connects the known observations with a straight 
line to impute the missing value.

In this recipe, we explored imputing missing data for time series data. However, these are not all of 
the possible approaches. We could have, for example, used the moving average of the last few obser-
vations to impute any missing values. There are certainly a lot of possible methodologies to choose 
from. In Chapter 13, Applied Machine Learning: Identifying Credit Default, we will show how to approach 
the issue of missing values for other kinds of datasets.

See also
•	 https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html—

here you can see all the available methods of interpolating available in pandas.

Converting currencies
Another quite common preprocessing step you might encounter while working on financial tasks is 
converting currencies. Imagine you have a portfolio of multiple assets, priced in different currencies 
and you would like to arrive at a total portfolio’s worth. The simplest example might be American and 
European stocks.

In this recipe, we show how to easily convert stock prices from USD to EUR. However, the very same 
steps can be used to convert any pair of currencies.

How to do it…
Execute the following steps to convert stock prices from USD to EUR:

1.	  Import the libraries:

import pandas as pd
import yfinance as yf
from forex_python.converter import CurrencyRates

2.	 Download Apple’s OHLC prices from January 2020:

df = yf.download("AAPL",
                 start="2020-01-01",
                 end="2020-01-31",
                 progress=False)
df = df.drop(columns=["Adj Close", "Volume"])

3.	 Instantiate the CurrencyRates object:

c = CurrencyRates()

4.	 Download the USD/EUR rate for each required date:

df["usd_eur"] = [c.get_rate("USD", "EUR", date) for date in df.index]

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html
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5.	 Convert the prices in USD to EUR:

for column in df.columns[:-1]:
    df[f"{column}_EUR"] = df[column] * df["usd_eur"]
df.head()

Running the snippet generates the following preview:

Figure 2.11: Preview of the DataFrame containing the original prices in USD and the ones 
converted to EUR

We can see that we have successfully converted all four columns with prices into EUR.

How it works…
In Step 1, we have imported the required libraries. Then, we downloaded Apple’s OHLC prices from 
January 2020 using the already covered yfinance library.

In Step 3, we instantiated the CurrencyRates object from the forex-python library. Under the hood, the 
library is using the Forex API (https://theforexapi.com), which is a free API for accessing current 
and historical foreign exchange rates published by the European Central Bank.

In Step 4, we used the get_rate method to download the USD/EUR exchange rates for all the dates 
available in the DataFrame with stock prices. To do so efficiently, we used list comprehension and 
stored the outputs in a new column. One potential drawback of the library and the present imple-
mentation is that we need to download each and every exchange rate individually, which might not 
be scalable for large DataFrames.

In the last step, we iterated over the columns of the initial DataFrame (all except the exchange rate) 
and multiplied the USD price by the exchange rate. We stored the outcomes in new columns, with 
_EUR subscript.

While using the library, you can sometimes run into the following error: 
RatesNotAvailableError: Currency Rates Source Not Ready. The most probable 
cause is that you are trying to get the exchange rates from weekends. The easiest solution 
is to skip those days in the list comprehension/for loop and fill in the missing values using 
one of the approaches covered in the previous recipe.

https://theforexapi.com
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There’s more…
Using the forex_python library, we can easily download the exchange rates for many currencies at 
once. To do so, we can use the get_rates method. In the following snippet, we download the current 
exchange rates of USD to the 31 available currencies. We can naturally specify the date of interest, 
just as we have done before.

1.	 Get the current USD exchange rates to 31 available currencies:

usd_rates = c.get_rates("USD")
usd_rates

The first five entries look as follows:

{'EUR': 0.8441668073611345,
 'JPY': 110.00337666722943,
 'BGN': 1.651021441836907,
 'CZK': 21.426641904440316,
 'DKK': 6.277224379537396,
}

In this recipe, we have mostly focused on the forex_python library, as it is quite handy and 
flexible. However, we might download historical exchange rates from many different sources 
and arrive at the same results (accounting for some margin of error depending on the data 
provider). Quite a few of the data providers described in Chapter 1, Acquiring Financial Data, 
provide historical exchange rates. Below, we show how to get those rates using Yahoo Finance.

2.	 Download the USD/EUR exchange rate from Yahoo Finance:

df = yf.download("USDEUR=X",
                 start="2000-01-01",
                 end="2010-12-31",
                 progress=False)
df.head()

Running the snippet results in the following output:

Figure 2.12: Preview of the DataFrame with the downloaded exchange rates
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In Figure 2.12, we can see one of the limitations of this data source—the data for this currency pair is 
only available since December 2003. Also, Yahoo Finance is providing the OHLC variant of the exchange 
rates. To arrive at a single number used for conversion, you can pick any of the four values (depending 
on the use case) or calculate the mid-value (the middle between low and high values).

See also
•	 https://github.com/MicroPyramid/forex-python—the GitHub repo of the  

forex-python library

Different ways of aggregating trade data
Before diving into building a machine learning model or designing a trading strategy, we not only need 
reliable data, but we also need to aggregate it into a format that is convenient for further analysis and 
appropriate for the models we choose. The term bars refers to a data representation that contains 
basic information about the price movements of any financial asset. We have already seen one form 
of bars in Chapter 1, Acquiring Financial Data, in which we explored how to download financial data 
from a variety of sources. 

There, we downloaded OHLCV data sampled by some time period, be it a month, day, or intraday 
frequencies. This is the most common way of aggregating financial time series data and is known as 
the time bars.

There are some drawbacks of sampling financial time series by time:

•	 Time bars disguise the actual rate of activity in the market—they tend to oversample low ac-
tivity periods (for example, noon) and undersample high activity periods (for example, close 
to market open and close).

•	 Nowadays, markets are more and more controlled by trading algorithms and bots, so they no 
longer follow human daylight cycles.

•	 Time-based bars offer poorer statistical properties (for example, serial correlation, heteroske-
dasticity, and non-normality of returns).

•	 Given that this is the most popular kind of aggregation and the easiest one to access, it can 
also be prone to manipulation (for example, iceberg orders).

To overcome those issues and gain a competitive edge, practitioners also use other kinds of aggregation. 
Ideally, they would want to have a bar representation in which each bar contains the same amount of 
information. Some of the alternatives they are using include:

Iceberg orders are large orders that were divided into smaller limit orders to hide the actual 
order quantity. They are called “iceberg orders” because the visible orders are just the “tip 
of the iceberg,” while a significant number of limit orders is waiting, ready to be placed.

https://github.com/MicroPyramid/forex-python
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•	 Tick bars—named after the fact that transactions/trades in financial markets are often referred 
to as ticks. For this kind of aggregation, we sample an OHLCV bar every time a predefined 
number of transactions occurs.

•	 Volume bars—we sample a bar every time a predefined volume (measured in any unit, for 
example, shares, coins, etc.) is exchanged.

•	 Dollar bars—we sample a bar every time a predefined dollar amount is exchanged. Naturally, 
we can use any other currency of choice.

Each of these forms of aggregations has its strengths and weaknesses that we should be aware of.

Tick bars offer a better way of tracking the actual activity in the market, together with the volatility. 
However, a potential issue arises out of the fact that one trade can contain any number of units of a 
certain asset. So, a buy order of a single share is treated equally to an order of 10,000 shares.

Volume bars are an attempt at overcoming this problem. However, they come with an issue of their 
own. They do not correctly reflect situations in which asset prices change significantly or when stock 
splits happen. This makes them unreliable for comparison between periods affected by such situations.

That is where the third type of bar comes into play—the dollar bars. It is often considered the most 
robust way of aggregating price data. Firstly, the dollar bars help bridge the gap with price volatility, 
which is especially important for highly volatile markets such as cryptocurrencies. Then, sampling 
by dollars is helpful to preserve the consistency of information. The second reason is that dollar bars 
are resistant to the outstanding amount of the security, so they are not affected by actions such as 
stock splits, corporate buybacks, issuance of new shares, and so on.

In this recipe, we will learn how to create all four types of bars mentioned above using trade data 
coming from Binance, one of the most popular cryptocurrency exchanges. We decided to use cryp-
tocurrency data as it is much easier to obtain (free of charge) compared to, for example, equity data. 
However, the presented methodology remains the same for other asset classes as well.

How to do it…
Execute the following steps to download trade data from Binance and aggregate it into four different 
kinds of bars:

1.	 Import the libraries:

from binance.spot import Spot as Client
import pandas as pd
import numpy as np

2.	 Instantiate the Binance client and download the last 500 BTCEUR trades:

spot_client = Client(base_url="https://api3.binance.com")
r = spot_client.trades("BTCEUR")
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3.	 Process the downloaded trades into a pandas DataFrame:

df = (
    pd.DataFrame(r)
    .drop(columns=["isBuyerMaker", "isBestMatch"])
)
df["time"] = pd.to_datetime(df["time"], unit="ms")

for column in ["price", "qty", "quoteQty"]:
    df[column] = pd.to_numeric(df[column])
df

Executing the code returns the following DataFrame:

Figure 2.13: The DataFrame containing the last 500 BTC-EUR transactions

We can see that 500 transactions in the BTCEUR market happened over a span of approximately 
nine minutes. For more popular markets, this window can be significantly reduced. The qty 
column contains the traded amount of BTC, while quoteQty contains the EUR price of the 
traded quantity, which is the same as multiplying the price column by the qty column.

4.	 Define a function aggregating the raw trades information into bars:

def get_bars(df, add_time=False):
    ohlc = df["price"].ohlc()
    vwap = (
        df.apply(lambda x: np.average(x["price"], weights=x["qty"]))
        .to_frame("vwap")
    )
    vol = df["qty"].sum().to_frame("vol")
    cnt = df["qty"].size().to_frame("cnt")
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    if add_time:
        time = df["time"].last().to_frame("time")
        res = pd.concat([time, ohlc, vwap, vol, cnt], axis=1)
    else:
        res = pd.concat([ohlc, vwap, vol, cnt], axis=1)
    return res

5.	 Get the time bars:

df_grouped_time = df.groupby(pd.Grouper(key="time", freq="1Min"))
time_bars = get_bars(df_grouped_time)
time_bars

Running the code generates the following time bars:

Figure 2.14: Preview of the DataFrame with time bars

6.	 Get the tick bars:

bar_size = 50
df["tick_group"] = (
    pd.Series(list(range(len(df))))
    .div(bar_size)
    .apply(np.floor)
    .astype(int)
    .values
)
df_grouped_ticks = df.groupby("tick_group")
tick_bars = get_bars(df_grouped_ticks, add_time=True)
tick_bars
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Running the code generates the following tick bars:

Figure 2.15: Preview of the DataFrame with tick bars

We can see that each group contains exactly 50 trades, just as we intended.

7.	 Get the volume bars:

bar_size = 1
df["cum_qty"] = df["qty"].cumsum()
df["vol_group"] = (
    df["cum_qty"]
    .div(bar_size)
    .apply(np.floor)
    .astype(int)
    .values
)
df_grouped_ticks = df.groupby("vol_group")
volume_bars = get_bars(df_grouped_ticks, add_time=True)
volume_bars

Running the code generates the following volume bars:

Figure 2.16: Preview of the DataFrame with volume bars
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We can see that all the bars contain approximately the same volume. The last one is a bit smaller, 
simply because we did not have enough total volume in the 500 trades.

8.	 Get the dollar bars:

bar_size = 50000
df["cum_value"] = df["quoteQty"].cumsum()
df["value_group"] = (
    df["cum_value"]
    .div(bar_size)
    .apply(np.floor)
    .astype(int)
    .values
)
df_grouped_ticks = df.groupby("value_group")
dollar_bars = get_bars(df_grouped_ticks, add_time=True)
dollar_bars

Running the code generates the following dollar bars:

Figure 2.17: Preview of the DataFrame with dollar bars

How it works…
After importing the libraries, we instantiated the Binance client and downloaded the 500 most recent 
trades in the BTCEUR market using the trades method of the Binance client. We chose this one on 
purpose, as it is not as popular as BTCUSD and the default 500 trades actually span a few minutes. We 
could increase the number of trades up to 1,000 using the limit argument.

We have used the easiest way to download the 500 most recent trades. However, we could 
do better and recreate the trades over a longer period of time. To do so, we could use the 
historical_trades method. It contains an additional argument called fromId, which 
we could use to specify from which particular trade we would like to start our batch 
download. Then, we could chain those API calls using the last known ID to recreate the 
trade history from a longer period of time. However, to do so, we need to have a Binance 
account, create personal API keys, and provide them to the Client class.
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In Step 3, we prepared the data for further analysis, that is, we converted the response from the Bi-
nance client into a pandas DataFrame, dropped two columns we will not be using, converted the time 
column into datetime, and converted to columns containing prices and quantities into numeric ones, 
as they were expressed as object type, which is a string.

Then, we defined a helper function for calculating the bars per some group. The input of the function 
must be a DataFrameGroupBy object, that is, the output of applying the groupby method to a pandas 
DataFrame. That is because the function calculates a bunch of aggregate statistics:

•	 OHLC values using the ohlc method.
•	 The volume-weighted average price (VWAP) by applying the np.average method and using 

the quantity of the trade as the weights argument.
•	 The total volume as the sum of the traded quantity.
•	 The number of trades in a bar by using the size method.
•	 Optionally, the function also returns the timestamp of the bar, which is simply the last time-

stamp of the group.

All of those are separate DataFrames, which we ultimately concatenated using the pd.concat function.

In Step 5, we calculated the time bars. We had to use the groupby method combined with pd.Grouper. 
We indicated we want to create the groups on the time column and used a one-minute frequency. 
Then, we passed the DataFrameGroupBy object to our get_bars function, which returned the time bars.

In Step 6, we calculated the tick bars. The process was slightly different than with time bars, as we 
first had to create the column on which we want to group the trades. The idea was that we group the 
trades in blocks of 50 (this is an arbitrary number and should be determined according to the logic of 
the analysis). To create such groups, we divided the row number by the chosen bar size, rounded the 
result down (using np.floor), and converted it into an integer. Then, we grouped the trades using the 
newly created column and applied the get_bars function.

In Step 7, we calculated the volume bars. The process was quite similar to the tick bars. The difference 
was in creating the grouping column, which this time was based on the cumulative sum of the traded 
quantity. We selected the bar size of 1 BTC.

The last step was to calculate the dollar bars. The process was almost identical to the volume bars, 
but we created the grouping column by applying a cumulative sum to the quoteQty column, instead 
of the qty one used before.

There’s more…
The list of alternative kinds of bars in this recipe is not exhaustive. For example, De Prado (2018) sug-
gests using imbalance bars, which attempt to sample the data when there is an imbalance of buying/
selling activity, as this might imply information asymmetry between market participants. The reasoning 
behind those bars is market participants either buy or sell large quantities of a given asset, but they do 
not frequently do both simultaneously. Hence, sampling when imbalance events occur helps to focus 
on large movements and pay less attention to periods without interesting activity.
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See also
•	 De Prado, M. L. (2018). Advances in Financial Machine Learning. John Wiley & Sons.
•	 https://github.com/binance/binance-connector-python—the GitHub repo of the library 

used for connecting to Binance’s API

Summary
In this chapter, we have learned how to preprocess financial time series data. We started by showing 
how to calculate returns and potentially adjust them for inflation. Then, we covered a few of the popular 
methods for imputing missing values. Lastly, we explained the different approaches to aggregating 
trade data and why choosing the correct one matters.

We should always pay significant attention to this step, as we not only want to enhance our model’s 
performance but also to ensure the validity of any analysis. In the next chapter, we will continue 
working with the preprocessed data and learn how to create time series visualization.

https://github.com/binance/binance-connector-python
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Visualizing Financial Time Series

The old adage a picture is worth a thousand words is very much applicable in the data science field. We 
can use different kinds of plots to not only explore data but also tell data-based stories.

While working with financial time series data, quickly plotting the series can already lead to many 
valuable insights, such as: 

•	 Is the series continuous? 
•	 Are there any unexpected missing values?
•	 Do some values look like outliers?
•	 Are there any patterns we can quickly see and use for further analyses?

Naturally, these are only some of the potential questions that aim to help us with our analyses. The 
main goal of visualization at the very beginning of any project is to familiarize yourself with the data 
and get to know it a bit better. And only then can we move on to conducting proper statistical analysis 
and building machine learning models that aim to predict the future values of the series.

Regarding data visualization, Python offers a variety of libraries that can get the job done, with  
various levels of required complexity (including the learning curve) and slightly different quality of 
the outputs. Some of the most popular libraries used for visualization include:

•	 matplotlib

•	 seaborn

•	 plotly

•	 altair

•	 plotnine—This library is based on R’s ggplot, so might be especially interesting for those 
who are also familiar with R

•	 bokeh

In this chapter, we will use quite a few of the libraries mentioned above. We believe that it makes 
sense to use the best tool for the job, so if it takes a one-liner to create a certain plot in one library 
while it takes 20 lines in another one, then the choice is quite clear. You can most likely create all the 
visualizations shown in this chapter using any of the mentioned libraries. 
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In this chapter, we will cover the following recipes:

•	 Basic visualization of time series data
•	 Visualizing seasonal patterns
•	 Creating interactive visualizations
•	 Creating a candlestick chart

Basic visualization of time series data
The most common starting point of visualizing time series data is a simple line plot, that is, a line 
connecting the values of the time series (y-axis) over time (x-axis). We can use this plot to quickly 
identify potential issues with the data and see if there are any prevailing patterns. 

In this recipe, we will show the easiest way to create a line plot. To do so, we will download Microsoft’s 
stock prices from 2020.

How to do it…
Execute the following steps to download, preprocess, and plot Microsoft’s stock prices and returns 
series:

1.	 Import the libraries:

import pandas as pd
import numpy as np
import yfinance as yf

2.	 Download Microsoft’s stock prices from 2020 and calculate simple returns:

df = yf.download("MSFT",
                 start="2020-01-01",
                 end="2020-12-31",
                 auto_adjust=False,
                 progress=False)
df["simple_rtn"] = df["Adj Close"].pct_change()
df = df.dropna()

If you need to create a very custom plot that is not provided out-of-the-box in one of the 
most popular libraries, then matplotlib should be your choice, as you can create pretty 
much anything using it.
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We dropped the NaNs introduced by calculating the percentage change. This only affects the 
first row.

3.	 Plot the adjusted close prices:

df["Adj Close"].plot(title="MSFT stock in 2020")

Executing the one-liner above generates the following plot:

Figure 3.1: Microsoft’s adjusted stock price in 2020

Plot the adjusted close prices and simple returns in one plot:

(
    df[["Adj Close", "simple_rtn"]]
    .plot(subplots=True, sharex=True, 
          title="MSFT stock in 2020")
)
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Running the code generates the following plot:

Figure 3.2: Microsoft’s adjusted stock price and simple returns in 2020

In Figure 3.2, we can clearly see that the dip in early 2020—caused by the start of the COVID-19 pan-
demic—resulted in increased volatility (variability) of returns. We will get more familiar with volatility 
in the next chapters.

How it works…
After importing the libraries, we downloaded Microsoft stock prices from 2020 and calculated simple 
returns using the adjusted close price.

Then, we used the plot method of a pandas DataFrame to quickly create a line plot. The only argument 
we specified was the plot’s title. Something to keep in mind is that we used the plot method only after 
subsetting a single column from the DataFrame (which is effectively a pd.Series object) and the dates 
were automatically picked up for the x-axis as they were the index of the DataFrame/Series.

We could have also used a more explicit notation to create the very same plot:

df.plot.line(y="Adj Close", title="MSFT stock in 2020")

The plot method is by no means restricted to creating line charts (which are the default). 
We can also create histograms, bar charts, scatterplots, pie charts, and so on. To select 
those, we need to specify the kind argument with a corresponding type of plot. Please 
bear in mind that for some kinds of plots (like the scatterplot), we might need to explicitly 
provide the values for both axes.
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In Step 4, we created a plot consisting of two subplots. We first selected the columns of interest (prices 
and returns) and then used the plot method while specifying that we want to create subplots and that 
they should share the x-axis.

There’s more…
There are many more interesting things worth mentioning about creating line plots, however, we will 
only cover the following two, as they might be the most useful in practice.

First, we can create a similar plot to the previous one using matplotlib's object-oriented interface:

fig, ax = plt.subplots(2, 1, sharex=True)

df["Adj Close"].plot(ax=ax[0])
ax[0].set(title="MSFT time series",
          ylabel="Stock price ($)")
    
df["simple_rtn"].plot(ax=ax[1])
ax[1].set(ylabel="Return (%)")
plt.show()

Running the code generates the following plot:

Figure 3.3: Microsoft’s adjusted stock price and simple returns in 2020
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While it is very similar to the previous plot, we have included some more details on it, such as y-axis 
labels.

One thing that is quite important here, and which will also be useful later on, is the object-oriented 
interface of matplotlib. While calling plt.subplots, we indicated we want to create two subplots in 
a single column, and we also specified that they will be sharing the x-axis. But what is really crucial 
is the output of the function, that is:

•	 An instance of the Figure class called fig. We can think of it as the container for our plots.
•	 An instance of the Axes class called ax (not to be confused with the plot’s x- and y-axes). These 

are all the requested subplots. In our case, we have two of them.

Figure 3.4 illustrates the relationship between a figure and the axes:

Figure 3.4: The relationship between matplotlib’s figure and axes

With any figure, we can have an arbitrary number of subplots arranged in some form of a matrix. We 
can also create more complex configurations, in which the top row might be a single wide subplot, 
while the bottom row might be composed of two smaller subplots, each half the size of the large one.

While building the plot above, we have still used the plot method of a pandas DataFrame. The 
difference is that we have explicitly specified where in the figure we would like to place the sub-
plots. We have done that by providing the ax argument. Naturally, we could have also used  
matplotlib's functions for creating the plot, but we wanted to save a few lines of code.

The second thing worth mentioning is that we can change the plotting backend of pandas to some 
other libraries, like plotly.  We can do so using the following snippet:

df["Adj Close"].plot(title="MSFT stock in 2020", backend="plotly")
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Running the code generates the following interactive plot:

Figure 3.5: Microsoft’s adjusted stock price in 2020, visualized using plotly

Unfortunately, the advantages of using the plotly backend are not visible in print. In the notebook, 
you can hover over the plot to see the exact values (and any other information we include in the tooltip), 
zoom in on particular periods, filter the lines (if there are multiple), and much more. Please see the 
accompanying notebook (available on GitHub) to test out the interactive features of the visualization.

While changing the backend of the plot method, we should be aware of two things:

•	 We need to have the corresponding libraries installed.
•	 Some backends have issues with certain functionalities of the plot method, most notably the 

subplots argument.

See also
https://matplotlib.org/stable/index.html—matplotlib's documentation is a treasure trove of 
information about the library. Most notably, it contains useful tutorials and hints on how to create 
custom visualizations.

To generate the previous plot, we specified the plotting backend while creat-
ing the plot. That means the next plot we create without specifying it explicit-
ly will be created using the default backend (matplotlib). We can use the fol-
lowing snippet to change the plotting backend for our entire session/notebook:  
pd.options.plotting.backend = "plotly".

https://matplotlib.org/stable/index.html
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Visualizing seasonal patterns
As we will learn in Chapter 6, Time Series Analysis and Forecasting, seasonality plays a very important role 
in time series analysis. By seasonality, we mean the presence of patterns that occur at regular intervals 
(shorter than a year). For example, imagine the sales of ice cream, which most likely experience a 
peak in the summer months, while the sales decrease in winter. And such patterns can be seen year 
over year. We show how to use the line plot with a slight twist to efficiently investigate such patterns.

In this recipe, we will visually investigate seasonal patterns in the US unemployment rate from the 
years 2014-2019.

How to do it…
Execute the following steps to create a line plot showing seasonal patterns:

1.	 Import the libraries and authenticate:

import pandas as pd
import nasdaqdatalink
import seaborn as sns 
 
nasdaqdatalink.ApiConfig.api_key = "YOUR_KEY_HERE"

2.	 Download and display unemployment data from Nasdaq Data Link:

df = (
    nasdaqdatalink.get(dataset="FRED/UNRATENSA", 
                       start_date="2014-01-01", 
                       end_date="2019-12-31")
    .rename(columns={"Value": "unemp_rate"})
)
df.plot(title="Unemployment rate in years 2014-2019")
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Running the code generates the following plot:

Figure 3.6: Unemployment rate (US) in the years 2014 to 2019

The unemployment rate expresses the number of unemployed as a percentage of the labor 
force. The values are not adjusted for seasonality, so we can try to spot some patterns. 

In Figure 3.6, we can already spot some seasonal (repeating) patterns, for example, each year 
unemployment seems to be highest in January.

3.	 Create new columns with year and month:

df["year"] = df.index.year
df["month"] = df.index.strftime("%b")
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4.	 Create the seasonal plot:

sns.lineplot(data=df, 
             x="month", 
             y="unemp_rate", 
             hue="year",
             style="year", 
             legend="full",
             palette="colorblind")
plt.title("Unemployment rate - Seasonal plot")
plt.legend(bbox_to_anchor=(1.05, 1), loc=2)

Running the code results in the following plot:

Figure 3.7: Seasonal plot of the unemployment rate

By displaying each year’s unemployment rate over the months, we can clearly see some seasonal 
patterns. For example, the highest unemployment can be observed in January, while the lowest is in 
December. Also, there seems to be a consistent increase in unemployment over the summer months. 

How it works…
In the first step, we imported the libraries and authenticated with Nasdaq Data Link. In the second 
step, we downloaded the unemployment data from the years 2014-2019. For convenience, we renamed 
the Value column to unemp_rate.

In Step 3, we created two new columns, in which we extracted the year and the name of the month 
from the index (encoded as DatetimeIndex). 



Chapter 3 61

In the last step, we used the sns.lineplot function to create the seasonal line plot. We specified that 
we want to use the months on the x-axis and that we will plot each year as a separate line (using the 
hue argument).

There’s more…
We have already investigated the simplest way to investigate seasonality on a plot. In this part, we will 
also go over some alternative visualizations that can reveal additional information about seasonal 
patterns.

1.	 Import the libraries:

from statsmodels.graphics.tsaplots import month_plot, quarter_plot
import plotly.express as px

2.	 Create a month plot:

month_plot(df["unemp_rate"], ylabel="Unemployment rate (%)")
plt.title("Unemployment rate - Month plot")

Running the code produces the following plot:

Figure 3.8: The month plot of the unemployment rate

We can create such plots using other libraries as well. We used seaborn (which is a wrap-
per around matplotlib) to showcase the library. In general, it is recommended to use 
seaborn when you would like to include some statistical information on the plot as well, 
for example, to plot the line of best fit on a scatterplot.
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A month plot is a simple yet informative visualization. For each month, it plots a separate line 
showing how the unemployment rate changed over time (while not showing the time points 
explicitly). Additionally, the red horizontal lines show the average values in those months.

We can draw some conclusions from analyzing Figure 3.8:

•	 By looking at the average values, we can see the pattern we have described before – the 
highest values are observed in January, then the unemployment rate decreases, only 
to bounce back over the summer months and then continue decreasing until the end 
of the year.

•	 Over the years, the unemployment rate decreased; however, in 2019, the decrease seems 
to be smaller than in the previous years. We can see this by looking at the different 
angles of the lines in July and August.

3.	 Create a quarter plot:

quarter_plot(df["unemp_rate"].resample("Q").mean(), 
             ylabel="Unemployment rate (%)")
plt.title("Unemployment rate - Quarter plot")

Running the code produces the following figure:

Figure 3.9: The quarter plot of the unemployment rate

The quarter plot is very similar to the month plot, the only difference being that we use quarters 
instead of months on the x-axis. To arrive at this plot, we had to resample the monthly unem-
ployment rate by taking each quarter’s average value. We could have taken the last value as well.
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4.	 Create a polar seasonal plot using plotly.express:

fig = px.line_polar(
    df, r="unemp_rate", theta="month", 
    color="year", line_close=True, 
    title="Unemployment rate - Polar seasonal plot",
    width=600, height=500,
    range_r=[3, 7]
)
fig.show()

Running the code produces the following interactive plot:

Figure 3.10: Polar seasonal plot of the unemployment rate

Lastly, we created a variation of the seasonal plot in which we plotted the lines on the polar 
coordinate plane. It means that the polar chart visualizes the data along radial and angular 
axes. We have manually capped the radial range by setting range_r=[3, 7]. Otherwise, the 
plot would have started at 0 and it would be harder to see any difference between the lines. 

The conclusions we can draw are similar to those from a normal seasonal plot, however, it might 
take a while to get used to this representation. For example, by looking at the year 2014, we  
immediately see that unemployment is highest in the first quarter of the year.
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Creating interactive visualizations                 
In the first recipe, we gave a short preview of creating interactive visualizations in Python. In this 
recipe, we will show how to create interactive line plots using three different libraries: cufflinks, 
plotly, and bokeh. Naturally, these are not the only available libraries for interactive visualizations. 
Another popular one you might want to investigate further is altair. 

The plotly library is built on top of d3.js (a JavaScript library used for creating interactive visual-
izations in web browsers) and is known for creating high-quality plots with a significant degree of 
interactivity (inspecting values of observations, viewing tooltips of a given point, zooming in, and so 
on). Plotly is also the company responsible for developing this library and it provides hosting for our 
visualizations. We can create an infinite number of offline visualizations and a few free ones to share 
online (with a limited number of views per day).

cufflinks is a wrapper library built on top of plotly. It was released before plotly.express was 
introduced as part of the plotly framework. The main advantages of cufflinks are:

•	 It makes the plotting much easier than pure plotly. 
•	 It enables us to create the plotly visualizations directly on top of pandas DataFrames.
•	 It contains a selection of interesting specialized visualizations, including a special class for 

quantitative finance (which we will cover in the next recipe).

Lastly, bokeh is another library for creating interactive visualizations, aiming particularly for modern 
web browsers. Using bokeh, we can create beautiful interactive graphics, from simple line plots to 
complex interactive dashboards with streaming datasets. The visualizations of bokeh are powered by 
JavaScript, but actual knowledge of JavaScript is not explicitly required for creating the visualizations.

In this recipe, we will create a few interactive line plots using Microsoft’s stock price from 2020. 

How to do it…
Execute the following steps to download Microsoft’s stock prices and create interactive visualizations:

1.	 Import the libraries and initialize the notebook display:

import pandas as pd
import yfinance as yf

import cufflinks as cf
from plotly.offline import iplot, init_notebook_mode
import plotly.express as px
import pandas_bokeh

cf.go_offline()
pandas_bokeh.output_notebook()
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2.	 Download Microsoft’s stock prices from 2020 and calculate simple returns:

df = yf.download("MSFT",
                 start="2020-01-01",
                 end="2020-12-31",
                 auto_adjust=False,
                 progress=False)

df["simple_rtn"] = df["Adj Close"].pct_change()
df = df.loc[:, ["Adj Close", "simple_rtn"]].dropna()
df = df.dropna()

3.	 Create the plot using cufflinks:

df.iplot(subplots=True, shape=(2,1),
         shared_xaxes=True,
         title="MSFT time series")

Running the code creates the following plot:

Figure 3.11: Example of time series visualization using cufflinks

With the plots generated using cufflinks and plotly, we can hover over the line to see the 
tooltip containing the date of the observation and the exact value (or any other available infor-
mation). We can also select a part of the plot that we would like to zoom in on for easier analysis.

4.	 Create the plot using bokeh:

df["Adj Close"].plot_bokeh(kind="line", 
                           rangetool=True, 
                           title="MSFT time series")
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Executing the code generates the following plot:

Figure 3.12: Microsoft’s adjusted stock prices visualized using Bokeh

By default, the bokeh plot comes not only with the tooltip and zooming functionalities, but 
also the range slider. We can use it to easily narrow down the range of dates that we would 
like to see in the plot.

5.	 Create the plot using plotly.express:

fig = px.line(data_frame=df,
              y="Adj Close",
              title="MSFT time series")
fig.show()
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Running the code results in the following visualization:

Figure 3.13: Example of time series visualization using plotly

In Figure 3.13, you can see an example of the interactive tooltip, which is useful for identifying par-
ticular observations within the analyzed time series.

How it works…
In the first step, we imported the libraries and initialized the notebook display for bokeh and the 
offline mode for cufflinks. Then, we downloaded Microsoft’s stock prices from 2020, calculated 
simple returns using the adjusted close price, and only kept those two columns for further plotting.

In the third step, we created the first interactive visualization using cufflinks. As mentioned in 
the introduction, thanks to cufflinks, we can use the iplot method directly on top of the pandas 
DataFrame. It works similarly to the original plot method. Here, we indicated that we wanted to cre-
ate subplots in one column, sharing the x-axis. The library handled the rest and created a nice and 
interactive visualization.

In Step 4, we created a line plot using bokeh. We did not use the pure bokeh library, but an official 
wrapper around pandas—pandas_bokeh. Thanks to it, we could access the plot_bokeh method directly 
on top of the pandas DataFrame to simplify the process of creating the plot.

Lastly, we used the plotly.express framework, which is now officially part of the plotly library 
(it used to be a standalone library). Using the px.line function, we can easily create a simple, yet 
interactive line plot.

There’s more…
While using the visualizations to tell a story or presenting the outputs of our analyses to stakeholders 
or a non-technical audience, there are a few techniques that might improve the plot’s ability to convey 
a given message. Annotations are one of those techniques and we can easily add them to the plots 
generated with plotly (we can do so with other libraries as well).
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We show the required steps below:

1.	 Import the libraries:

from datetime import date

2.	 Define the annotations for the plotly plot:

selected_date_1 = date(2020, 2, 19)
selected_date_2 = date(2020, 3, 23)

first_annotation = {
    "x": selected_date_1,
    "y": df.query(f"index == '{selected_date_1}'")["Adj Close"].
squeeze(),
    "arrowhead": 5,
    "text": "COVID decline starting",
    "font": {"size": 15, "color": "red"},
}

second_annotation = {
    "x": selected_date_2,
    "y": df.query(f"index == '{selected_date_2}'")["Adj Close"].
squeeze(),
    "arrowhead": 5,
    "text": "COVID recovery starting",
    "font": {"size": 15, "color": "green"},
    "ax": 150,
    "ay": 10
}

The dictionaries contain a few elements that might be worthwhile to explain:

•	 x/y—The location of the annotation on the x- and y-axes respectively
•	 text—The text of the annotation
•	 font—The font’s formatting
•	 arrowhead—The shape of the arrowhead we want to use
•	 ax/ay—The offset along the x- and y-axes from the indicated point

We frequently use the offset to make sure that the annotations are not overlapping with each 
other or with other elements of the plot.

After defining the annotations, we can simply add them to the plot.
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3.	 Update the layout of the plot and show it:

fig.update_layout(
    {"annotations": [first_annotation, second_annotation]}
)
fig.show()

Running the snippet generates the following plot:

Figure 3.14: Time series visualization with added annotations

Using the annotations, we have marked the dates when the market started to decline due to the 
COVID-19 pandemic, as well as when it started to recover and rise again. The dates used for annota-
tions were selected simply by viewing the plot.

See also
•	 https://bokeh.org/—For more information about bokeh.
•	 https://altair-viz.github.io/—You can also inspect altair, another popular Python li-

brary for interactive visualizations.
•	 https://plotly.com/python/—plotly's Python documentation. The library is also available 

for other programming languages such as R, MATLAB, or Julia.

Creating a candlestick chart
A candlestick chart is a type of financial graph, used to describe a given security’s price movements. A 
single candlestick (typically corresponding to one day, but a different frequency is possible) combines 
the open, high, low, and close (OHLC) prices. 

https://bokeh.org/
https://altair-viz.github.io/
https://plotly.com/python/
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The elements of a bullish candlestick (where the close price in a given time period is higher than the 
open price) are presented in Figure 3.15:

Figure 3.15: Diagram of a bullish candlestick

For a bearish candlestick, we should swap the positions of the open and close prices. Typically, we 
would also change the candle’s color to red.

In comparison to the plots introduced in the previous recipes, candlestick charts convey much more 
information than a simple line plot of the adjusted close price. That is why they are often used in real 
trading platforms, and traders use them for identifying patterns and making trading decisions.

In this recipe, we also add moving average lines (which are one of the most basic technical indicators), 
as well as bar charts representing volume.

Getting ready
In this recipe, we will download Twitter’s (adjusted) stock prices for the year 2018. We will use Yahoo 
Finance to download the data, as described in Chapter 1, Acquiring Financial Data. Follow these steps 
to get the data for plotting:

1.	 Import the libraries:

import pandas as pd
import yfinance as yf

2.	 Download the adjusted prices:

df = yf.download("TWTR",
                 start="2018-01-01",
                 end="2018-12-31",
                 progress=False,
                 auto_adjust=True)
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How to do it…
Execute the following steps to create an interactive candlestick chart:

1.	 Import the libraries:

import cufflinks as cf
from plotly.offline import iplot

cf.go_offline()

2.	 Create the candlestick chart using Twitter’s stock prices:

qf = cf.QuantFig(
    df, title="Twitter's Stock Price", 
    legend="top", name="Twitter's stock prices in 2018"
)

3.	 Add volume and moving averages to the figure:

qf.add_volume()
qf.add_sma(periods=20, column="Close", color="red")
qf.add_ema(periods=20, color="green")

4.	 Display the plot:

qf.iplot()

We can observe the following plot (it is interactive in the notebook):

Figure 3.16: Candlestick plot of Twitter’s stock prices in 2018
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In the plot, we can see that the exponential moving average (EMA) adapts to the changes in prices 
much faster than the simple moving average (SMA). Some discontinuities in the chart are caused by 
the fact that we are using daily data, and there is no data for weekends/bank holidays.

How it works…
In the first step, we imported the required libraries and indicated that we wanted to use the offline 
mode of cufflinks and plotly. 

In Step 2, we created an instance of a QuantFig object by passing a DataFrame containing the input 
data, as well as some arguments for the title and legend’s position. We could have created a simple 
candlestick chart by running the iplot method of QuantFig immediately afterward.

In Step 3, we added two moving average lines by using the add_sma/add_ema methods. We decided to 
consider 20 periods (days, in this case). By default, the averages are calculated using the close column, 
however, we can change this by providing the column argument.

The difference between the two moving averages is that the exponential one puts more weight on 
recent prices. By doing so, it is more responsive to new information and reacts faster to any changes 
in the general trend.

Lastly, we displayed the plot using the iplot method.

There’s more…
As mentioned in the chapter’s introduction, there are often multiple ways we can do the same task 
in Python, often using different libraries. We will also show how to create candlestick charts using 
pure plotly (in case you do not want to use a wrapper library such as cufflinks) and mplfinance, a 
standalone expansion to matplotlib dedicated to plotting financial data:

1.	 Import the libraries:

import plotly.graph_objects as go
import mplfinance as mpf

2.	 Create a candlestick chart using pure plotly:

fig = go.Figure(data=
    go.Candlestick(x=df.index,
                   open=df["Open"],
                   high=df["High"],
                   low=df["Low"],
                   close=df["Close"])
)

As an alternative to running cf.go_offline() every time, we can also modify the set-
tings to always use the offline mode by running cf.set_config_file(offline=True). 
We can then view the settings using cf.get_config_file().
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fig.update_layout(
    title="Twitter's stock prices in 2018",
    yaxis_title="Price ($)"
)

fig.show()

Running the snippet results in the following plot:

Figure 3.17: An example of a candlestick chart generated using plotly

The code is a bit lengthy, but in reality, it is quite straightforward. We needed to pass an object 
of class go.Candlestick as the data argument for the figure defined using go.Figure. Then, 
we just added the title and the label for the y-axis using the update_layout method. 

What is convenient about the plotly implementation of the candlestick chart is that it comes 
with a range slider, which we can use to interactively narrow down the displayed candlesticks 
to the period that we want to investigate in more detail.

3.	 Create a candlestick chart using mplfinance:

mpf.plot(df, type="candle",
         mav=(10, 20),
         volume=True,
         style="yahoo",
         title="Twitter's stock prices in 2018",
         figsize=(8, 4))
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Running the code generated the following plot:

Figure 3.18: An example of a candlestick chart generated using mplfinance

We used the mav argument to indicate we wanted to create two moving averages, 10- and 20-day 
ones. Unfortunately, at this moment, it is not possible to add exponential variants. However, 
we can add additional plots to the figure using the mpf.make_addplot helper function. We also 
indicated that we wanted to use a style resembling the one used by Yahoo Finance. 

See also
Some useful references:

•	 https://github.com/santosjorge/cufflinks—The GitHub repository of cufflinks
•	 https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py—

The source code of cufflinks might be helpful for getting more information on the available 
methods (different indicators and settings)

•	 https://github.com/matplotlib/mplfinance—The GitHub repository of mplfinance
•	 https://github.com/matplotlib/mplfinance/blob/master/examples/addplot.ipynb—A 

Notebook with examples of how to add extra information to plots generated with mplfinance

You can use the command mpf.available_styles() to display all the available 
styles.

https://github.com/santosjorge/cufflinks
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/matplotlib/mplfinance
https://github.com/matplotlib/mplfinance/blob/master/examples/addplot.ipynb
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Summary
In this chapter, we have covered various ways of visualizing financial (and not only) time series. Plotting 
the data is very helpful in getting familiar with the analyzed time series. We can identify some patterns 
(for example, trends or changepoints) that we might subsequently want to confirm with statistical tests. 
Visualizing data can also help to spot some outliers (extreme values) in our series. This brings us to 
the topic of the next chapter, that is, automatic pattern identification and outlier detection.





4
Exploring Financial  
Time Series Data
In the previous chapters, we learned how to preprocess and visually explore financial time series 
data. This time, we will use algorithms and/or statistical tests to automatically identify potential 
issues (like outliers) and analyze the data for the existence of trends or other patterns (for example, 
mean-reversion).

We will also dive deeper into the stylized facts of asset returns. Together with outlier detection, those 
recipes are particularly important when working with financial data. When we want to build models/
strategies based on asset prices, we have to make sure that they can accurately capture the dynamics 
of the returns.

Having said that, most of the techniques described in this chapter are not restricted only to financial 
time series and can be effectively used in other domains as well.

In this chapter, we will cover the following recipes:

•	 Outlier detection using rolling statistics
•	 Outlier detection with the Hampel filter
•	 Detecting changepoints in time series
•	 Detecting trends in time series
•	 Detecting patterns in a time series using the Hurst exponent
•	 Investigating stylized facts of asset returns

Outlier detection using rolling statistics
While working with any kind of data, we often encounter observations that are significantly different 
from the majority, that is, outliers. In the financial domain, they can be the result of a wrong price, 
something major happening in the financial markets, or an error in the data processing pipeline. 
Many machine learning algorithms and statistical approaches can be heavily influenced by outliers, 
leading to incorrect/biased results. That is why we should identify and handle the outliers before 
creating any models.
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In this recipe, we cover a relatively simple, filter-like approach to detect outliers based on the rolling 
average and standard deviation. We will use Tesla’s stock prices from the years 2019 to 2020.

How to do it…
Execute the following steps to detect outliers using the rolling statistics and mark them on the plot:

1.	 Import the libraries:

import pandas as pd
import yfinance as yf

2.	 Download Tesla’s stock prices from 2019 to 2020 and calculate simple returns:

df = yf.download("TSLA",
                 start="2019-01-01",
                 end="2020-12-31",
                 progress=False)

df["rtn"] = df["Adj Close"].pct_change()
df = df[["rtn"]].copy()

3.	 Calculate the 21-day rolling mean and standard deviation:

df_rolling = df[["rtn"]].rolling(window=21) \
                        .agg(["mean", "std"])
df_rolling.columns = df_rolling.columns.droplevel()

4.	 Join the rolling data back to the initial DataFrame:

df = df.join(df_rolling)

5.	 Calculate the upper and lower thresholds:

N_SIGMAS = 3
df["upper"] = df["mean"] + N_SIGMAS * df["std"]
df["lower"] = df["mean"] - N_SIGMAS * df["std"]

6.	 Identify the outliers using the previously calculated thresholds:

df["outlier"] = (
    (df["rtn"] > df["upper"]) | (df["rtn"] < df["lower"])
)

In this chapter, we will focus on point anomaly detection, that is, investigating whether a 
given observation stands out in comparison to the other ones. There are different sets of 
algorithms that can identify entire sequences of data as anomalous.
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7.	 Plot the returns together with the thresholds and mark the outliers:

fig, ax = plt.subplots()

df[["rtn", "upper", "lower"]].plot(ax=ax)
ax.scatter(df.loc[df["outlier"]].index,
           df.loc[df["outlier"], "rtn"],
           color="black", label="outlier")
ax.set_title("Tesla's stock returns")
ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))

plt.show()

Running the snippet generates the following plot:

Figure 4.1: Outliers identified using the filtering algorithm

In the plot, we can observe outliers marked with a black dot, together with the thresholds used for 
determining them. One thing to notice is that when there are two large (in absolute terms) returns 
in the vicinity of one another, the algorithm identifies the first one as an outlier and the second one 
as a regular observation. This might be due to the fact that the first outlier enters the rolling window 
and affects the moving average/standard deviation. We can observe a situation like that in the first 
quarter of 2020.
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How it works…
After importing the libraries, we downloaded Tesla’s stock prices, calculated the returns, and only 
kept a single column — the one with the returns — for further analysis.

To identify the outliers, we started by calculating the moving statistics using a 21-day rolling window. 
We used 21 as this is the average number of trading days in a month, and in this example, we work 
with daily data. However, we can choose different values, and then the moving average will react more 
quickly/slowly to changes. We can also use the (exponentially) weighted moving average if we find it 
more meaningful for our particular case. To implement the moving metrics, we used the combination 
of the rolling and agg methods of a pandas DataFrame. After calculating the statistics, we dropped 
one level of the MultiIndex to simplify the analysis. 

In Step 4, we joined the rolling statistics back to the original DataFrame. Then, we created additional 
columns containing the upper and lower decision thresholds. We decided to use 3 standard deviations 
above/below the rolling average as the boundaries. Any observation lying beyond them was considered 
an outlier. We should keep in mind that the logic of the filtering algorithm is based on the assumption 
of the stock returns being normally distributed. Later in the chapter, we will see that this assumption 
does not hold empirically. We coded that condition as a separate column in Step 6.

In the last step, we visualized the returns series, along with the upper/lower decision thresholds, and 
marked the outliers with a black dot. To make the plot more readable, we moved the legend outside 
of the plotting area.

In real-life cases, we should not only identify the outliers but also treat them, for example, by capping 
them at the maximum/minimum acceptable value, replacing them with interpolated values, or by 
following any of the other possible approaches.

We should also be aware of the so-called ghost effect. When a single outlier enters the 
rolling window, it inflates the values of the rolling statistics for as long as it remains in 
the rolling window.

When applying the rolling window, we used the previous 21 observations to calculate the 
statistics. So the first value is available for the 22nd row of the DataFrame. By using this 
approach, we do not “leak” future information into the algorithm. However, there might 
be cases when we do not really mind such leakage. In those cases, we might want to use 
centered windows. Then, using the same window size, we would consider the past 10 
observations, the current one, and the next 10 future data points. To do so, we can use 
the center argument of the rolling method.
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There’s more…
Defining functions
In this recipe, we demonstrated how to carry out all the steps required for identifying the outliers as 
separate operations on the DataFrame. However, we can quickly encapsulate all of the steps into a 
single function and make it generic to handle more use cases. You can find an example of how to do 
so below:

def identify_outliers(df, column, window_size, n_sigmas):
    """Function for identifying outliers using rolling statistics"""
    
    df = df[[column]].copy()
    df_rolling = df.rolling(window=window_size) \
                   .agg(["mean", "std"])
    df_rolling.columns = df_rolling.columns.droplevel()
    df = df.join(df_rolling)
    df["upper"] = df["mean"] + n_sigmas * df["std"]
    df["lower"] = df["mean"] - n_sigmas * df["std"]
    
    return ((df[column] > df["upper"]) | (df[column] < df["lower"]))

The function returns a pd.Series containing Boolean flags indicating whether a given observation 
is an outlier or not. An additional benefit of using a function is that we can easily experiment with 
using different parameters (such as window sizes and the numbers of standard deviations used for 
creating the thresholds). 

Winsorization
Another popular approach for treating outliers is winsorization. It is based on replacing outliers in 
data to limit their effect on any potential calculations. It’s easier to understand winsorization using an 
example. A 90% winsorization results in replacing the top 5% of values with the 95th percentile. Sim-
ilarly, the bottom 5% is replaced using the value of the 5th percentile. We can find the corresponding 
winsorize function in the scipy library.

Outlier detection with the Hampel filter
We will cover one more algorithm used for outlier detection in time series—the Hampel filter. Its goal 
is to identify and potentially replace outliers in a given series. It uses a centered sliding window of 
size 2x (given x observations before/after) to go over the entire series. 

For each of the sliding windows, the algorithm calculates the median and the median absolute deviation 
(a form of a standard deviation).
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Similar to the previously covered algorithm, we treat an observation as an outlier if it differs from the 
window’s median by more than a determined number of standard deviations. We can then replace 
such an observation with the window’s median.

We can experiment with the different settings of the algorithm’s hyperparameters. For example, a 
higher standard deviation threshold makes the filter more forgiving, while a lower one results in more 
data points being classified as outliers. 

In this recipe, we will use the Hampel filter to see if any observations in a time series of Tesla’s prices 
from 2019 to 2020 can be considered outliers.

How to do it…
Execute the following steps to identify outliers using the Hampel filter:

1.	 Import the libraries:

import yfinance as yf
from sktime.transformations.series.outlier_detection import HampelFilter

2.	 Download Tesla’s stock prices from the years 2019 to 2020 and calculate simple returns:

df = yf.download("TSLA",
                 start="2019-01-01",
                 end="2020-12-31",
                 progress=False)
df["rtn"] = df["Adj Close"].pct_change()

3.	 Instantiate the HampelFilter class and use it for detecting the outliers:

hampel_detector = HampelFilter(window_length=10, 
                               return_bool=True)
df["outlier"] = hampel_detector.fit_transform(df["Adj Close"])

4.	 Plot Tesla’s stock price and mark the outliers:

fig, ax = plt.subplots()

df[["Adj Close"]].plot(ax=ax)
ax.scatter(df.loc[df["outlier"]].index,
           df.loc[df["outlier"], "Adj Close"],
           color="black", label="outlier")
ax.set_title("Tesla's stock price")

For the median absolute deviation to be a consistent estimator for the standard deviation, 
we have to multiply it by a constant scaling factor k, which is dependent on the distribution. 
For Gaussian, it is approximately 1.4826.
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ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))

plt.show()

Running the code generates the following plot:

Figure 4.2: Tesla’s stock prices and the outliers identified using the Hampel filter

Using the Hampel filter, we identified seven outliers. At first glance, it might be interesting and maybe 
even a bit counterintuitive that the biggest spike and drop around September 2020 were not detected, 
but some smaller jumps later on were. We have to remember that this filter uses a centered window, 
so while looking into the observation at the peak of the spike, the algorithm also looks at the previous 
and next five observations, which include high values as well.

How it works…
The first two steps are quite standard—we imported the libraries, downloaded the stock prices, and 
calculated simple returns.

In Step 3, we instantiated the object of the HampelFilter class. We used the filter’s implementation from 
the sktime library, which we will also explore further in Chapter 7, Machine Learning-Based Approaches 
to Time Series Forecasting. We specified that we want to use a window of length 10 (5 observations be-
fore and 5 after) and for the filter to return a Boolean flag whether the observation is an outlier or not. 
The default setting of return_bool will return a new series in which the outliers will be replaced with 
NaNs. That is because the authors of sktime suggest using the filter for identifying and removing the 
outliers, and then using a companion Imputer class for filling in the missing values.
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sktime uses methods similar to those available in scikit-learn, so we first need to fit the trans-
former object to the data and then transform it to obtain the flag indicating whether the observation 
is an outlier. Here, we completed two steps at once by using the fit_transform method applied to 
the adjusted close price.

In the last step, we plotted the stock price as a line plot and marked the outliers as black dots.

There’s more…
For comparison’s sake, we can also apply the very same filter to the returns calculated using the adjust-
ed close prices. This way, we can see if the algorithm will identify different observations as outliers:

1.	 Identify the outliers among the stock returns:

df["outlier_rtn"] = hampel_detector.fit_transform(df["rtn"])

Because we have already instantiated the HampelFilter, we do not need to do it again. We can 
just fit it to the new data (returns) and transform it to get the Boolean flag. 

2.	 Plot Tesla’s daily returns and mark the outliers:

fig, ax = plt.subplots()

df[["rtn"]].plot(ax=ax)
ax.scatter(df.loc[df["outlier_rtn"]].index,
           df.loc[df["outlier_rtn"], "rtn"],
           color="black", label="outlier")
ax.set_title("Tesla's stock returns")
ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))

plt.show()

Please refer to Chapter 13, Applied Machine Learning: Identifying Credit Default, for more 
information about using scikit-learn's fit/transform API.
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Running the code generates the following plot:

Figure 4.3: Tesla’s stock returns and the outliers identified using the Hampel filter

We can immediately see that the algorithm detected more outliers when using the returns 
instead of the prices.

3.	 Investigate the overlap in outliers identified for the prices and returns:

df.query("outlier == True and outlier_rtn == True")

Figure 4.4: The date that was identified as an outlier using both prices and returns
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There is only a single date that was identified as an outlier based on both prices and returns.

See also
Anomaly/outlier detection is an entire field in data science, and there are numerous approaches to 
identifying suspicious observations. We have covered two algorithms that are especially suitable for 
time series problems. However, there are many possible approaches to anomaly detection in general. 
We will cover outlier detection methods used for data other than time series in Chapter 13, Applied 
Machine Learning: Identifying Credit Default. Some of them can also be used for time series.

Here are a few interesting anomaly/outlier detection libraries:

•	 https://github.com/datamllab/tods

•	 https://github.com/zillow/luminaire/

•	 https://github.com/signals-dev/Orion

•	 https://pycaret.org/anomaly-detection/

•	 https://github.com/linkedin/luminol—a library created by LinkedIn; unfortunately, it is 
not actively maintained anymore

•	 https://github.com/twitter/AnomalyDetection—this R package (created by Twitter) is quite 
famous and was ported to Python by some individual contributors

A few more references:

•	 Hampel F. R. 1974. “The influence curve and its role in robust estimation.” Journal of the Amer-
ican Statistical Association, 69: 382-393—a paper introducing the Hampel filter

•	 https://www.sktime.org/en/latest/index.html—documentation of sktime

Detecting changepoints in time series
A changepoint can be defined as a point in time when the probability distribution of a process or time 
series changes, for example, when there is a change to the mean in the series. 

In this recipe, we will use the CUSUM (cumulative sum) method to detect shifts of the means in a time 
series. The implementation used in the recipe has two steps:

1.	 Finding the changepoint—an iterative process is started by first initializing a changepoint in 
the middle of the given time series. Then, the CUSUM approach is carried out based on the 
selected point. The following changepoint is located where the previous CUSUM time series 
is either maximized or minimized (depending on the direction of the changepoint we want 
to locate). We continue this process until a stable changepoint is located or we exceed the 
maximum number of iterations.

2.	 Testing its statistical significance—a log-likelihood ratio test is used to test if the mean of the 
given time series changes at the identified changepoint. The null hypothesis states that there 
is no change in the mean of the series.

https://github.com/datamllab/tods
https://github.com/zillow/luminaire/
https://github.com/signals-dev/Orion
https://pycaret.org/anomaly-detection/
https://github.com/linkedin/luminol
https://github.com/twitter/AnomalyDetection
https://www.sktime.org/en/latest/index.html
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Some further remarks about the implementation of the algorithm:

•	 The algorithm can be used to detect both upward and downward shifts.
•	 The algorithm can find at most one upward and one downward changepoint.
•	 By default, the changepoints are only reported if the null hypothesis is rejected.
•	 Under the hood, the Gaussian distribution is used to calculate the CUSUM time series value 

and perform the hypothesis test.

In this recipe, we will apply the CUSUM algorithm to identify changepoints in Apple’s stock prices 
from 2020.

How to do it…
Execute the following steps to detect changepoints in Apple’s stock price:

1.	 Import the libraries:

import yfinance as yf
from kats.detectors.cusum_detection import CUSUMDetector
from kats.consts import TimeSeriesData

2.	 Download Apple’s stock price from 2020:

df = yf.download("AAPL",
                 start="2020-01-01",
                 end="2020-12-31",
                 progress=False)

3.	 Keep only the adjusted close price, reset the index, and rename the columns:

df = df[["Adj Close"]].reset_index(drop=False)
df.columns = ["time", "price"]

4.	 Convert the DataFrame into a TimeSeriesData object:

tsd = TimeSeriesData(df)

5.	 Instantiate and run the changepoint detector:

cusum_detector = CUSUMDetector(tsd)
change_points = cusum_detector.detector(
    change_directions=["increase"]
)
cusum_detector.plot(change_points)
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Running the code generates the following plot:

Figure 4.5: The changepoint detected by the CUSUM algorithm

We see that the algorithm picked the biggest jump as the changepoint.

6.	 Investigate the detected changepoint in more detail:

point, meta = change_points[0]
point

What returns the following information about the detected changepoint: 

TimeSeriesChangePoint(start_time: 2020-07-30 00:00:00, end_time: 2020-07-
30 00:00:00, confidence: 1.0)

The identified changepoint is on the 30th of July and indeed the stock price jumped from $95.4 on that 
day to $105.4 on the next day, mostly due to a strong quarterly earnings report.
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How it works…
In the first step, we imported the libraries. For detecting the changepoints, we used the kats library 
from Facebook. Then, we fetched Apple’s stock prices from 2020. For this analysis, we used the ad-
justed close prices.

To work with kats, we need to have our data in a particular format. That is why in Step 3, we only kept 
the adjusted close prices, reset the index without dropping it (as we need that column), and renamed 
the columns. One thing to remember is that the column containing the dates/datetimes must be called 
time. In Step 4, we converted the DataFrame into a TimeSeriesData object, which is a representation 
used by kats.

In Step 5, we instantiated the CUSUMDetector using the previously created data. We did not change any 
default settings. Then, we identified the changepoints using the detector method. For this analysis, 
we were only interested in increases, so we specified the change_directions argument. Lastly, we 
plotted the detected changepoint using the plot method of the cusum_detector object. One thing to 
note here is that we had to provide the identified changepoints as input for the method.

In the very last step, we looked further into the detected changepoints. The returned object is a list 
containing two elements: the TimeSeriesChangePoint object containing information, such as the 
date of the identified changepoint and the algorithm’s confidence, and a metadata object. By using the 
latter’s __dict__ method, we can access more information about the point: the direction, the mean 
before/after the changepoint, the p-value of the likelihood ratio test, and more. 

There’s more…
The library offers quite a few more interesting functionalities regarding changepoint detection. We 
will only cover two of them, and I highly encourage you to explore them further on your own. 

Restricting the detection window
The first one is to restrict the window in which we want to look for the changepoint. We can do so using 
the interest_window argument of the detector method. Below, we only looked for a changepoint 
between the 200th and 250th observations (reminder: this is a trading year and not a full calendar year, 
so there are only around 252 observations).

Narrow down the window in which we want to search for the changepoint:

change_points = cusum_detector.detector(change_directions=["increase"],
                                        interest_window=[200, 250])
cusum_detector.plot(change_points)
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We can see the modified results in the following plot:

Figure 4.6: Changepoint identified between the 200th and 250th observations in the series

Aside from the identified changepoint, we can also see the window we have selected.

Using different changepoint detection algorithms
The kats library also contains other interesting algorithms for changepoint detection. One of them 
is RobustStatDetector. Without going into too much detail about the algorithm itself, it smoothens 
the data using moving averages before identifying the points of interest. Another interesting feature 
of the algorithm is that it can detect multiple changepoints in a single run.

Use another algorithm to detect changepoints (RobustStatDetector):

from kats.detectors.robust_stat_detection import RobustStatDetector

robust_detector = RobustStatDetector(tsd)
change_points = robust_detector.detector()
robust_detector.plot(change_points)
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Running the snippet generates the following plot:

Figure 4.7: Identifying changepoints using the RobustStatDetector

This time, the algorithm picked up two additional changepoints compared to the previous attempt.

See also
•	 https://github.com/facebookresearch/Kats—the GitHub repository of Facebook’s Kats
•	 Page, E. S. 1954. “Continuous inspection schemes.” Biometrika 41(1): 100–115
•	 Adams, R. P., & MacKay, D. J. (2007). Bayesian online changepoint detection. arXiv preprint arX-

iv:0710.3742

Another interesting algorithm provided by the kats library is the Bayesian Online 
Change Point Detection (BOCPD), for which we provide a reference in the See also 
section.

https://github.com/facebookresearch/Kats
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Detecting trends in time series
In the previous recipe, we covered changepoint detection. Another class of algorithms can be used 
for trend detection, that is, identifying significant and prolonged changes in time series.

The kats library offers a trend detection algorithm based on the non-parametric Mann-Kendall (MK) 
test. The algorithm iteratively conducts the MK test on windows of a specified size and returns the 
starting points of each window for which this test turned out to be statistically significant. 

To detect whether there is a significant trend in the window, the test inspects the monotonicity of the 
increases/decreases in the time series rather than the magnitude of the change in values. The MK test 
uses a test statistic called Kendall’s Tau, and it ranges from -1 to 1. We can interpret the values as follows:

•	 -1 indicates a perfectly monotonic decline
•	 1 indicates a perfectly monotonic increase
•	 0 indicates that there is no directional trend in the series

By default, the algorithm will only return periods in which the results were statistically significant.

You might be wondering why use an algorithm for detecting trends when it is easy to see them on 
the plot? That is very true; however, we should remember that the goal of using those algorithms is 
to look at more than a single series and time period at a time. We want to be able to detect trends at 
scale, for example, finding upward trends within hundreds of time series.

In this recipe, we will use the trend detection algorithm to investigate whether there were periods 
with significant increasing trends in NVIDIA’s stock prices from 2020.

How to do it…
Execute the following steps to detect increasing trends in NVIDIA’s stock prices from 2020:

1.	 Import the libraries:

import yfinance as yf
from kats.consts import TimeSeriesData
from kats.detectors.trend_mk import MKDetector

2.	 Download NVIDIA’s stock prices from 2020:

df = yf.download("NVDA",
                 start="2020-01-01",
                 end="2020-12-31",
                 progress=False)

3.	 Keep only the adjusted close price, reset the index, and rename the columns:

df = df[["Adj Close"]].reset_index(drop=False)
df.columns = ["time", "price"]
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4.	 Convert the DataFrame into a TimeSeriesData object:

tsd = TimeSeriesData(df)

5.	 Instantiate and run the trend detector:

trend_detector = MKDetector(tsd, threshold=0.9)
time_points = trend_detector.detector(
    direction="up", 
    window_size=30
)

6.	 Plot the detected time points:

trend_detector.plot(time_points)

Running the line results in the following plot:

Figure 4.8: The identified starting points of upward trends

In Figure 4.8, we can see a lot of periods with some gaps in between. What is important to know is that 
the red vertical bars are not the detected windows, but rather a lot of detected trend starting points 
right next to each other. Running the selected configuration of the algorithm on our data resulted in 
identifying 95 periods of an increasing trend, which clearly have a lot of overlap.

How it works…
The first four steps are very similar to the previous recipe, with the only difference being that this 
time we downloaded NVIDIA’s stock price from 2020. Please refer to the previous recipe for more 
information about preparing the data for working with the kats library.

In Step 5, we instantiated the trend detector (MKDetector class) while providing the data and changing 
the threshold of the Tau coefficient to 0.9. This way, we obtain only the periods with higher trend in-
tensity. Then, we used the detector method to find the time points. We were interested in increasing 
trends (direction="up") over a window of 30 days.
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In Step 6, we plotted the results. We can also inspect in detail each of the 95 detected points. The re-
turned time_points object is a list of tuples, in which each tuple contains the TimeSeriesChangePoint 
object (with the beginning date of the detected trend period) and the point’s metadata. In our case, 
we looked for periods of an increasing trend over a window of 30 days. Naturally, there will be quite 
an overlap in the periods of an increasing trend, as we identified multiple points, with each being 
the beginning of the period. As we can see in the plot, a lot of those identified points are consecutive. 

See also
•	 Mann, H. B. 1945. “Non-Parametric Tests against Trend.” Econometrica 13: 245-259.
•	 Kendall, M. G. 1948. Rank Correlation Methods. Griffin.

Detecting patterns in a time series using the Hurst 
exponent
In finance, a lot of trading strategies are based on one of the following:

•	 Momentum—the investors try to use the continuance of the existing market trend to determine 
their positions

•	 Mean-reversion – the investors assume that properties such as stock returns and volatility will 
revert to their long-term average over time (also known as an Ornstein-Uhlenbeck process)

While we can relatively easily classify a time series as one of the two by inspecting it visually, this 
solution definitely does not scale well. That is why we can use approaches such as the Hurst exponent 
to identify if a given time series (not necessarily a financial one) is trending, mean-reverting, or simply 
a random walk.

Hurst exponent (H) is a measure for the long-term memory of a time series, that is, it measures the 
amount by which that series deviates from a random walk. The values of the Hurst exponent range 
between 0 and 1, with the following interpretation:

•	 H < 0.5—a series is mean-reverting. The closer the value is to 0, the stronger the mean-rever-
sion process is. 

•	 H = 0.5—a series is a geometric random walk.

There are also other parameters of the detector we could tune. For example, we can specify 
if there is some seasonality in the data by using the freq argument.

A random walk is a process in which a path consists of a succession of steps taken at 
random. Applied to stock prices, it suggests that changes in stock prices have the same 
distribution and are independent of each other. This implies that the past movement (or 
trend) of a stock price cannot be used to predict its future movement. For more informa-
tion, please see Chapter 10, Monte Carlo Simulations in Finance.
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•	 H > 0.5—a series is trending. The closer the value is to 1, the stronger the trend.

There are a few ways of calculating the Hurst exponent. In this recipe, we will focus on the one based 
on estimating the rate of the diffusive behavior, which is based on the variance of log prices. For the 
practical example, we will use 20 years of daily S&P 500 prices.

How to do it…
Execute the following steps to investigate whether S&P 500 prices are trending, mean-reverting, or 
an example of a random walk:

1.	 Import the libraries:

import yfinance as yf
import numpy as np
import pandas as pd

2.	 Download S&P 500’s historical prices from the years 2000 to 2019:

df = yf.download("^GSPC",
                 start="2000-01-01",
                 end="2019-12-31",
                 progress=False)
df["Adj Close"].plot(title="S&P 500 (years 2000-2019)")

Running the code generates the following plot:

Figure 4.9: The S&P 500 index in the years 2000 to 2019
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We plot the data to get some initial intuition of what to expect from the calculated Hurst ex-
ponent.

3.	 Define a function calculating the Hurst exponent:

def get_hurst_exponent(ts, max_lag=20):
    """Returns the Hurst Exponent of the time series"""
    lags = range(2, max_lag)
    tau = [np.std(np.subtract(ts[lag:], ts[:-lag])) for lag in lags]
    hurst_exp = np.polyfit(np.log(lags), np.log(tau), 1)[0]

    return hurst_exp

4.	 Calculate the values of the Hurst exponent using different values for the max_lag parameter:

for lag in [20, 100, 250, 500, 1000]:
    hurst_exp = get_hurst_exponent(df["Adj Close"].values, lag)
    print(f"Hurst exponent with {lag} lags: {hurst_exp:.4f}")

This returns the following:

Hurst exponent with 20 lags: 0.4478
Hurst exponent with 100 lags: 0.4512
Hurst exponent with 250 lags: 0.4917
Hurst exponent with 500 lags: 0.5265
Hurst exponent with 1000 lags: 0.5180

The more lags we include, the closer we get to the verdict that the S&P 500 series is a random 
walk.

5.	 Narrow down the data to the years 2005 to 2007 and calculate the exponents one more time:

shorter_series = df.loc["2005":"2007", "Adj Close"].values
for lag in [20, 100, 250, 500]:
    hurst_exp = get_hurst_exponent(shorter_series, lag)
    print(f"Hurst exponent with {lag} lags: {hurst_exp:.4f}")

This returns the following:

Hurst exponent with 20 lags: 0.3989
Hurst exponent with 100 lags: 0.3215
Hurst exponent with 250 lags: 0.2507
Hurst exponent with 500 lags: 0.1258
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It seems that the series from the 2005 to 2007 period is mean-reverting. For reference, the 
discussed time series is illustrated as follows:

Figure 4.10: The S&P 500 index in the years 2005 to 2007

How it works…
After importing the required libraries, we downloaded 20 years’ worth of daily S&P prices from Ya-
hoo Finance. From looking at the plot, it is hard to say whether the time series is purely trending, 
mean-reverting, or a random walk. There seems to be a clear rising trend, especially in the second 
half of the series.

In Step 3, we defined a function used for calculating the Hurst exponent. For this approach, we need to 
provide the maximum number of lags to be used for the calculations. This parameter greatly impacts 
the results, as we will see later on.

The calculations of the Hurst exponent can be summarized in two steps:

1.	 For each lag in the considered range, we calculate the standard deviation of the differenced 
series (we will cover differencing in more depth in Chapter 6, Time Series Analysis and Forecasting).

2.	 Calculate the slope of the log plot of lags versus the standard deviations to get the Hurst ex-
ponent.

In Step 4, we calculated and printed the Hurst exponent for a range of different values of the max_lag 
parameter. For lower values of the parameter, the series could be considered slightly mean-reverting. 
While increasing the value of the parameter, the interpretation changed more in favor of the series 
being a random walk.
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In Step 5, we carried out a similar experiment, but this time on a restricted time series. We only looked 
at data from the years 2005 to 2007. We also had to remove the max_lag of 1,000, given there were not 
enough observations in the restricted time series. As we could see, the results have changed a bit more 
drastically than before, from 0.4 for max_lag of 20 to 0.13 for 500 lags.

While using the Hurst exponent for our analyses, we should keep in mind that the results can vary 
depending on:

•	 The method we use for calculating the Hurst exponent
•	 The value of the max_lag parameter
•	 The period we are looking at – local patterns can be very different from the global ones

There’s more…
As we mentioned in the introduction, there are multiple ways to calculate the Hurst exponent. Another 
quite popular approach is to use the rescaled range (R/S) analysis. A brief literature review suggests 
that using the R/S statistic leads to better results in comparison to other methods such as the analysis 
of autocorrelations, variance ratios, and more. A possible shortcoming of that method is that it is very 
sensitive to short-range dependencies.

For an implementation of the Hurst exponent based on the rescaled range analysis, you can check 
out the hurst library.

See also
•	 https://github.com/Mottl/hurst—the repository of the hurst library
•	 Hurst, H. E. 1951. “Long-Term Storage Capacity of Reservoirs.” ASCE Transactions 116(1): 770–808
•	 Kroha, P., & Skoula, M. 2018, March. Hurst Exponent and Trading Signals Derived from Market 

Time Series. In ICEIS (1): 371–378

Investigating stylized facts of asset returns
Stylized facts are statistical properties that are present in many empirical asset returns (across time and 
markets). It is important to be aware of them because when we are building models that are supposed 
to represent asset price dynamics, the models should be able to capture/replicate these properties.

In this recipe, we investigate the five stylized facts using an example of daily S&P 500 returns from 
the years 2000 to 2020.

https://github.com/Mottl/hurst
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Getting ready
As this is a longer recipe with further subsections, we import the required libraries and prepare the 
data in this section:

1.	 Import the required libraries:

import pandas as pd
import numpy as np
import yfinance as yf
import seaborn as sns
import scipy.stats as scs
import statsmodels.api as sm
import statsmodels.tsa.api as smt

2.	 Download the S&P 500 data and calculate the returns:

df = yf.download("^GSPC", 
                 start="2000-01-01", 
                 end="2020-12-31",
                 progress=False)
 
df = df[["Adj Close"]].rename(
    columns={"Adj Close": "adj_close"}
)
df["log_rtn"] = np.log(df["adj_close"]/df["adj_close"].shift(1))
df = df[["adj_close", "log_rtn"]].dropna()

How to do it…
In this section, we sequentially investigate the five stylized facts in the S&P 500 returns series:

Fact 1: Non-Gaussian distribution of returns        
It was observed in the literature that (daily) asset returns exhibit the following:

•	 Negative skewness (third moment): Large negative returns occur more frequently than large 
positive ones

•	 Excess kurtosis (fourth moment): Large (and small) returns occur more often than expected 
under normality

Moments are a set of statistical measures used to describe a probability distribution. The 
first four moments are the following: expected value (mean), variance, skewness, and 
kurtosis.
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Run the following steps to investigate the existence of the first fact by plotting the histogram of returns 
and a quantile-quantile (Q-Q) plot:

1.	 Calculate the Normal probability density function (PDF) using the mean and standard devi-
ation of the observed returns:

r_range = np.linspace(min(df["log_rtn"]), 
                      max(df["log_rtn"]), 
                      num=1000)
mu = df["log_rtn"].mean()
sigma = df["log_rtn"].std()
norm_pdf = scs.norm.pdf(r_range, loc=mu, scale=sigma)   

2.	 Plot the histogram and the Q-Q plot:

fig, ax = plt.subplots(1, 2, figsize=(16, 8))
 
# histogram
sns.distplot(df.log_rtn, kde=False, 
             norm_hist=True, ax=ax[0])                                    
ax[0].set_title("Distribution of S&P 500 returns", 
                fontsize=16)                                                    
ax[0].plot(r_range, norm_pdf, "g", lw=2, 
           label=f"N({mu:.2f}, {sigma**2:.4f})")
ax[0].legend(loc="upper left")
 
# Q-Q plot
qq = sm.qqplot(df.log_rtn.values, line="s", ax=ax[1])
ax[1].set_title("Q-Q plot", fontsize=16)

plt.show()

Executing the code results in the following plot:
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Figure 4.11: The distribution of S&P 500 returns visualized using a histogram and a Q-Q plot

We can use the histogram (showing the shape of the distribution) and the Q-Q plot to assess 
the normality of the log returns. Additionally, we can print the summary statistics (please refer 
to the GitHub repository for the code):

---------- Descriptive Statistics ----------
Range of dates: 2000-01-03 – 2020-12-30
Number of observations: 5283
Mean: 0.0002
Median: 0.0006
Min: -0.1277
Max: 0.1096
Standard Deviation: 0.0126
Skewness: -0.3931
Kurtosis: 10.9531
Jarque-Bera statistic: 26489.07 with p-value: 0.00

By looking at the metrics such as the mean, standard deviation, skewness, and kurtosis, we 
can infer that they deviate from what we would expect under normality. The four moments of 
the Standard Normal distribution are 0, 1, 0, and 0 respectively. Additionally, the Jarque-Bera 
normality test gives us reason to reject the null hypothesis by stating that the distribution is 
normal at the 99% confidence level.

The fact that the returns do not follow the Normal distribution is crucial, given many statistical models 
and approaches assume that the random variable is normally distributed.
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Fact 2: Volatility clustering 
Volatility clustering is the pattern in which large changes in prices tend to be followed by large changes 
(periods of higher volatility), while small changes in price are followed by small changes (periods of 
lower volatility).

Run the following code to investigate the second fact by plotting the log returns series:

(
    df["log_rtn"]
    .plot(title="Daily S&P 500 returns", figsize=(10, 6))
)

Executing the code results in the following plot: 

Figure 4.12: Examples of volatility clustering in the S&P 500 returns

We can observe clear clusters of volatility—periods of higher positive and negative returns. The fact 
that volatility is not constant and that there are some patterns in how it evolves is a very useful obser-
vation when we attempt to forecast volatility, for example, using GARCH models. For more information, 
please refer to Chapter 9, Modeling Volatility with GARCH Class Models.

Fact 3: Absence of autocorrelation in returns    
Autocorrelation (also known as serial correlation) measures how similar a given time series is to the 
lagged version of itself over successive time intervals. 
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Below, we investigate the third fact by stating the absence of autocorrelation in returns:

1.	 Define the parameters for creating the autocorrelation plots:

N_LAGS = 50
SIGNIFICANCE_LEVEL = 0.05

2.	 Run the following code to create the autocorrelation function (ACF) plot of log returns:

acf = smt.graphics.plot_acf(df["log_rtn"],
                            lags=N_LAGS,
                            alpha=SIGNIFICANCE_LEVEL)
plt.show()

Executing the snippet results in the following plot:

Figure 4.13: The plot of the autocorrelation function of the S&P 500 returns

Only a few values lie outside of the confidence interval (we do not look at lag 0) and can be considered 
statistically significant. We can assume that we have verified that there is no autocorrelation in the 
log-returns series.
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Fact 4: Small and decreasing autocorrelation in squared/absolute 
returns
While we expect no autocorrelation in the return series, it was empirically proven that we can ob-
serve small and slowly decaying autocorrelation (also referred to as persistence) in simple nonlinear 
functions of the returns, such as absolute or squared returns. This observation is connected to the 
phenomenon we have already investigated, that is, volatility clustering. 

The autocorrelation function of the squared returns is a common measure of volatility clustering. It 
is also referred to as the ARCH effect, as it is the key component of (G)ARCH models, which we cover 
in Chapter 9, Modeling Volatility with GARCH Class Models. However, we should keep in mind that this 
property is model-free and not exclusively connected to GARCH class models.

We can investigate the fourth fact by creating the ACF plots of squared and absolute returns:

fig, ax = plt.subplots(2, 1, figsize=(12, 10))

smt.graphics.plot_acf(df["log_rtn"]**2, lags=N_LAGS,
                      alpha=SIGNIFICANCE_LEVEL, ax=ax[0])
ax[0].set(title="Autocorrelation Plots",
          ylabel="Squared Returns")

smt.graphics.plot_acf(np.abs(df["log_rtn"]), lags=N_LAGS,
                      alpha=SIGNIFICANCE_LEVEL, ax=ax[1])
ax[1].set(ylabel="Absolute Returns",
          xlabel="Lag")

plt.show()
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Executing the code results in the following plots:

Figure 4.14: The ACF plots of squared and absolute returns

We can observe the small and decreasing values of autocorrelation for the squared and absolute re-
turns, which are in line with the fourth stylized fact.

Fact 5: Leverage effect    
The leverage effect refers to the fact that most measures of an asset’s volatility are negatively correlated 
with its returns. 
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Execute the following steps to investigate the existence of the leverage effect in the S&P 500’s return 
series:    

1.	 Calculate volatility measures as moving standard deviations:

df["moving_std_252"] = df[["log_rtn"]].rolling(window=252).std()
df["moving_std_21"] = df[["log_rtn"]].rolling(window=21).std()

2.	 Plot all the series:

fig, ax = plt.subplots(3, 1, figsize=(18, 15),
                       sharex=True)

df["adj_close"].plot(ax=ax[0])
ax[0].set(title="S&P 500 time series",
          ylabel="Price ($)")

df["log_rtn"].plot(ax=ax[1])
ax[1].set(ylabel="Log returns")

df["rolling_std_252"].plot(ax=ax[2], color="r",
                           label="Rolling Volatility 252d")
df["rolling_std_21"].plot(ax=ax[2], color="g",
                           label="Rolling Volatility 21d")
ax[2].set(ylabel="Moving Volatility",
          xlabel="Date")
ax[2].legend()

plt.show()
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We can now investigate the leverage effect by visually comparing the price series to the (roll-
ing) volatility metric:

Figure 4.15: The rolling volatility metrics of the S&P 500 returns

In Figure 4.15, we can observe a pattern of increased volatility when the prices go down and decreased 
volatility when they are rising. This observation is in line with the fact’s definition.
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How it works…
In this section, we describe the approaches we used to investigate the existence of the stylized facts 
in the S&P 500 log return series.

Fact 1: Non-Gaussian distribution of returns
We will break down investigating this fact into three parts.

Histogram of returns
The first step in investigating this fact was to plot a histogram by visualizing the distribution of returns. 
To do so, we used sns.distplot while setting kde=False (which does not use the Gaussian kernel 
density estimate) and norm_hist=True (this plot shows density instead of the count).

To see the difference between our histogram and Gaussian distribution, we superimposed a line rep-
resenting the PDF of the Gaussian distribution with the mean and standard deviation coming from 
the considered return series.

First, we specified the range over which we calculated the PDF by using np.linspace (we set the 
number of points to 1,000; generally, the more points, the smoother the line) and then calculated the 
PDF using the scs.norm.pdf function. The default arguments correspond to the standard normal 
distribution, that is, with zero mean and unit variance. That is why we specified the loc and scale 
arguments as the sample mean and standard deviation, respectively.

To verify the existence of the previously mentioned patterns, we should look at the following:

•	 Negative skewness: The left tail of the distribution is longer, while the mass of the distribution 
is concentrated on the right-hand side of the distribution

•	 Excess kurtosis: Fat-tailed and peaked distribution

The second point is easier to observe on our plot, as there is a clear peak over the PDF, and we see 
more mass in the tails.

Q-Q plot
After inspecting the histogram, we looked at the Q-Q plot, on which we compared two distributions 
(theoretical and observed) by plotting their quantiles against each other. In our case, the theoretical 
distribution is Gaussian (normal), and the observed one comes from the S&P 500 returns.

To obtain the plot, we used the sm.qqplot function. If the empirical distribution is normal, then the 
vast majority of the points will lie on the red line. However, we see that this is not the case, as points 
on the left-hand side of the plot are more negative (that is, lower empirical quantiles are smaller) than 
expected in the case of the Gaussian distribution (indicated by the line). This means that the left tail 
of the returns distribution is heavier than that of the Gaussian distribution. Analogical conclusions 
can be drawn about the right tail, which is heavier than under normality.
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Descriptive statistics
The last part involves looking at some statistics. We calculated them using the appropriate methods 
of pandas Series/DataFrames. We immediately saw that the returns exhibit negative skewness and 
excess kurtosis. We also ran the Jarque-Bera test (scs.jarque_bera) to verify that the returns do not 
follow a Gaussian distribution. With a p-value of zero, we rejected the null hypothesis that sample 
data has skewness and kurtosis matching those of a Gaussian distribution.

Fact 2: Volatility clustering  
Another thing we should be aware of when investigating stylized facts is volatility clustering—periods 
of high returns alternating with periods of low returns, suggesting that volatility is not constant. To 
quickly investigate this fact, we plot the returns using the plot method of a pandas DataFrame.

Fact 3: Absence of autocorrelation in returns   
To investigate whether there is significant autocorrelation in returns, we created the autocorrela-
tion plot using plot_acf from the statsmodels library. We inspected 50 lags and used the default 
alpha=0.05, which means that we also plotted the 95% confidence interval. Values outside of this 
interval can be considered statistically significant.

Fact 4: Small and decreasing autocorrelation in squared/absolute 
returns
To verify this fact, we also used the plot_acf function from the statsmodels library. However, this 
time, we applied it to the squared and absolute returns.

Fact 5: Leverage effect    
This fact states that most measures of asset volatility are negatively correlated with their returns. 
To investigate it, we used the moving standard deviation (calculated using the rolling method of a 
pandas DataFrame) as a measure of historical volatility. We used windows of 21 and 252 days, which 
correspond to one month and one year of trading data.

There’s more…
We present another method of investigating the leverage effect (fact 5). To do so, we use the VIX (CBOE 
Volatility Index), which is a popular metric of the stock market’s expectations regarding volatility. The 
measure is implied by option prices on the S&P 500 index. We take the following steps:

The pandas implementation of kurtosis is the one that literature refers to as excess kurtosis 
or Fisher’s kurtosis. Using this metric, the excess kurtosis of a Gaussian distribution is 0, 
while the standard kurtosis is 3. This is not to be confused with the name of the stylized 
fact’s excess kurtosis, which simply means kurtosis higher than that of normal distribution.
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1.	 Download and preprocess the prices of the S&P 500 and VIX:

df = yf.download(["^GSPC", "^VIX"],
                 start="2000-01-01",
                 end="2020-12-31",
                 progress=False)
df = df[["Adj Close"]]
df.columns = df.columns.droplevel(0)
df = df.rename(columns={"^GSPC": "sp500", "^VIX": "vix"})

2.	 Calculate the log returns (we can just as well use simple returns):

df["log_rtn"] = np.log(df["sp500"] / df["sp500"].shift(1))
df["vol_rtn"] = np.log(df["vix"] / df["vix"].shift(1))
df.dropna(how="any", axis=0, inplace=True)

3.	 Plot a scatterplot with the returns on the axes and fit a regression line to identify the trend:

corr_coeff = df.log_rtn.corr(df.vol_rtn)

ax = sns.regplot(x="log_rtn", y="vol_rtn", data=df,
                 line_kws={"color": "red"})
ax.set(title=f"S&P 500 vs. VIX ($\\rho$ = {corr_coeff:.2f})",
       ylabel="VIX log returns",
       xlabel="S&P 500 log returns")

plt.show()
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We additionally calculated the correlation coefficient between the two series and included it 
in the title:

Figure 4.16: Investigating the relationship between the returns of S&P 500 and VIX

We can see that both the negative slope of the regression line and a strong negative correlation between 
the two series confirm the existence of the leverage effect in the return series.

See also
For more information, refer to the following:

•	 Cont, R. 2001. “Empirical properties of asset returns: stylized facts and statistical issues.” Quan-
titative Finance, 1(2): 223
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Summary
In this chapter, we learned how to use a selection of algorithms and statistical tests to automatically 
identify potential patterns and issues (for example, outliers) in financial time series. With their help, 
we can scale up our analysis to an arbitrary number of assets instead of manually inspecting each 
and every time series. 

We also explained the stylized facts of asset returns. These are crucial to understand, as many models 
or strategies assume a certain distribution of the variable of interest. Most frequently, a Gaussian 
distribution is assumed. And as we have seen, empirical asset returns are not normally distributed. 
That is why we have to take certain precautions to make our analyses valid while working with such 
time series.

In the next chapter, we will explore the vastly popular domain of technical analysis and see what 
insights we can gather from analyzing the patterns in asset prices.

Join us on Discord!
To join the Discord community for this book – where you can share feedback, ask questions to the 
author, and learn about new releases – follow the QR code below:

https://packt.link/ips2H

https://packt.link/ips2H


5
Technical Analysis and Building 
Interactive Dashboards

In this chapter, we will cover the basics of technical analysis (TA) in Python. In short, TA is a meth-
odology for determining (forecasting) the future direction of asset prices and identifying investment 
opportunities based on studying past market data (especially the prices themselves and the traded 
volume).

We begin by showing how to calculate some of the most popular TA indicators (with hints on how 
to calculate others using selected Python libraries). Additionally, we show how to download precal-
culated technical indicators from reliable financial data vendors. We also touch upon a subfield of 
TA—candlestick pattern recognition.

At the end of the chapter, we demonstrate how to create a web app, which enables us to visualize and 
inspect the predefined TA indicators in an interactive fashion. Then, we deploy this app to the cloud, 
to make it accessible for anyone from anywhere.

In this chapter, we present the following recipes:

•	 Calculating the most popular technical indicators
•	 Downloading the technical indicators
•	 Recognizing candlestick patterns
•	 Building an interactive web app for technical analysis using Streamlit
•	 Deploying the technical analysis app

Calculating the most popular technical indicators
There are hundreds of different technical indicators that traders use for making decisions on whether 
to enter or exit a position. In this recipe, we will learn how to easily calculate a few of those indica-
tors using the TA-Lib library, which is the most popular library for such a task. We start with a brief 
introduction of a few of the selected indicators.



Technical Analysis and Building Interactive Dashboards114

Bollinger bands are a statistical method, used for deriving information about the prices and volatility 
of a certain asset over time. To obtain the Bollinger bands, we need to calculate the moving average 
and standard deviation of the time series (prices), using a specified window (typically, 20 days). Then, 
we set the upper/lower bands at K times (typically, 2) the moving standard deviation above/below the 
moving average. The interpretation of the bands is quite simple: the bands widen with an increase in 
volatility and contract with a decrease in volatility.

The relative strength index (RSI) is an indicator that uses the closing prices of an asset to identify 
oversold/overbought conditions. Most commonly, the RSI is calculated using a 14-day period and is 
measured on a scale from 0 to 100 (it is an oscillator). Traders usually buy an asset when it is oversold 
(if the RSI is below 30) and sell when it is overbought (if the RSI is above 70). More extreme high/low 
levels, such as 80–20, are used less frequently and, at the same time, imply stronger momentum.

The last considered indicator is the moving average convergence divergence (MACD). It is a momen-
tum indicator showing the relationship between two exponential moving averages (EMA) of a given 
asset’s price, most commonly 26- and 12-day ones. The MACD line is the difference between the fast 
(short period) and slow (long period) EMAs. Lastly, we calculate the MACD signal line as a 9-day EMA 
of the MACD line. Traders can use the crossover of the lines as a trading signal. For example, it can 
be considered a buy signal when the MACD line crosses the signal line from below.

Naturally, most of the indicators are not used in isolation and traders look at multiple signals before 
making a decision. Also, all of the indicators can be tuned further (by changing their parameters) 
depending on the specific goal. We will cover backtesting trading strategies based on technical indi-
cators in another chapter.

How to do it…
Execute the following steps to calculate some of the most popular technical indicators using IBM’s 
stock prices from 2020:

1.	 Import the libraries:

import pandas as pd
import yfinance as yf
import talib

The default setting of using 2 standard deviations for the bands is connected to the 
(empirically incorrect) assumption about the normality of returns. Under the Gaussian 
distribution, we would assume that when using 2 standard deviations, 95% of returns 
would fall within the bands.

TA-Lib is not like most Python libraries and it has a bit of a different installation 
process. For more information on how to do it, please refer to the GitHub repository 
provided in the See also section.
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2.	 Download IBM’s stock prices from 2020:

df = yf.download("IBM",
                 start="2020-01-01",
                 end="2020-12-31",
                 progress=False,
                 auto_adjust=True)

3.	 Calculate and plot the Simple Moving Average (SMA):

df["sma_20"] = talib.SMA(df["Close"], timeperiod=20)
(
    df[["Close", "sma_20"]]
    .plot(title="20-day Simple Moving Average (SMA)")
)

Running the snippet generates the following plot:

Figure 5.1: IBM’s close price and the 20-day SMA
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4.	 Calculate and plot the Bollinger bands:

df["bb_up"], df["bb_mid"], df["bb_low"] = talib.BBANDS(df["Close"])
 
fig, ax = plt.subplots()
 
(
    df.loc[:, ["Close", "bb_up", "bb_mid", "bb_low"]]
    .plot(ax=ax, title="Bollinger Bands")
)
 
ax.fill_between(df.index, df["bb_low"], df["bb_up"], 
                color="gray", 
                alpha=.4)

Running the snippet generates the following plot:

Figure 5.2: IBM’s close price and the Bollinger bands
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5.	 Calculate and plot the RSI:

df["rsi"] = talib.RSI(df["Close"])

fig, ax = plt.subplots()
df["rsi"].plot(ax=ax,
               title="Relative Strength Index (RSI)")
ax.hlines(y=30,
          xmin=df.index.min(),
          xmax=df.index.max(),
          color="red")
ax.hlines(y=70,
          xmin=df.index.min(),
          xmax=df.index.max(),
          color="red")
plt.show()

Running the snippet generates the following plot:

Figure 5.3: The RSI calculated using IBM’s close prices
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6.	 Calculate and plot the MACD:

df["macd"], df["macdsignal"], df["macdhist"] = talib.MACD(
    df["Close"], fastperiod=12, slowperiod=26, signalperiod=9
)

fig, ax = plt.subplots(2, 1, sharex=True)

(
    df[["macd", "macdsignal"]].
    plot(ax=ax[0],
         title="Moving Average Convergence Divergence (MACD)")
)
ax[1].bar(df.index, df["macdhist"].values, label="macd_hist")
ax[1].legend()

Running the snippet generates the following plot:

Figure 5.4: The MACD calculated using IBM’s close prices

So far, we have calculated the technical indicators and plotted them. In the next chapters, we will 
spend more time on their implications and building trading strategies on their basis.
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How it works…
After importing the libraries, we downloaded IBM’s stock prices from 2020.

In Step 3, we calculated the 20-day simple moving average using the SMA function. Naturally, we could 
have calculated the same indicator using the rolling method of a pandas DataFrame.

In Step 4, we calculated the Bollinger bands. The BBANDS function returns three objects (the upper and 
lower thresholds and the moving average), which we assigned to different columns of our DataFrame.

In the next step, we calculated the RSI using the default settings. We plotted the indicator, together 
with two horizontal lines (created using ax.hlines) indicating the popular decision-making thresholds.

In the last step, we calculated the MACD, also using the default number of periods for the EMAs. The 
MACD function also returned three objects, the MACD, the signal line, and the MACD histogram, which 
is effectively the difference between the first two elements. We plotted them on separate plots, as is 
most commonly done on trading platforms.

There’s more…
TA-Lib is a great library and the gold standard when it comes to calculating technical indicators. How-
ever, there are also alternative libraries out there, which are gaining traction. One of them is called 
ta. Compared to TA-Lib, which is a wrapper around a C++ library, ta is written using pandas, which 
makes exploring the code base much easier. 

While it does not offer as extensive functionalities as TA-Lib, one of its unique features is that it can 
calculate all of the available 30+ indicators in a single line of code. That can definitely be useful in 
situations in which we want to calculate a lot of potential features for a machine learning model.

Execute the following steps to calculate 30+ technical indicators with a single line of code:

1.	 Import the libraries:

from ta import add_all_ta_features

2.	 Discard the previously calculated indicators and keep only the required columns:

df = df[["Open", "High", "Low", "Close", "Volume"]].copy()

3.	 Calculate all the technical indicators available in the ta library:

df = add_all_ta_features(df, open="Open", high="High",
                         low="Low", close="Close",
                         volume="Volume")

The resulting DataFrame contains 88 columns, out of which 83 were added by the single function call.
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See also
Please find below links to repositories of TA-Lib, ta, and other interesting libraries useful for tech-
nical analysis:

•	 https://github.com/mrjbq7/ta-lib—The GitHub repository of TA-lib. Please refer to this 
source for more details on installing the library.

•	 https://ta-lib.org/

•	 https://github.com/bukosabino/ta

•	 https://github.com/twopirllc/pandas-ta

•	 https://github.com/peerchemist/finta

Downloading the technical indicators
We have already mentioned in Chapter 1, Acquiring Financial Data, that some data vendors not only 
provide historical stock prices but also offer a selection of the most popular technical indicators. In 
this recipe, we will show how to download the RSI indicator for IBM’s stock, which can be directly 
compared to the one we calculated in the previous recipe using the TA-Lib library.

How to do it…
Execute the following steps to download the RSI calculated for IBM from Alpha Vantage:

1.	 Import the libraries:

from alpha_vantage.techindicators import TechIndicators

2.	 Instantiate the TechIndicators class and authenticate:

ta_api = TechIndicators(key="YOUR_KEY_HERE", 
                        output_format="pandas")

3.	 Download the RSI for IBM’s stock:

rsi_df, rsi_meta = ta_api.get_rsi(symbol="IBM", 
                                  time_period=14)

4.	 Plot the downloaded RSI:

fig, ax = plt.subplots()
rsi_df.plot(ax=ax, 
            title="RSI downloaded from Alpha Vantage")
ax.hlines(y=30, 
          xmin=rsi_df.index.min(), 
          xmax=rsi_df.index.max(), 
          color="red")

https://github.com/mrjbq7/ta-lib
https://ta-lib.org/
https://github.com/bukosabino/ta
https://github.com/twopirllc/pandas-ta
https://github.com/peerchemist/finta
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ax.hlines(y=70, 
          xmin=rsi_df.index.min(), 
          xmax=rsi_df.index.max(), 
          color="red")

Running the snippet generates the following plot:

Figure 5.5: The RSI downloaded for IBM’s stock prices

The downloaded DataFrame contains RSI values from November 1999 until the most recent date.

5.	 Explore the metadata object:

rsi_meta

By displaying the metadata object, we can see the following details of our request:

{'1: Symbol': 'IBM',
'2: Indicator': 'Relative Strength Index (RSI)',
'3: Last Refreshed': '2022-02-25',
'4: Interval': 'daily',
'5: Time Period': 14,
'6: Series Type': 'close',
'7: Time Zone': 'US/Eastern Time'}
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How it works…
After importing the libraries, we instantiated the TechIndicators class, which can be used for down-
loading any of the available technical indicators (via the class’s methods). While doing so, we provided 
our API key and indicated that we would like to receive the output in the form of a pandas DataFrame.

In Step 3, we downloaded the RSI for IBM’s stock using the get_rsi method. At this point, we specified 
we wanted to use the last 14 days for calculating the indicator.

What can be a bit surprising is that we cannot specify the range of dates that we are interested in. We 
can clearly see this in Step 4, in which we can see data points going as far back as November 1999. We 
also plotted the RSI line, just as we have done in the previous recipe.

In the last step, we explored the metadata of the request, which contains the RSI’s parameters, the 
stock symbol we requested, the latest refresh date, and which price series was used for calculating 
the indicator (in this case, the close price).

There’s more…
Alpha Vantage is not the only data vendor that is providing access to technical indicators. Another one 
is Intrinio. We demonstrate below how to download the MACD using its API:

1.	 Import the libraries:

import intrinio_sdk as intrinio
import pandas as pd

2.	 Authenticate using the personal API key and select the API:

intrinio.ApiClient().set_api_key("YOUR_KEY_HERE")
security_api = intrinio.SecurityApi()

One thing to keep in mind while downloading calculated indicators is the data ven-
dors’ pricing policy. At the time of writing, the RSI endpoint of Alpha Vantage is a free 
one, while the MACD is a premium endpoint and requires purchasing a paid plan.
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3.	 Request the MACD for IBM’s stock from 2020:

r = security_api.get_security_price_technicals_macd(
    identifier="IBM", 
    fast_period=12, 
    slow_period=26, 
    signal_period=9, 
    price_key="close", 
    start_date="2020-01-01", 
    end_date="2020-12-31",
    page_size=500
)

While using Intrinio, we can actually specify the period for which we would like to download 
the indicator.

4.	 Convert the request’s output into a pandas DataFrame:

macd_df = (
    pd.DataFrame(r.technicals_dict)
    .sort_values("date_time")
    .set_index("date_time")
)
macd_df.index = pd.to_datetime(macd_df.index).date

5.	 Plot the MACD:

fig, ax = plt.subplots(2, 1, sharex=True)
 
(
    macd_df[["macd_line", "signal_line"]]
    .plot(ax=ax[0], 
          title="MACD downloaded from Intrinio")
)

ax[1].bar(df.index, macd_df["macd_histogram"].values, 
          label="macd_hist")
ax[1].legend()
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Running the snippet generates the following plot:

Figure 5.6: The MACD downloaded for IBM’s stock prices

Recognizing candlestick patterns
In this chapter, we have already covered some of the most popular technical indicators. Another field 
of technical analysis that can be used for making trading decisions is candlestick pattern recogni-
tion. Overall, there are hundreds of candlestick patterns that can be used for determining the price 
direction and momentum.

Bulkowski (2021) divides the patterns into two categories, based on the expected outcomes:

•	 Reversal patterns—such patterns predict a change in the price’s direction
•	 Continuation patterns—such patterns predict an extension in the current trend

Similar to all approaches to technical analysis, we should have a few things in mind 
while using pattern recognition. First, the patterns are only informative within the 
limitations of the given chart (in a specified frequency: intraday, daily, weekly, and 
so on). Second, the patterns’ predictive potency decreases very quickly after a few 
(3–5) bars once the pattern has been completed. Third, in the modern electronic 
environment, many signals identified by analyzing candlestick patterns might not 
work reliably anymore. Some big players are also able to set up traps by creating 
fake candlestick patterns to be picked up by other market participants.
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In this recipe, we try to identify the three line strike pattern in hourly Bitcoin prices. That pattern 
belongs to the continuation group. Its bearish variant (identified in an overall bearish trend) is char-
acterized by three bars, each one having a lower low than the previous one. The fourth bar of the 
pattern opens at the third candle’s low or even lower, but then reverses heavily and closes above the 
high of the first candle of the series. 

How to do it…
Execute the following steps to identify the three line strike pattern in Bitcoin’s hourly candlesticks:

1.	 Import the libraries:

import pandas as pd
import yfinance as yf
import talib
import mplfinance as mpf

2.	 Download Bitcoin’s hourly prices from the last 9 months:

df = yf.download("BTC-USD",
                 period="9mo",
                 interval="1h",
                 progress=False)

3.	 Identify the three line strike pattern:

df["3_line_strike"] = talib.CDL3LINESTRIKE(
    df["Open"], df["High"], df["Low"], df["Close"]
)

4.	 Locate and plot the bearish pattern:

df[df["3_line_strike"] == -100].head()

Figure 5.7: The first five observations of the bearish three line strike pattern

mpf.plot(df["2021-07-16 05:00:00":"2021-07-16 16:00:00"],
         type="candle")
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Executing the snippet returns the following plot:

Figure 5.8: The identified bearish three line strike pattern

5.	 Locate and plot the bullish pattern:

df[df["3_line_strike"] == 100]

Figure 5.9: The first five observations of the bullish three line strike pattern

mpf.plot(df["2021-07-10 10:00:00":"2021-07-10 23:00:00"],
         type="candle")
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Executing the snippet returns the following plot:

Figure 5.10: The identified bullish three line strike pattern

We could use the identified patterns to create trading strategies. For example, a bearish three line 
strike usually signals a small pullback that will be followed by a continuation of the bearish trend.

How it works…
After importing the libraries, we downloaded hourly Bitcoin prices from the last 3 months using the 
yfinance library.

In Step 3, we used the TA-Lib library to identify the three line strike pattern (with the CDL3LINESTRIKE 
function). We had to separately provide the OHLC prices as inputs for the function. We store the outputs 
of the function in a new column. For this function, there are three possible outputs:

•	 100—Indicates the bullish variant of the pattern
•	 0—No pattern detected
•	 -100—Indicates the bearish variant of the pattern
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The authors of the library warn that the user should consider the three line strike pattern to be signif-
icant when it appears in a trend in the same direction (this is not verified by the library).

In Step 4, we filtered the DataFrame for a bearish pattern. It has been identified six times and we chose 
the one from 2021-07-16 12:00:00. Then, we plotted the pattern together with some neighboring 
candles.

In Step 5, we have repeated the same procedure, this time for a bullish pattern.

There’s more…
If we wanted to use the identified patterns as features for a model/strategy, it might be worthwhile to 
try to identify all the possible patterns at once. We can do so by executing the following steps:

1.	 Get all available pattern names:

candle_names = talib.get_function_groups()["Pattern Recognition"]

2.	 Iterate over the list of patterns and try identifying them all:

for candle in candle_names:
    df[candle] = getattr(talib, candle)(df["Open"], df["High"],
                                        df["Low"], df["Close"])

3.	 Inspect the summary statistics of the patterns:

with pd.option_context("display.max_rows", len(candle_names)):
    display(df[candle_names].describe().transpose().round(2))

For brevity, we only present the top 10 rows of the returned DataFrame:

Figure 5.11: Summary statistics of the identified candlestick patterns

Certain functions can have additional possible outputs. Some of them also have values 
of -200/200 (for example, for the Hikkake pattern), whenever there is some additional 
confirmation in the pattern.
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We can see that some patterns were never identified (the minimum and maximum of zero), while 
others had either one or two of the variants (bullish or bearish). In the notebook (available on GitHub), 
we have also looked into identifying the evening star pattern based on the outputs of this table.

See also
•	 https://sourceforge.net/p/ta-lib/code/HEAD/tree/trunk/ta-lib/c/src/ta_func/

•	 Bulkowski, T. N. 2021 Encyclopedia of Chart Patterns. John Wiley & Sons, 2021.

Building an interactive web app for technical analysis 
using Streamlit
In this chapter, we have already covered the basics of technical analysis, which can help traders make 
their decision. However, until now everything was quite static—we downloaded the data, calculated 
an indicator, plotted it, and if we wanted to change the asset or the range of dates, we had to repeat 
all the steps. What if there was a better and more interactive way to approach this challenge?

This is exactly where Streamlit comes into play. Streamlit is an open source framework (and a com-
pany under the same name, similarly to Plotly) that allows us to build interactive web apps using only 
Python, all within minutes. Below you can find the highlights of Streamlit:

•	 It is easy to learn and can generate results very quickly
•	 It is Python only; no frontend experience is required
•	 It allows us to focus purely on the data/ML sides of the app
•	 We can use Streamlit’s hosting services for our apps

In this recipe, we will build an interactive app used for technical analysis. You will be able to select 
any of the constituents of the S&P 500 and carry out a simple analysis quickly and in an interactive 
way. What is more, you can easily expand the app to add more features such as different indicators 
and assets, or even embed backtesting of trading strategies within the app.

Getting ready
This recipe is slightly different than the rest. The code of our app “lives” in a single Python script 
(technical_analysis_app.py), which has around a hundred lines of code. A very basic app can be 
much more concise, but we wanted to go over some of the most interesting features of Streamlit, even 
if they are not strictly necessary to make a basic app for technical analysis. 

In general, Streamlit executes code from top to bottom, which makes the explanation easier to fit into 
the structure used in this book. Thus, the steps in this recipe are not steps per se—they cannot/should 
not be executed on their own. Instead, they are a step-by-step walkthrough of all the components of 
the app. While building your own apps or expanding this one, you can freely change the order of the 
steps as you see fit (as long as they are aligned with Streamlit’s framework).

https://sourceforge.net/p/ta-lib/code/HEAD/tree/trunk/ta-lib/c/src/ta_func/
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How to do it…
The following steps are all located in the technical_analysis_app.py:

1.	 Import the libraries:

import yfinance as yf
import streamlit as st
import datetime
import pandas as pd
import cufflinks as cf
from plotly.offline import iplot

cf.go_offline()

2.	 Define a function for downloading a list of S&P 500 constituents from Wikipedia: 

@st.cache
def get_sp500_components():
    df = pd.read_html("https://en.wikipedia.org/wiki/List_of_S%26P_500_
companies")
    df = df[0]
    tickers = df["Symbol"].to_list()
    tickers_companies_dict = dict(
        zip(df["Symbol"], df["Security"])
    )
    return tickers, tickers_companies_dict

3.	 Define a function for downloading historical stock prices using yfinance:

@st.cache
def load_data(symbol, start, end):
    return yf.download(symbol, start, end)

4.	 Define a function for storing downloaded data as a CSV file:

@st.cache
def convert_df_to_csv(df):
    return df.to_csv().encode("utf-8")

5.	 Define the part of the sidebar used for selecting the ticker and the dates:

st.sidebar.header("Stock Parameters")

available_tickers, tickers_companies_dict = get_sp500_components()
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ticker = st.sidebar.selectbox(
    "Ticker", 
    available_tickers, 
    format_func=tickers_companies_dict.get
)
start_date = st.sidebar.date_input(
    "Start date", 
    datetime.date(2019, 1, 1)
)
end_date = st.sidebar.date_input(
    "End date", 
    datetime.date.today()
)

if start_date > end_date:
    st.sidebar.error("The end date must fall after the start date")

6.	 Define the part of the sidebar used for tuning the details of the technical analysis:

st.sidebar.header("Technical Analysis Parameters")

volume_flag = st.sidebar.checkbox(label="Add volume")

7.	 Add the expander with parameters of the SMA:

exp_sma = st.sidebar.expander("SMA")
sma_flag = exp_sma.checkbox(label="Add SMA")
sma_periods= exp_sma.number_input(
    label="SMA Periods", 
    min_value=1, 
    max_value=50, 
    value=20, 
    step=1
)

8.	 Add the expander with parameters of the Bollinger bands:

exp_bb = st.sidebar.expander("Bollinger Bands")
bb_flag = exp_bb.checkbox(label="Add Bollinger Bands")
bb_periods= exp_bb.number_input(label="BB Periods", 
                                min_value=1, max_value=50, 
                                value=20, step=1)
bb_std= exp_bb.number_input(label="# of standard deviations", 
                            min_value=1, max_value=4, 
                            value=2, step=1)
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9.	 Add the expander with parameters of the RSI:

exp_rsi = st.sidebar.expander("Relative Strength Index")
rsi_flag = exp_rsi.checkbox(label="Add RSI")
rsi_periods= exp_rsi.number_input(
    label="RSI Periods", 
    min_value=1, 
    max_value=50, 
    value=20, 
    step=1
)
rsi_upper= exp_rsi.number_input(label="RSI Upper", 
                                min_value=50, 
                                max_value=90, value=70, 
                                step=1)
rsi_lower= exp_rsi.number_input(label="RSI Lower", 
                                min_value=10, 
                                max_value=50, value=30, 
                                step=1)

10.	 Specify the title and additional text in the app’s main body:

st.title("A simple web app for technical analysis")
st.write("""
    ### User manual
    * you can select any company from the S&P 500 constituents
""")

11.	 Load the historical stock prices:

df = load_data(ticker, start_date, end_date)

12.	 Add the expander with a preview of the downloaded data:

data_exp = st.expander("Preview data")
available_cols = df.columns.tolist()
columns_to_show = data_exp.multiselect(
    "Columns", 
    available_cols, 
    default=available_cols
)



Chapter 5 133

data_exp.dataframe(df[columns_to_show])
 
csv_file = convert_df_to_csv(df[columns_to_show])
data_exp.download_button(
    label="Download selected as CSV",
    data=csv_file,
    file_name=f"{ticker}_stock_prices.csv",
    mime="text/csv",
)

13.	 Create the candlestick chart with the selected TA indicators:

title_str = f"{tickers_companies_dict[ticker]}'s stock price"
qf = cf.QuantFig(df, title=title_str)
if volume_flag:
    qf.add_volume()
if sma_flag:
    qf.add_sma(periods=sma_periods)
if bb_flag:
    qf.add_bollinger_bands(periods=bb_periods,
                           boll_std=bb_std)
if rsi_flag:
    qf.add_rsi(periods=rsi_periods,
               rsi_upper=rsi_upper,
               rsi_lower=rsi_lower,
               showbands=True)

fig = qf.iplot(asFigure=True)
st.plotly_chart(fig)

To run the app, open the terminal, navigate to the directory in which the  
technical_analysis_app.py script is located, and run the following command:

streamlit run technical_analysis_app.py
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Running the code opens the Streamlit app in your default browser. The app’s default screen 
looks as follows:

Figure 5.12: Our technical analysis app in the browser 

The app is fully responsive to the inputs—anytime you change the inputs in the sidebar or the app’s 
main body, the displayed contents will adjust accordingly. Potentially, we could even take it a step 
further and connect our app to a broker via the broker’s API. This way, we could analyze the patterns 
in the app and create orders based on the outcome of our analyses.

How it works…
As mentioned in the Getting ready section, this recipe is structured differently. The steps are in fact 
a sequence of elements that all define the app we built. Before diving into the details, the general 
structure of the app’s codebase is as follows:

•	 Imports and setup (step 1)
•	 Data loading functions (steps 2–4)
•	 Sidebar (steps 5–9)
•	 App’s main body (steps 10–13)
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In the first step, we imported the required libraries. For the technical analysis part, we decided to 
use a library that can visualize a selection of technical indicators in as few lines of code as possible. 
That is why we decided to go with cufflinks, which was introduced in Chapter 3, Visualizing Financial 
Time Series. However, in case you need to calculate a wider range of indicators, you can use any other 
library and create the plots yourself.

In Step 2, we defined a function for loading a list of S&P 500 constituents from Wikipedia. We used 
the pd.read_html to download the information from the table straight into a DataFrame. The func-
tion returns two elements: a list of valid tickers and a dictionary containing pairs of tickers and their 
corresponding companies’ names.

You surely have noticed that we used a @st.cache decorator while defining the function. We will not 
go over a lot of details of decorators in general, but we will cover what this one does as it is very handy 
while building an app using Streamlit. The decorator indicates that the app should cache the previously 
fetched data for later use. So in case we refresh the page or the function is called again, the data will 
not be downloaded/processed again (unless some conditions occur). This way, we can greatly increase 
the web app’s responsiveness and lower the end user’s waiting time.

Behind the scenes, Streamlit keeps track of the following information to determine if the data should 
be fetched again:

•	 The input parameters that we provided while calling the function
•	 The values of any external variables used in the function
•	 The body of the called function
•	 The body of any function called inside of the cached function

In short, if this is the first time Streamlit sees a certain combination of those four elements, it will 
execute the function and store its output in a local cache. If it encounters the very same set of items 
the next time the function is called, it will skip executing it and return the cached output from the 
previous execution.

Steps 3 and 4 contain very small functions. The first one is used to fetch the historical stock prices 
from Yahoo Finance using the yfinance library. The following step saves the output of a DataFrame 
into a CSV file, which is then encoded in UTF-8.

In Step 5, we started working on the app’s sidebar, which we use for storing the parameter configu-
rations for the app. The first thing to notice is that all the elements that are meant to be located in 
the sidebar are called with st.sidebar (as opposed to just st, which we use when defining the main 
body’s elements and other functions). In this step, we did the following:

•	 We specified the header.
•	 We downloaded the list of available tickers.
•	 We created a drop-down selection box of the available tickers. We also provided additional for-

matting by passing the dictionary containing symbol-name pairs to the format_func argument.
•	 We allowed the users to select the start and end dates for the analysis. Using date_input dis-

plays an interactive calendar from which the users can select a date.
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•	 We accounted for invalid combinations of dates (start later than the end) by using an if state-
ment together with st.sidebar.error. This will halt the app execution until the error is re-
solved, that is, until a proper input is provided.

The outcome of this step looks as follows:

Figure 5.13: Part of the sidebar where we can choose the ticket and start/end dates

In Step 6, we added another header to our sidebar and created a checkbox using st.checkbox. If 
checked, the assigned variable will hold a True value, False if unchecked.

In Step 7, we started with configuring the technical indicators. To keep the app clean, we used expand-
ers (st.expander). Expanders are collapsible boxes, which we trigger to expand by pressing the plus 
icon. Inside, we stored two elements:

•	 A checkbox indicating whether we want to display the SMA.
•	 A numeric field in which we can specify the number of periods for the moving average. For that 

element, we used Streamlit’s number_input object. We provided the label, minimum/maximum 
values, the default value, and the step size (we can incrementally increase/decrease the value 
of the field by that number when we press the corresponding buttons).
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Steps 8 and 9 are very similar. We created two expanders for other technical indicators we wanted to 
include in the app – Bollinger bands and the RSI.

The code from Steps 7–9 generates the following part of the app’s sidebar:

Figure 5.14: Part of the sidebar where we can modify the parameters of the selected indicators

Then, we proceeded to define the app’s main body. In Step 10, we added the app’s title using st.title 
and added a user manual using st.write. When using the latter function, we can provide text input 
in a Markdown-formatted string. For this part, we used a subheader (indicated by ###) and created a 
list of bullets indicated by *. For brevity, we did not include all the text in the book, but you can find 
it in the book’s GitHub repository.

In Step 11, we downloaded the historical stock prices based on the inputs from the sidebar. What we 
could also have done here is download a full range of dates available for a given stock and only then 
use the sidebar’s start/end dates to filter out the periods of interest. By doing so, we would not have 
to redownload the data anytime we changed the start/end dates.

When using expanders, we first instantiated one in the sidebar using  
exp_sma = st.sidebar.expander("SMA"). Then, when we wanted to add 
elements to the expander, for example, the checkbox, we used the following 
syntax: sma_flag = exp_sma.checkbox(label="Add SMA"). This way, it was 
added straight into the expander, not just the sidebar.
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In Step 12, we defined another expander, this time in the app’s main body. First, we added a multiple 
selection field (st.multiselect) from which we can select any of the available columns from the 
downloaded historical prices. Then, we displayed the selected columns of the DataFrame for further 
inspection using st.dataframe. Lastly, we added the functionality to download the selected data 
(including the column selection) as a CSV file. For that, we used our convert_df_to_csv function, 
together with st.download_button.

Step 12 is responsible for generating the following part of the app:

Figure 5.15: Part of the app where we can inspect the DataFrame containing prices and download 
it as a CSV

In the app’s last step, we defined the figure we wanted to display. Without any of the technical analysis 
inputs, the app will display a candlestick chart using cufflinks. We instantiated the QuantFig object 
and then added elements to it depending on the inputs from the sidebar. Each of the Boolean flags 
triggers a separate command that adds an element to the plot. To display the interactive figure, we 
used st.plotly_chart, which works with plotly figures (cufflinks is a wrapper on top of plotly).
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There’s more…
In the first edition of the book, we covered a bit of a different approach to creating an interactive 
dashboard for technical analysis. Instead of Streamlit, we used ipywidgets to build the dashboard 
inside of a Jupyter notebook.

In general, Streamlit might be the better tool for this particular job, especially if we want to deploy 
the app (covered in the next recipe) and share it with others. However, ipywidgets can still be useful 
for other projects, which can live locally inside of a notebook. That is why you can find the code used 
for creating a very similar dashboard (within a notebook) in the accompanying GitHub repository.

See also
•	 https://streamlit.io/

•	 https://docs.streamlit.io/

Deploying the technical analysis app
In the previous recipe, we created a full-fledged web app for technical analysis, which we can easily 
run and use locally. However, that is not always the goal, as we might want to access the app from 
anywhere or share it with our friends or colleagues. That is why the next step would be to deploy the 
app to the cloud.

In this recipe, we show how to deploy the app using Streamlit’s (the company) services.

Getting ready
To deploy the app to Streamlit Cloud, we need to create an account there (https://forms.streamlit.
io/community-sign-up). You will also need a GitHub account to host the code of the app.

For other visualization libraries, there are different commands to embed visualizations. For 
example, for matplotlib, we would use st.pyplot. We could also display plots created 
in Altair using st.altair_chart.

https://streamlit.io/
https://docs.streamlit.io/
https://forms.streamlit.io/community-sign-up
https://forms.streamlit.io/community-sign-up
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How to do it…
Execute the following steps to deploy the Streamlit app to the cloud:

1.	 Host the code base of the app in a public repository on GitHub:

Figure 5.16: The code base of the app hosted in a public GitHub repository

In this step, remember to host the entire code base of the app, which can naturally be spread 
out over multiple files. Also, please include some kind of a dependencies list. In our case, it 
is the requirements.txt file.

2.	 Go to https://share.streamlit.io/ and log in. You might need to connect your GitHub 
account to your Streamlit account and authorize it to have certain types of access to your 
GitHub account.

3.	 Click the New app button.
4.	 Provide the required details: the name of the repository in your profile, the branch, and the 

file containing the app:

https://share.streamlit.io/
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Figure 5.17: The information we have to provide to create the app

5.	 Click Deploy!.

Now, you can go to the provided link to use the app.

How it works…
In the first step, we hosted the app’s code in a public GitHub repository. If you are new to Git or 
GitHub, please refer to the link in the See also section for more information. At the time of writing, 
it is not possible to use other version control providers such as GitLab or BitBucket for hosting 
code of Streamlit apps. The bare minimum in terms of the files is the app’s script (in our case,  
technical_analysis_app.py) and some form of a list with requirements. The easiest one would be 
a simple requirements.txt text file containing all the libraries you would like to use in the app. If 
you are using a different dependency manager (conda, pipenv, or poetry), you need to provide their 
respective files.
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All the next steps are quite intuitive, as Streamlit’s platform is very easy to navigate. What might be 
useful to mention is that in Step 4, we can also provide some more advanced settings. They include:

•	 The Python version that you would like the app to use.
•	 The Secrets field, in which you can store some environment variables and secrets, such as API 

keys. In general, it is against best practices to store usernames, API keys, and other secrets in 
public GitHub repositories. If your app is fetching data from some provider or your internal 
database, that is the field in which you can safely store the credentials, which will be then 
encrypted and served securely to your app at runtime.

There’s more…
In this recipe, we showed how to deploy our web app to the Streamlit Cloud. While being the simplest, 
it is not the only option. Another one would be to deploy the app to Heroku, which is a Platform as 
a Service (PaaS) type of platform that enables you to build, run, and operate applications entirely in 
the cloud.

See also
•	 https://www.heroku.com/—for more information about Heroku’s services
•	 https://docs.streamlit.io/streamlit-cloud—for more details on how to deploy the app 

and what are the best practices
•	 https://docs.github.com/en/get-started/quickstart/hello-world—a tutorial on how 

to use GitHub

Summary
In this chapter, we have learned about technical analysis. We started by calculating some of the most 
popular technical indicators (and downloading precalculated ones): the SMA, the RSI, and the MACD. 
We have also explored identifying patterns in candlesticks. Lastly, we learned how to create and deploy 
an interactive app for technical analysis.

In further chapters, we will put this knowledge into practice by creating and backtesting trading 
strategies based on the technical indicators we have already covered.

If there are multiple libraries you would like to use in the app, the easiest way to create 
the requirements file containing them would be to run  
pip freeze > requirements.txt while having your virtual environment activated.

https://www.heroku.com/
https://docs.streamlit.io/streamlit-cloud
https://docs.github.com/en/get-started/quickstart/hello-world


6
Time Series Analysis and 
Forecasting

Time series are omnipresent in both industry and research. We can find examples of time series in 
commerce, tech, healthcare, energy, finance, and so on. We are mostly interested in the last one, as 
the time dimension is inherent to trading and many financial/economic indicators. However, pretty 
much every business generates some sort of time series, for example, its profits collected over time 
or any other measured KPI. That is why the techniques we cover in the following two chapters can be 
used for any time series analysis task you might encounter in your line of work.

Time series modeling or forecasting can often be approached from different angles. The two most 
popular are statistical methods and machine learning approaches. Additionally, we will also cover some 
examples of using deep learning for time series forecasting in Chapter 15, Deep Learning in Finance.

In the past, when we did not have vast computing power available at our disposal and the time series 
were not that granular (as data was not collected everywhere and all the time), statistical approaches 
dominated the domain. Recently, the situation has changed, and ML-based approaches are taking 
the lead when it comes to time series models running in production. However, that does not mean 
that the classical statistical approaches are not relevant anymore—in fact, far from it. They can still 
produce state-of-the-art results in cases when we have very little training data (for example, 3 years of 
monthly data) and the ML models simply cannot learn the patterns from it. Also, we can observe that 
statistical approaches were used to win quite a few of the most recent M-Competitions (the biggest 
time series forecasting competition started by Spyros Makridakis).

In this chapter, we introduce the basics of time series modeling. We start by explaining the building 
blocks of time series and how to separate them using decomposition methods. Later, we cover the 
concept of stationarity—why it is important, how to test for it, and ultimately, how to achieve it if the 
original series is not stationary.

Then, we look at two of the most widely used statistical approaches to time series modeling—exponen-
tial smoothing methods and ARIMA class models. In both cases, we show you how to fit the models, 
evaluate their goodness of fit, and forecast the future values of the time series.
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We cover the following recipes in this chapter:

•	 Time series decomposition
•	 Testing for stationarity in time series
•	 Correcting for stationarity in time series
•	 Modeling time series with exponential smoothing methods
•	 Modeling time series with ARIMA class models
•	 Finding the best-fitting ARIMA model with auto-ARIMA

Time series decomposition
One of the goals of time series decomposition is to increase our understanding of the data by breaking 
down the series into multiple components. It provides insight in terms of modeling complexity and 
which approaches to follow in order to accurately capture/model each of the components.

An example can shed more light on the possibilities. We can imagine a time series with a clear trend, 
either increasing or decreasing. On one hand, we could use the decomposition to extract the trend 
component and remove it from our time series before modeling the remaining series. This could help 
with making the time series stationary (please refer to the following recipe for more details). Then, 
we can always add it back after the rest of the components have been accounted for. On the other 
hand, we could provide enough data or adequate features for our algorithm to model the trend itself.

The components of time series can be divided into two types: systematic and non-systematic. The 
systematic ones are characterized by consistency and the fact that they can be described and modeled. 
By contrast, the non-systematic ones cannot be modeled directly.

The following are the systematic components:

•	 Level—the mean value in the series.
•	 Trend—an estimate of the trend, that is, the change in value between successive time points 

at any given moment. It can be associated with the slope (increasing/decreasing) of the series. 
In other words, it is the general direction of the time series over a long period of time.

•	 Seasonality—deviations from the mean caused by repeating short-term cycles (with fixed and 
known periods).

The following is the non-systematic component:

•	 Noise—the random variation in the series. It consists of all the fluctuations that are observed 
after removing other components from the time series.

The classical approach to time series decomposition is usually carried out using one of two types of 
models: additive and multiplicative.

An additive model can be described by the following characteristics:

•	 Model’s form—𝑦𝑦(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
•	 Linear model—changes over time are consistent in size 
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•	 The trend is linear (straight line)
•	 Linear seasonality with the same frequency (width) and amplitude (height) of cycles over time

A multiplicative model can be described by the following characteristics:

•	 Model’s form—𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 
•	 Non-linear model—changes over time are not consistent in size, for example, exponential
•	 A curved, non-linear trend
•	 Non-linear seasonality with increasing/decreasing frequency and amplitude of cycles over time

To make things more interesting, we can find time series with combinations of additive and multipli-
cative characteristics, for example, a series with additive trend and multiplicative seasonality. 

Please refer to the following figure for visualization of the possible combinations. And while real-world 
problems are never that simple (noisy data with varying patterns), these abstract models offer a simple 
framework that we can use to analyze our time series before attempting to model/forecast it.

Figure 6.1: Additive and multiplicative variants of trend and seasonality

It can be the case that we do not want to (or simply cannot, due to some models’ assumptions) work 
with a multiplicative model. One possible solution is to transform the multiplicative model into an 
additive one using logarithmic transformation:𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
In this recipe, we will present how to carry out time series decomposition of monthly US unemploy-
ment rates downloaded from the Nasdaq Data Link.
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How to do it...
Execute the following steps to carry out the time series decomposition:

1.	 Import the libraries and authenticate:

import pandas as pd
import nasdaqdatalink
import seaborn as sns
from statsmodels.tsa.seasonal import seasonal_decompose

nasdaqdatalink.ApiConfig.api_key = "YOUR_KEY_HERE"

2.	 Download the monthly US unemployment rate from the years 2010 to 2019:

df = (
    nasdaqdatalink.get(dataset="FRED/UNRATENSA",
                       start_date="2010-01-01",
                       end_date="2019-12-31")
    .rename(columns={"Value": "unemp_rate"})
)

In Figure 6.2, we can see some clear seasonal patterns in the time series. We did not include 
more recent data in this analysis, as the COVID-19 pandemic caused quite abrupt changes in 
any patterns observable in the unemployment rate time series. We do not show the code used 
for generating the plot, as it is very similar to the one used in Chapter 3, Visualizing Financial 
Time Series.

Figure 6.2: Seasonal plot of the US unemployment rate in the years 2010 to 2019
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3.	 Add rolling mean and standard deviation:

WINDOW_SIZE = 12
df["rolling_mean"] = df["unemp_rate"].rolling(window=WINDOW_SIZE).mean()
df["rolling_std"] = df["unemp_rate"].rolling(window=WINDOW_SIZE).std()
df.plot(title="Unemployment rate")

Running the snippet generates the following plot:

Figure 6.3: The US unemployment rate together with the rolling average and standard 
deviation

From the analysis of Figure 6.3, we can infer that the trend and seasonal components seem to 
have a linear pattern. Therefore, we will use additive decomposition in the next step.

4.	 Carry out the seasonal decomposition using the additive model:

decomposition_results = seasonal_decompose(df["unemp_rate"],
                                           model="additive")
(
    decomposition_results
    .plot()
    .suptitle("Additive Decomposition")
)
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Running the snippet generates the following plot:

Figure 6.4: The seasonal decomposition of the US unemployment rate (using an additive 
model)

In the decomposition plot, we can see the extracted component series: trend, seasonal, and random 
(residual). To evaluate whether the decomposition makes sense, we can look at the random compo-
nent. If there is no discernible pattern (in other words, the random component is indeed random and 
behaves consistently over time), then the fit makes sense. In this case, it looks like the variance in the 
residuals is slightly higher in the first half of the dataset. This can indicate that a constant seasonal 
pattern is not good enough to accurately capture the seasonal component of the analyzed time series.

How it works...
After downloading the data in Step 2, we used the rolling method of a pandas DataFrame to calcu-
late the rolling statistics. We specified that we wanted to use the window size of 12 months, as we are 
working with monthly data.

We used the seasonal_decompose function from the statsmodels library to carry out the classical 
decomposition. When doing so, we indicated what kind of model we would like to use—the possible 
values are additive and multiplicative.

When using seasonal_decompose with an array of numbers, we must specify the 
frequency of the observations (the freq argument) unless we are working with a pandas 
Series object. If we have missing values or want to extrapolate the residuals for the missing 
periods at the beginning and the end of the time series, we can pass an extra argument 
extrapolate_trend='freq'.
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There’s more…
The seasonal decomposition we have used in this recipe is the most basic approach. It comes with a 
few disadvantages:

•	 As the algorithm uses centered moving averages to estimate the trend, running the decompo-
sition results in missing values of the trend line (and the residuals) at the very beginning and 
end of the time series.

•	 The seasonal pattern estimated using this approach is assumed to repeat every year. It goes 
without saying that this is a very strong assumption, especially for longer time series.

•	 The trend line has a tendency to over-smooth the data, which in turn results in the trend line 
not responding adequately to sharp or sudden fluctuations. 

•	 The method is not robust to potential outliers in the data.

Over time, a few alternative approaches to time series decomposition were introduced. In this sec-
tion, we will also cover seasonal and trend decomposition using LOESS (STL decomposition), which 
is implemented in the statsmodels library.

We will not go into the details of how STL decomposition works; however, it makes sense to be familiar 
with its advantages over the other approaches:

•	 STL can handle any kind of seasonality (not restricted to monthly or quarterly, as some other 
methods are)

•	 The user can control the smoothness of the trend
•	 The seasonal component can change over time (the rate of change can be controlled by the user)
•	 More robust to outliers—the estimation of the trend and seasonal components is not affected 

by their presence, while their impact is still visible in the remainder component

Naturally, it is not a silver-bullet solution and comes with some drawbacks of its own. For example, 
STL can only be used with additive decomposition and it does not automatically account for trading 
days/calendar variations.

LOESS stands for locally estimated scatterplot smoothing and it is a method of estimating 
non-linear relationships.

There is a recent variant of STL decomposition that can handle multiple seasonalities. For 
example, a time series of hourly data can exhibit daily/weekly/monthly seasonalities. The 
approach is called Multiple Seasonal-Trend Decomposition using LOESS (MSTL) and you 
can find the reference to it in the See also section.
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We can carry out the STL decomposition with the following snippet:

from statsmodels.tsa.seasonal import STL

stl_decomposition = STL(df[["unemp_rate"]]).fit()
stl_decomposition.plot() \
                 .suptitle("STL Decomposition")

Running the code generates the following plot:

Figure 6.5: The STL decomposition of the US unemployment time series

We can see that the decomposition plots of the STL and classical decompositions are very similar. 
However, there are some nuances in Figure 6.5, connected to the benefits of STL decomposition over 
the classical one. First, there are no missing values in the trend estimate. Second, the seasonal com-
ponent is slowly changing over time. You can see it clearly when looking at, for example, the values 
for January across the years.
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We have also mentioned that one of the benefits of the STL decomposition is its higher robustness 
against outliers. We can use the robust argument to switch on a data-dependent weighting function. 
It re-weights the observations when estimating the LOESS, which becomes LOWESS (locally weight-
ed scatterplot smoothing) in such a scenario. When using robust estimation, the model can tolerate 
larger errors that are visible on the residual component’s plot.

In Figure 6.6 you can see a comparison of fitting two STL decompositions to the US unemployment 
data—with and without the robust estimation. For the code used to generate the figure, please refer 
to the notebook in the book’s GitHub repository.

Figure 6.6: The effect of using robust estimation in the STL decomposition process

The default value of the seasonal argument in STL is set to 7, but the authors of the 
approach suggest using larger values (must be odd integers greater than or equal to 7). 
Under the hood, the value of that parameter indicates the number of consecutive years 
to be used in estimating each value of the seasonal component. The larger the chosen 
value, the smoother the seasonal component becomes. This, in turn, causes fewer of the 
variations observed in the time series to be attributed to the seasonal component. The 
interpretation is similar for the trend argument, though it represents the number of 
consecutive observations to be used for estimating the trend component.
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Other available approaches to seasonal decomposition include:

•	 Seasonal Extraction in ARIMA Time Series (SEATS) decomposition.
•	 X11 decomposition—this variant of the decomposition creates a trend-cycle component for all 

observations and allows the seasonal component to change slowly over time.
•	 Hodrick-Prescott filter—while this method is not really a seasonal decomposition approach, it is 

a data smoothing technique used to remove short-term fluctuations associated with the business 
cycle. By removing those, we can reveal the long-term trends. The HP filter is commonly used 
in macroeconomics. You can find its implementation in the hpfilter function of statsmodels.

See also
Useful references on time series decomposition:

•	 Bandara, K., Hyndman, R. J., & Bergmeir, C. 2021. “MSTL: A Seasonal-Trend Decomposition 
Algorithm for Time Series with Multiple Seasonal Patterns.” arXiv preprint arXiv:2107.13462.

•	 Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. 1990. “A Seasonal Trend  
Decomposition Procedure Based on LOESS,” Journal of Official Statistics 6(1): 3–73. 

•	 Hyndman, R.J. & Athanasopoulos, G. 2021. Forecasting: Principles and Practice, 3rd edition, 
OTexts: Melbourne, Australia. OTexts.com/fpp3 

•	 Sutcliffe, A. 1993. X11 time series decomposition and sampling errors. Australian Bureau of Statistics.

Testing for stationarity in time series
One of the most important concepts in time series analysis is stationarity. Plainly speaking, a stationary 
time series is a series whose properties do not depend on the time at which the series is observed. In 
other words, stationarity implies that the statistical properties of the data-generating process (DGP) 
of a certain time series do not change over time.

Hence, we should not be able to see any trend or seasonal patterns in a stationary time series, as their 
existence violates the stationarity assumptions. On the other hand, a white noise process is stationary, 
as it does not matter when we observe it; it will always look pretty much the same at any point in time.

We can clearly observe the effects of using robust estimation—larger errors are tolerated 
and the shape of the seasonal component is different over the first few years of the ana-
lyzed time series. There is no clear answer whether the robust or non-robust approach is 
better in this case; it all depends on what we want to use the decomposition for. Seasonal 
decomposition methods presented in this recipe can also serve as simple outlier detec-
tion algorithms. For example, we could decompose the series, extract the residuals, and 
flag observations as outliers when their residuals are outside 3 times the interquartile 
range (IQR). The kats library provides an implementation of such an algorithm in its 
OutlierDetector class.
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To put it more formally, there are multiple definitions of stationarity, some stricter in terms of the 
assumptions than others. For practical use cases, we can work with the one called weak stationarity 
(or covariance stationarity). For a time series to be classified as (covariance) stationary, it must satisfy 
the following three conditions:

•	 The mean of the series must be constant
•	 The variance of the series must be finite and constant
•	 The covariance between periods of identical distance must be constant

Stationarity is a desired characteristic of time series as it makes modeling and extrapolating (forecast-
ing) into the future more feasible. That is because a stationary series is easier to predict than a non-sta-
tionary one, as its statistical properties will be the same in the future as they have been in the past.

Some drawbacks of non-stationary data are:

•	 Variance can be misspecified by the model
•	 Worse model fit, resulting in worse forecasts
•	 We cannot leverage valuable time-dependent patterns in the data

In this recipe, we will show you how to test the time series for stationarity. To do so, we employ the 
following methods:

•	 The Augmented Dickey-Fuller (ADF) test
•	 The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
•	 Plots of the (partial) autocorrelation function (PACF/ACF)

We will investigate the stationarity of monthly unemployment rates in the years 2010 to 2019.

Getting ready
We will use the same data that we used in the Time series decomposition recipe. In the plot presenting 
the rolling mean and standard deviation of the unemployment rates (Figure 6.3), we have already seen 
a negative trend over time, suggesting non-stationarity.

A time series without trend and seasonality but with cyclic behavior can still be stationary 
because the cycles are not of a fixed length. So unless we explicitly observe a time series, 
we cannot be sure where the peaks and troughs of the cycles will be located.

While stationarity is a desired trait of a time series, this is not applicable to all statistical 
models. We would want our time series to be stationary when modeling the series using 
some kind of auto-regressive model (AR, ARMA, ARIMA, and so on). However, there are 
also models that do not benefit from stationary time series, for example, those that depend 
heavily on time series decomposition (exponential smoothing methods or Facebook’s 
Prophet).
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How to do it...
Execute the following steps to test if the time series of monthly US unemployment rates is stationary:

1.	 Import the libraries:

import pandas as pd
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.stattools import adfuller, kpss

2.	 Define a function for running the ADF test:

def adf_test(x):
    indices = ["Test Statistic", "p-value",
               "# of Lags Used", "# of Observations Used"]
    
    adf_test = adfuller(x, autolag="AIC")
    results = pd.Series(adf_test[0:4], index=indices)
    
    for key, value in adf_test[4].items():
        results[f"Critical Value ({key})"] = value

    return results

Having defined the function, we can run the test:

adf_test(df["unemp_rate"])

Running the snippet generates the following summary:

Test Statistic             -2.053411
p-value                     0.263656
# of Lags Used             12.000000
# of Observations Used    107.000000
Critical Value (1%)        -3.492996
Critical Value (5%)        -2.888955
Critical Value (10%)       -2.581393

The null hypothesis of the ADF test states that the time series is not stationary. With a p-value 
of 0.26 (or equivalently, the test statistic is greater than the critical value for the selected con-
fidence level), we have no reason to reject the null hypothesis, meaning that we can conclude 
that the series is not stationary.
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3.	 Define a function for running the KPSS test:

def kpss_test(x, h0_type="c"):    
    indices = ["Test Statistic", "p-value", "# of Lags"]

    kpss_test = kpss(x, regression=h0_type)
    results = pd.Series(kpss_test[0:3], index=indices)
    
    for key, value in kpss_test[3].items():
        results[f"Critical Value ({key})"] = value

    return results

Having defined the function, we can run the test: 

kpss_test(df["unemp_rate"])

Running the snippet generates the following summary: 

Test Statistic           1.799224
p-value                  0.010000
# of Lags                6.000000
Critical Value (10%)     0.347000
Critical Value (5%)      0.463000
Critical Value (2.5%)    0.574000
Critical Value (1%)      0.739000

The null hypothesis of the KPSS test states that the time series is stationary. With a p-value 
of 0.01 (or a test statistic greater than the selected critical value), we have reasons to reject 
the null hypothesis in favor of the alternative one, indicating that the series is not stationary.

4.	 Generate the ACF/PACF plots:

N_LAGS = 40
SIGNIFICANCE_LEVEL = 0.05

fig, ax = plt.subplots(2, 1)
plot_acf(df["unemp_rate"], ax=ax[0], lags=N_LAGS,
         alpha=SIGNIFICANCE_LEVEL)
plot_pacf(df["unemp_rate"], ax=ax[1], lags=N_LAGS,
          alpha=SIGNIFICANCE_LEVEL)
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Running the snippet generates the following plots:

Figure 6.7: Autocorrelation and Partial Autocorrelation plots of the unemployment rate

In the ACF plot, we can see that there are significant autocorrelations (above the 95% confidence 
interval, corresponding to the selected 5% significance level). There are also some significant auto-
correlations at lags 1 and 4 in the PACF plot.

How it works...
In Step 2, we defined a function used for running the ADF test and printing out the results. We specified 
autolag="AIC" while calling the adfuller function, so the number of considered lags is automatically 
selected based on the Akaike Information Criterion (AIC). Alternatively, we could select the number 
of lags manually.

For the kpss function (Step 3), we specified the regression argument. A value of  "c" corresponds to 
the null hypothesis stating that the series is level-stationary, while "ct" corresponds to trend-stationary 
(removing the trend from the series would make it level-stationary).

For all the tests and the autocorrelation plots, we selected a significance level of 5%, which indicates 
the probability of rejecting the null hypothesis (H0) when it is, in fact, true.
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There’s more…
In this recipe, we have used the statsmodels library to carry out the stationarity tests. However, we 
had to wrap its functionalities in custom functions to have a nicely presented summary. Alternatively, 
we can use the stationarity tests from the arch library (we will cover the library in more depth when 
we explore the GARCH models in Chapter 9, Modeling Volatility with GARCH Class Models).

We can carry out the ADF test using the following snippet:

from arch.unitroot import ADF
adf = ADF(df["unemp_rate"])
print(adf.summary().as_text())

Which returns a nicely formatted output containing all the relevant information:

   Augmented Dickey-Fuller Results   
=====================================
Test Statistic                 -2.053
P-value                         0.264
Lags                               12
-------------------------------------

Trend: Constant
Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

The arch library also contains more stationarity tests, including:

•	 The Zivot-Andrews test (also available in statsmodels)
•	 The Phillips-Perron (PP) test (unavailable in statsmodels)

A potential drawback of the ADF and KPSS tests is that they do not allow for the possibility of a struc-
tural break, that is, an abrupt change in the mean or other parameters of the data-generating process. 
The Zivot-Andrews test allows for the possibility of a single structural break in the series, with an 
unknown time of its occurrence.

We can run the test using the following snippet:

from arch.unitroot import ZivotAndrews
za = ZivotAndrews(df["unemp_rate"])
print(za.summary().as_text())
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Which generates the summary:

        Zivot-Andrews Results        
=====================================
Test Statistic                 -2.551
P-value                         0.982
Lags                               12
-------------------------------------

Trend: Constant
Critical Values: -5.28 (1%), -4.81 (5%), -4.57 (10%)
Null Hypothesis: The process contains a unit root with a single structural 
break.
Alternative Hypothesis: The process is trend and break stationary.

Based on the test’s p-value, we cannot reject the null hypothesis stating that the process is not stationary.

See also
For more information on the additional stationarity tests, please refer to:

•	 Phillips, P. C. B. & P. Perron, 1988. “Testing for a unit root in time series regression,” Biometrika 
75: 335-346.

•	 Zivot, E. & Andrews, D.W.K., 1992. “Further evidence on the great crash, the oil-price shock, 
and the unit-root hypothesis,” Journal of Business & Economic Studies, 10: 251-270.

Correcting for stationarity in time series 
In the previous recipe, we learned how to investigate if a given time series is stationary. In this one, 
we will investigate how to make a non-stationary time series stationary by using one (or multiple) of 
the following transformations:

•	 Deflation—accounting for inflation in monetary series using the Consumer Price Index (CPI)
•	 Applying the natural logarithm—making the potential exponential trend closer to linear and 

reducing the variance of the time series
•	 Differencing—taking the difference between the current observation and a lagged value (ob-

servation x time points before the current observation)

For this exercise, we will use monthly gold prices from the years 2000 to 2010. We have chosen this 
sample on purpose, as over that period the price of gold exhibits a consistently increasing trend—the 
series is definitely not stationary.

How to do it...
Execute the following steps to transform the series from non-stationary to stationary:
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1.	 Import the libraries and authenticate and update the inflation data:

import pandas as pd
import numpy as np
import nasdaqdatalink
import cpi
from datetime import date
from chapter_6_utils import test_autocorrelation

nasdaqdatalink.ApiConfig.api_key = "YOUR_KEY_HERE"

In this recipe, we will be using the test_autocorrelation helper function, which combines 
the components we covered in the previous recipe, the ADF and KPSS tests, together with the 
ACF/PACF plots.

2.	 Download the prices of gold and resample to monthly values:

df = (
    nasdaqdatalink.get(dataset="WGC/GOLD_MONAVG_USD",
                       start_date="2000-01-01",
                       end_date="2010-12-31")
    .rename(columns={"Value": "price"})
    .resample("M")
    .last()
)

We can use the test_autocorrelation helper function to test if the series is stationary. We 
have done so in the notebook (available on GitHub) and the time series of monthly gold prices 
is indeed not stationary.

3.	 Deflate the gold prices (to the 2010-12-31 USD values) and plot the results:

DEFL_DATE = date(2010, 12, 31)

df["dt_index"] = pd.to_datetime(df.index)
df["price_deflated"] = df.apply(
    lambda x: cpi.inflate(x["price"], x["dt_index"], DEFL_DATE), 
    axis=1
)

(
    df.loc[:, ["price", "price_deflated"]]
    .plot(title="Gold Price (deflated)")
)
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Running the snippet generates the following plot:

Figure 6.8: Monthly gold prices and the deflated time series

We could also adjust the gold prices to another point in time, as long as it is the same point 
for the entire series.

4.	 Apply the natural logarithm to the deflated series and plot it together with the rolling metrics:

WINDOW = 12
selected_columns = ["price_log", "rolling_mean_log",
                    "rolling_std_log"]

df["price_log"] = np.log(df.price_deflated)
df["rolling_mean_log"] = df.price_log.rolling(WINDOW) \
                           .mean()
df["rolling_std_log"] = df.price_log.rolling(WINDOW) \
                          .std()

(
    df[selected_columns]
    .plot(title="Gold Price (deflated + logged)", 
          subplots=True)
)
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Running the snippet generates the following plot:

Figure 6.9: Time series after applying the deflation and natural logarithm, together with 
its rolling statistics

From the preceding plot, we can see that the log transformation did its job, that is, it made 
the exponential trend linear.

5.	 Use the test_autocorrelation (helper function for this chapter) to investigate if the series 
became stationary:

fig = test_autocorrelation(df["price_log"])
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Running the snippet generates the following plot:

Figure 6.10: The ACF and PACF plots of the transformed time series 

We also print the results of the statistical tests:

ADF test statistic: 1.04 (p-val: 0.99)
KPSS test statistic: 1.93 (p-val: 0.01)

After inspecting the results of the statistical tests and the ACF/PACF plots, we can conclude 
that deflation and a natural algorithm were not enough to make the time series of monthly 
gold prices stationary.

6.	 Apply differencing to the series and plot the results:

selected_columns = ["price_log_diff", "roll_mean_log_diff",
                    "roll_std_log_diff"]

df["price_log_diff"] = df.price_log.diff(1)
df["roll_mean_log_diff"] = df.price_log_diff.rolling(WINDOW) \
                             .mean()
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df["roll_std_log_diff"] = df.price_log_diff.rolling(WINDOW) \
                            .std()
df[selected_columns].plot(title="Gold Price (deflated + log + diff)")

Running the snippet generates the following plot:

Figure 6.11: Time series after applying three types of transformations, together with its rolling statistics

The transformed gold prices give the impression of being stationary—the series oscillates 
around 0 with no visible trend and approximately constant variance.

7.	 Test if the series became stationary:

fig = test_autocorrelation(df["price_log_diff"].dropna())
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Running the snippet generates the following plot:

Figure 6.12: The ACF and PACF plots of the transformed time series 

We also print the results of the statistical tests:

ADF test statistic: -10.87 (p-val: 0.00)
KPSS test statistic: 0.30 (p-val: 0.10)

After applying the first differences, the series became stationary at the 5% significance level (according 
to both tests). In the ACF/PACF plots, we can see that there were a few significant values of the function 
at lags 11, 22, and 39. This might indicate some kind of seasonality or simply be a false signal. Using a 
5% significance level means that 5% of the values might lie outside the 95% confidence interval—even 
when the underlying process does not show any autocorrelation or partial autocorrelation.

How it works...
After importing the libraries, authenticating, and potentially updating the CPI data, we downloaded 
the monthly gold prices from Nasdaq Data Link. There were some duplicate values in the series. For 
example, there were entries for 2000-04-28 and 2000-04-30, both with the same value. To deal with this 
issue, we resampled the data to monthly frequency by taking the last available value. 

By doing so, we only removed potential duplicates in each month, without changing any of the actual 
values. In Step 3, we used the cpi library to deflate the time series by accounting for inflation in the 
US dollar. The library relies on the CPI-U index recommended by the Bureau of Labor Statistics. To 
make it work, we created an artificial index column containing dates as objects of the datetime.date 
class. The inflate function takes the following arguments:
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•	 value—the dollar value we want to adjust.
•	 year_or_month—the date that the dollar value comes from.
•	 to—optionally, the date we want to adjust to. If we don’t provide this argument, the function 

will adjust to the most recent year.

In Step 4, we applied the natural logarithm (np.log) to all the values to transform what looked like an 
exponential trend into linear. This operation was applied to prices that had already been corrected 
for inflation.

As the last transformation, we used the diff method of a pandas DataFrame to calculate the difference 
between the value in time t and time t-1 (the default setting corresponds to the first difference). We 
can specify a different number by changing the period argument.

There’s more...
The considered gold prices do not contain obvious seasonality. However, if the dataset shows seasonal 
patterns, there are a few potential solutions:

•	 Adjustment by differencing—instead of using first-order differencing, use a higher-order one, 
for example, if there is yearly seasonality in monthly data, use diff(12).

•	 Adjustment by modeling—we can directly model the seasonality and then remove 
it from the series. One possibility is to extract the seasonal component from the  
seasonal_decompose function or another more advanced automatic decomposition algorithm. 
In this case, we should subtract the seasonal component when using the additive model or 
divide by it if the model is multiplicative. Another solution would be to use np.polyfit() to 
fit the best polynomial of a chosen order to the selected time series and then subtract it from 
the original series.

The Box-Cox transformation is another type of adjustment we can use on the time series data. It 
combines different exponential transformation functions to make the distribution more similar to 
the Normal (Gaussian) distribution. We can use the boxcox function from the scipy library, which 
allows us to automatically find the value of the lambda parameter for the best fit. One condition to be 
aware of is that all the values in the series must be positive, so the transformation should not be used 
after calculating the first differences or any other transformations that potentially introduce negative 
values to the series.

A library called pmdarima (more on this library can be found in the following recipes) contains two 
functions that employ statistical tests to determine how many times we should differentiate the series 
in order to achieve stationarity (and also remove seasonality, that is, seasonal stationarity).

We can employ the following tests to investigate stationarity: ADF, KPSS, and Phillips–Perron:

from pmdarima.arima import ndiffs, nsdiffs 
 
print(f"Suggested # of differences (ADF): {ndiffs(df['price'], test='adf')}")
print(f"Suggested # of differences (KPSS): {ndiffs(df['price'], test='kpss')}")
print(f"Suggested # of differences (PP): {ndiffs(df['price'], test='pp')}")
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Running the snippet returns the following:

Suggested # of differences (ADF): 1
Suggested # of differences (KPSS): 2
Suggested # of differences (PP): 1

For the KPSS test, we can also specify what type of null hypothesis we want to test against. The default 
is level stationarity (null="level"). The results of the tests, or more precisely the need for differencing, 
suggest that the series without any differencing is not stationary.

The library also contains two tests for seasonal differences:

•	 Osborn, Chui, Smith, and Birchenhall (OCSB)
•	 Canova-Hansen (CH)

To run them, we also need to specify the frequency of our data. In our case, it is 12, as we are working 
with monthly data:

print(f"Suggested # of differences (OSCB): {nsdiffs(df['price'], m=12,
test='ocsb')}")
print(f"Suggested # of differences (CH): {nsdiffs(df['price'], m=12, 
test='ch')}")

The output is as follows:

Suggested # of differences (OSCB): 0
Suggested # of differences (CH): 0

The results suggest no seasonality in gold prices.

Modeling time series with exponential smoothing 
methods
Exponential smoothing methods are one of the two families of classical forecasting models. Their 
underlying idea is that forecasts are simply weighted averages of past observations. When calculating 
those averages, more emphasis is put on recent observations. To achieve that, the weights are decaying 
exponentially with time. These models are suitable for non-stationary data, that is, data with a trend 
and/or seasonality. Smoothing methods are popular because they are fast (not a lot of computations 
are required) and relatively reliable when it comes to forecasts’ accuracy.

Collectively, the exponential smoothing methods can be defined in terms of the ETS framework (Error, 
Trend, and Season), as they combine the underlying components in the smoothing calculations. As 
in the case of the seasonal decomposition, those terms can be combined additively, multiplicatively, 
or simply left out of the model.

Please see Forecasting: Principles and Practice (Hyndman and Athanasopoulos) for more 
information on the taxonomy of exponential smoothing methods.
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The simplest model is called simple exponential smoothing (SES). This class of models is most apt 
for cases when the considered time series does not exhibit any trend or seasonality. They also work 
well with series with only a few data points.

The model is parameterized by a smoothing parameter 𝛼𝛼  with values between 0 and 1. The higher 
the value, the more weight is put on recent observations. When 𝛼𝛼  = 0, the forecasts for the future 
are equal to the average of training data. When 𝛼𝛼  = 1, all the forecasts have the same value as the last 
observation in the training set.

The forecasts produced using SES are flat, that is, regardless of the time horizon, all forecasts have 
the same value (corresponding to the last level component). That is why this method is only suitable 
for series with neither trend nor seasonality.

Holt’s linear trend method (also known as Holt’s double exponential smoothing method) is an ex-
tension of SES that accounts for a trend in the series by adding the trend component to the model’s 
specification. As a consequence, this model should be used when there is a trend in the data, but it 
still cannot handle seasonality.

One issue with Holt’s model is that the trend is constant in the future, which means that it increases/
decreases indefinitely. That is why an extension of the model dampens the trend by adding the dampen-
ing parameter, 𝜑𝜑 . It makes the trend converge to a constant value in the future, effectively flattening it.

Lastly, we will cover the extension of Holt’s method called Holt-Winters’ seasonal smoothing (also 
known as Holt-Winters’ triple exponential smoothing). As the name suggests, it accounts for the sea-
sonality in time series. Without going into too much detail, this method is most suitable for data with 
both trend and seasonality.

There are two variants of this model and they have either additive or multiplicative seasonalities. In 
the former one, the seasonal variations are more or less constant throughout the time series. In the 
latter one, the variations change in proportion to the passing of time.

In this recipe, we will show you how to apply the covered smoothing methods to monthly US unem-
ployment rates (non-stationary data with trend and seasonality). We will fit the model to the prices 
from 2010 to 2018 and make forecasts for 2019.

Getting ready
We will use the same data that we used in the Time series decomposition recipe.

How to do it...
Execute the following steps to create forecasts of the US unemployment rate using the exponential 
smoothing methods:

𝜑𝜑  is rarely smaller than 0.8, as the dampening has a very strong effect for smaller values 
of 𝜑𝜑 . The best practice is to restrict the values of 𝜑𝜑  so that they lie between 0.8 and 0.98. 
For 𝜑𝜑  = 1 the damped model is equivalent to the model without dampening.
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1.	 Import the libraries:

import pandas as pd
from datetime import date
from statsmodels.tsa.holtwinters import (ExponentialSmoothing,
                                         SimpleExpSmoothing,
                                         Holt)

2.	 Create the train/test split:

TEST_LENGTH = 12
df.index.freq = "MS"
df_train = df.iloc[:-TEST_LENGTH]
df_test = df[-TEST_LENGTH:]

3.	 Fit two SES models and calculate the forecasts:

ses_1 = SimpleExpSmoothing(df_train).fit(smoothing_level=0.5)
ses_forecast_1 = ses_1.forecast(TEST_LENGTH)

ses_2 = SimpleExpSmoothing(df_train).fit()
ses_forecast_2 = ses_2.forecast(TEST_LENGTH)

ses_1.params_formatted

Running the snippet generates the following table:

Figure 6.13: The values of the fitted coefficients for the first SES model

We can use the summary method to print a more detailed summary of the fitted model.

4.	 Combine the forecasts with the fitted values and plot them:

ses_df = df.copy()
ses_df["ses_1"] = ses_1.fittedvalues.append(ses_forecast_1)
ses_df["ses_2"] = ses_2.fittedvalues.append(ses_forecast_2)

opt_alpha = ses_2.model.params["smoothing_level"]

fig, ax = plt.subplots()
ses_df["2017":].plot(style=["-",":","--"], ax=ax,
                     title="Simple Exponential Smoothing")
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labels = [
    "unemp_rate",
    r"$\alpha=0.2$",
    r'$\alpha={0:.2f}$'.format(opt_alpha),
]
ax.legend(labels)

Running the snippet generates the following plot:

Figure 6.14: Modeling time series using SES

In Figure 6.14, we can observe the characteristic of SES that we described in the introduction to 
this recipe—the forecast is a flat line. We can also see that the optimal value that was selected 
by the optimization routine is equal to 1. Immediately, we can see the consequences of picking 
such a value: the fitted line of the model is effectively the line of the observed prices shifted 
to the right and the forecast is simply the last observed value.

5.	 Fit three variants of Holt’s linear trend models and calculate the forecasts:

# Holt's model with linear trend
hs_1 = Holt(df_train).fit()
hs_forecast_1 = hs_1.forecast(TEST_LENGTH)

# Holt's model with exponential trend
hs_2 = Holt(df_train, exponential=True).fit()
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hs_forecast_2 = hs_2.forecast(TEST_LENGTH)

# Holt's model with exponential trend and damping
hs_3 = Holt(df_train, exponential=False,
            damped_trend=True).fit()
hs_forecast_3 = hs_3.forecast(TEST_LENGTH)

6.	 Plot the original series together with the models’ forecasts:

hs_df = df.copy()
hs_df["hs_1"] = hs_1.fittedvalues.append(hs_forecast_1)
hs_df["hs_2"] = hs_2.fittedvalues.append(hs_forecast_2)
hs_df["hs_3"] = hs_3.fittedvalues.append(hs_forecast_3)

fig, ax = plt.subplots()
hs_df["2017":].plot(style=["-",":","--", "-."], ax=ax,
                    title="Holt's Double Exponential Smoothing")
labels = [
    "unemp_rate",
    "Linear trend",
    "Exponential trend",
    "Exponential trend (damped)",
]
ax.legend(labels)

Running the snippet generates the following plot:

Figure 6.15: Modeling time series using Holt’s Double Exponential Smoothing
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We can already observe an improvement as, compared to the SES forecast, the lines are not 
flat anymore.

One additional thing worth mentioning is that while we were optimizing a single parameter 
alpha (smoothing_level) in the case of the SES, here we are also optimizing beta  
(smoothing_trend) and potentially also phi (damping_trend).

7.	 Fit two variants of Holt-Winters’ Triple Exponential Smoothing models and calculate the forecasts:

SEASONAL_PERIODS = 12

# Holt-Winters' model with exponential trend
hw_1 = ExponentialSmoothing(df_train,
                            trend="mul",
                            seasonal="add",
                            seasonal_periods=SEASONAL_PERIODS).fit()
hw_forecast_1 = hw_1.forecast(TEST_LENGTH)

# Holt-Winters' model with exponential trend and damping
hw_2 = ExponentialSmoothing(df_train,
                            trend="mul",
                            seasonal="add",
                            seasonal_periods=SEASONAL_PERIODS,
                            damped_trend=True).fit()
hw_forecast_2 = hw_2.forecast(TEST_LENGTH)

8.	 Plot the original series together with the models’ results:

hw_df = df.copy()
hw_df["hw_1"] = hw_1.fittedvalues.append(hw_forecast_1)
hw_df["hw_2"] = hw_2.fittedvalues.append(hw_forecast_2)

fig, ax = plt.subplots()
hw_df["2017":].plot(
    style=["-",":","--"], ax=ax,
    title="Holt-Winters' Triple Exponential Smoothing"
)
phi = hw_2.model.params["damping_trend"]

labels = [
    "unemp_rate",
    "Seasonal Smoothing",
    f"Seasonal Smoothing (damped with $\phi={phi:.2f}$)"
]
ax.legend(labels)
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Running the snippet generates the following plot:

Figure 6.16: Modeling time series using  Holt-Winters’ Triple Exponential Smoothing

In the preceding plot, we can see that now the seasonal patterns were also incorporated into the 
forecasts.

How it works...
After importing the libraries, we fitted two different SES models using the SimpleExpSmoothing class 
and its fit method. To fit the model, we only used the training data. We could have manually se-
lected the value of the smoothing parameter (smoothing_level), however, the best practice is to let 
statsmodels optimize it for the best fit. This optimization is done by minimizing the sum of squared 
residuals (errors). We created the forecasts using the forecast method, which requires the number 
of periods we want to forecast for (which, in our case, is equal to the length of the test set).

In Step 3, we combined the fitted values (accessed using the fittedvalues attribute of the fitted model) 
and the forecasts inside of a pandas DataFrame, together with the observed unemployment rate. We 
then visualized all the series. To make the plot easier to read, we capped the data to cover the last 2 
years of the training set and the test set.

In Step 5, we used the Holt class (which is a wrapper around the more general ExponentialSmoothing 
class) to fit Holt’s linear trend model. By default, the trend in the model is linear, but we can make it 
exponential by specifying exponential=True and adding dampening with damped_trend=True. As in 
the case of SES, using the fit method with no arguments results in running the optimization routine 
to determine the optimal values of the parameters. In Step 6, we again placed all the fitted values and 
forecasts into a DataFrame and then we visualized the results.
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In Step 7, we estimated two variants of Holt-Winters’ Triple Exponential Smoothing models. There is 
no separate class for this model, but we can adjust the ExponentialSmoothing class by adding the 
seasonal and seasonal_periods arguments. Following the taxonomy of the ETS models, we should 
indicate that the models have an additive seasonal component. In Step 8, we again put all the fitted 
values and forecasts into a DataFrame and then we visualized the results as a line plot.

There’s more...
In this recipe, we have fitted various exponential smoothing models to forecast the monthly unem-
ployment rate. Each time, we specified what kind of model we were interested in and most of the time, 
we let statsmodels find the best-fitting parameters.

However, we could approach the task differently, that is, using a procedure called AutoETS. Without 
going into much detail, the goal of the procedure is to find the best-fitting flavor of an ETS model, given 
some constraints we provide upfront. You can read more about how the AutoETS procedure works in 
the references mentioned in the See also section.

The AutoETS procedure is available in the sktime library, which is a library/framework inspired by 
scikit-learn, but with a focus on time series analysis/forecasting.

Execute the following steps to find the best ETS model using the AutoETS approach:

1.	 Import the libraries:

from sktime.forecasting.ets import AutoETS
from sklearn.metrics import mean_absolute_percentage_error

2.	 Fit the AutoETS model:

auto_ets = AutoETS(auto=True, n_jobs=-1, sp=12)
auto_ets.fit(df_train.to_period())
auto_ets_fcst = auto_ets.predict(fh=list(range(1, 13)))

3.	 Add the model’s forecast to the plot of the Holt-Winters’ forecasts:

auto_ets_df = hw_df.to_period().copy()
auto_ets_df["auto_ets"] = (
    auto_ets
    ._fitted_forecaster
    .fittedvalues
    .append(auto_ets_fcst["unemp_rate"])
)

When creating an instance of the ExponentialSmoothing class, we can additionally 
pass in the use_boxcox argument to automatically apply the Box-Cox transformation 
to the analyzed time series. Alternatively, we could use the log transformation by 
passing the "log" string to the same argument.
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fig, ax = plt.subplots()
auto_ets_df["2017":].plot(
    style=["-",":","--","-."], ax=ax,
    title="Holt-Winters' models vs. AutoETS"
)
labels = [
    "unemp_rate",
    "Seasonal Smoothing",
    f"Seasonal Smoothing (damped with $\phi={phi:.2f}$)",
    "AutoETS",
]
ax.legend(labels)

Running the snippet generates the following plot:

Figure 6.17: The results of the AutoETS forecast plotted over the results of the  Holt-Winters’ 
approach

In Figure 6.17, we can see that the in-sample fits of the  Holt-Winters’ model and AutoETS are 
very similar. When it comes to the forecast, they do differ and it is hard to say which one better 
predicts the unemployment rate.

That is why in the next step we calculate the Mean Absolute Percentage Error (MAPE), which 
is a popular evaluation metric used in time series forecasting (and other fields).



Chapter 6 175

4.	 Calculate the MAPEs of the Holt-Winters’ forecasts and of AutoETS:

fcst_dict = {
    "Seasonal Smoothing": hw_forecast_1,
    "Seasonal Smoothing (damped)": hw_forecast_2,
    "AutoETS": auto_ets_fcst,
}
 
print("MAPEs ----")
for key, value in fcst_dict.items():
    mape = mean_absolute_percentage_error(df_test, value)
    print(f"{key}: {100 * mape:.2f}%")

Running the snippet generates the following summary:

MAPEs ----
Seasonal Smoothing: 1.81%
Seasonal Smoothing (damped): 6.53%
AutoETS: 1.78%

We can see that the accuracy scores (measured by MAPE) of the Holt-Winters’ method and the AutoETS 
approach are very similar.

See also
Please see the following references for more information about the ETS methods:

•	 Hyndman, R. J., Akram, Md., & Archibald, 2008. “ The admissible parameter space for expo-
nential smoothing models,” Annals of Statistical Mathematics, 60 (2): 407–426.

•	 Hyndman, R. J., Koehler, A.B., Snyder, R.D., & Grose, S., 2002. “A state space framework for 
automatic forecasting using exponential smoothing methods,” International J. Forecasting, 18(3): 
439–454.

•	 Hyndman, R. J & Koehler, A. B., 2006. “Another look at measures of forecast accuracy,” Inter-
national Journal of Forecasting, 22(4): 679-688

•	 Hyndman, R. J., Koehler, A.B., Ord, J.K., & Snyder, R.D. 2008. Forecasting with Exponential 
Smoothing: The State Space Approach, Springer-Verlag. http://www.exponentialsmoothing.net.

•	 Hyndman, R. J. & Athanasopoulos, G. 2021. Forecasting: Principles and Practice, 3rd edition, 
OTexts: Melbourne, Australia. OTexts.com/fpp3.

•	 Winters, P.R. 1960. “Forecasting sales by exponentially weighted moving averages,” Manage-
ment Science 6(3): 324–342.

http://www.exponentialsmoothing.net.
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Modeling time series with ARIMA class models
ARIMA models are a class of statistical models that are used for analyzing and forecasting time series 
data. They aim to do so by describing the autocorrelations in the data. ARIMA stands for Autoregressive 
Integrated Moving Average and is an extension of a simpler ARMA model. The goal of the additional 
integration component is to ensure the stationarity of the series. That is because, in contrast to the 
exponential smoothing models, the ARIMA models require the time series to be stationary. Below we 
briefly go over the models’ building blocks.

AR (autoregressive) model:

•	 This kind of model uses the relationship between an observation and its p lagged values
•	 In the financial context, the autoregressive model tries to account for the momentum and 

mean reversion effects

I (integration):

•	 Integration, in this case, refers to differencing the original time series (subtracting the value 
from the previous period from the current period’s value) to make it stationary

•	 The parameter responsible for integration is d (called degree/order of differencing) and indi-
cates the number of times we need to apply differencing

MA (moving average) model:

•	 This kind of model uses the relationship between an observation and the white noise terms 
(shocks that occurred in the last q observations).

•	 In the financial context, the moving average models try to account for the unpredictable 
shocks (observed in the residuals) that influence the observed time series. Some examples of 
such shocks could be natural disasters, breaking news connected to a certain company, etc.

•	 The white noise terms in the MA model are unobservable. Because of that, we cannot fit an 
ARIMA model using ordinary least squares (OLS). Instead, we have to use an iterative estima-
tion method such as MLE (Maximum Likelihood Estimation).

All of these components fit together and are directly specified in the commonly used notation: ARIMA 
(p,d,q). In general, we should try to keep the values of the ARIMA parameters as small as possible in 
order to avoid unnecessary complexity and prevent overfitting to the training data. One possible rule 
of thumb would be to keep d <= 2, while p and q should not be higher than 5. Also, most likely one of 
the terms (AR or MA) will dominate in the model, leading to the other one having a comparatively 
small value of the parameter.
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ARIMA models are still very popular in the industry as they deliver near state-of-the-art performance 
(mostly for short-horizon forecasts), especially when we are dealing with small datasets. In such cases, 
more advanced machine and deep learning models are not able to show their true power.

One of the known weaknesses of the ARIMA models in the financial context is their inability to capture 
volatility clustering, which is observed in most financial assets.

In this recipe, we will go through all the necessary steps to correctly estimate an ARIMA model and 
learn how to verify that it is a proper fit for the data. For this example, we will once again use the 
monthly US unemployment rate from the years 2010 to 2019.

Getting ready
We will use the same data that we used in the Time series decomposition recipe.

How to do it...
Execute the following steps to create forecasts of the US unemployment rate using ARIMA models:

1.	 Import the libraries:

import pandas as pd
import numpy as np
from statsmodels.tsa.arima.model import ARIMA
from chapter_6_utils import test_autocorrelation
from sklearn.metrics import mean_absolute_percentage_error

2.	 Create the train/test split:

TEST_LENGTH = 12
df_train = df.iloc[:-TEST_LENGTH]
df_test = df.iloc[-TEST_LENGTH:]

ARIMA models are very flexible and by appropriately setting their hyperparameters, we 
can obtain some special cases:

•	 ARIMA (0,0,0): White noise
•	 ARIMA (0,1,0) without constant: Random walk
•	 ARIMA (p,0,q): ARMA(p, q)
•	 ARIMA (p,0,0): AR(p) model
•	 ARIMA (0,0,q): MA(q) model
•	 ARIMA (0,1,2): Damped Holt’s model
•	 ARIMA (0,1,1) without constant: SES model
•	 ARIMA (0,2,2): Holt’s linear method with additive errors
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We create the train/test split just as we have done in the previous recipe. This way, we will be 
able to compare the performance of the two types of models.

3.	 Apply the log transformation and calculate the first differences:

df_train["unemp_rate_log"] = np.log(df_train["unemp_rate"])
df_train["first_diff"] = df_train["unemp_rate_log"].diff()

df_train.plot(subplots=True, 
              title="Original vs transformed series")

Running the snippet generates the following figure:

Figure 6.18: Applying transformations to achieve stationarity

4.	 Test the stationarity of the differenced series:

fig = test_autocorrelation(df_train["first_diff"].dropna())

Running the function produces the following output:

ADF test statistic: -2.97 (p-val: 0.04)
KPSS test statistic: 0.04 (p-val: 0.10)
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By analyzing the test results, we can state that the first differences of the log transformed series 
are stationary. We also look at the corresponding autocorrelation plots.

Figure 6.19: The autocorrelation plots of the first differences of the log transformed series

5.	 Fit two different ARIMA models and print their summaries:

arima_111 = ARIMA(
    df_train["unemp_rate_log"], order=(1, 1, 1)
).fit()
arima_111.summary()
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Running the snippet generates the following summary:

Figure 6.20: The summary of the fitted ARIMA(1,1,1) model

The first model was a vanilla ARIMA(1,1,1). For the second one, we go with ARIMA(2,1,2).

arima_212 = ARIMA(
    df_train["unemp_rate_log"], order=(2, 1, 2)
).fit()
arima_212.summary()



Chapter 6 181

Running the snippet generates the following summary:

Figure 6.21: The summary of the fitted ARIMA(2,1,2) model
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6.	 Combine the fitted values with the predictions:

df["pred_111_log"] = (
    arima_111
    .fittedvalues
    .append(arima_111.forecast(TEST_LENGTH))
)
df["pred_111"] = np.exp(df["pred_111_log"])
 
df["pred_212_log"] = (
    arima_212
    .fittedvalues
    .append(arima_212.forecast(TEST_LENGTH))
)
df["pred_212"] = np.exp(df["pred_212_log"])
df

Running the snippet generates the following table:

Figure 6.22: The predictions from the ARIMA models—raw and transformed back to the 
original scale
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7.	 Plot the forecasts and calculate the MAPEs:

(
    df[["unemp_rate", "pred_111", "pred_212"]]
    .iloc[1:]
    .plot(title="ARIMA forecast of the US unemployment rate")
)

Running the snippet generates the following figure:

Figure 6.23: The forecast and the fitted values from the two ARIMA models

Now we also zoom into the test set, to clearly see the forecasts:

(
    df[["unemp_rate", "pred_111", "pred_212"]]
    .iloc[-TEST_LENGTH:]
    .plot(title="Zooming in on the out-of-sample forecast")
)
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Running the snippet generates the following figure:

Figure 6.24: The forecast from the two ARIMA models

In Figure 6.24, we can see that the forecast of the ARIMA(1,1,1) is virtually a straight line, while 
ARIMA(2,1,2) did a better job at capturing the pattern of the original series.

Now we calculate the MAPEs:

mape_111 = mean_absolute_percentage_error(
    df["unemp_rate"].iloc[-TEST_LENGTH:],
    df["pred_111"].iloc[-TEST_LENGTH:]
)

mape_212 = mean_absolute_percentage_error(
    df["unemp_rate"].iloc[-TEST_LENGTH:],
    df["pred_212"].iloc[-TEST_LENGTH:]
)

print(f"MAPE of ARIMA(1,1,1): {100 * mape_111:.2f}%")
print(f"MAPE of ARIMA(2,1,2): {100 * mape_212:.2f}%")

Running the snippet generates the following output:

MAPE of ARIMA(1,1,1): 9.14%
MAPE of ARIMA(2,1,2): 5.08%
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8.	 Extract the forecast with the corresponding confidence intervals and plot them all together:

preds_df = arima_212.get_forecast(TEST_LENGTH).summary_frame()
preds_df.columns = ["fcst", "fcst_se", "ci_lower", "ci_upper"]
plot_df = df_test[["unemp_rate"]].join(np.exp(preds_df))

fig, ax = plt.subplots()

(
    plot_df[["unemp_rate", "fcst"]]
    .plot(ax=ax,
          title="ARIMA(2,1,2) forecast with confidence intervals")
)

ax.fill_between(plot_df.index,
                plot_df["ci_lower"],
                plot_df["ci_upper"],
                alpha=0.3,
                facecolor="g")

ax.legend(loc="upper left")

Running the snippet generates the following figure:

Figure 6.25: The forecast from the ARIMA(2,1,2) model together with its confidence intervals
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We can see that the forecast is following the shape of the observed values. Additionally, we can see a 
typical cone-like pattern of the confidence intervals—the longer the horizon of the forecast, the wider 
the confidence intervals, which correspond to the increasing uncertainty.

How it works...
After creating the training and test sets in Step 2, we applied the log transformation and first differ-
ences to the training data.

In Step 4, we tested the stationarity of the first differences of the log transformed series. To do so, we 
used the custom test_autocorrelation function. By looking at the outputs of the statistical tests, we 
see that the series is stationary at the 5% significance level. 

When looking at the ACF/PACF plots, we can also clearly see the yearly seasonal pattern (at lags 12 and 24).

In Step 5, we fitted two ARIMA models: ARIMA(1,1,1) and ARIMA(2,1,2). First, the series turned out 
to be stationary after the first differences, so we knew that the order of integration was d=1. Normally, 
we can use the following set of “rules” to determine the values of p and q.

Identifying the order of the AR model:

•	 The ACF shows a significant autocorrelation up to lag p and then trails off afterward
•	 As the PACF only describes the direct relationship between an observation and its lag, we would 

expect no significant correlations beyond lag p

Identifying the order of the MA model:

•	 The PACF shows a significant autocorrelation up to lag q and then trails off afterward
•	 The ACF shows significant autocorrelation coefficients up to lag q and then will exhibit a sharp 

decline

Regarding the manual calibration of ARIMA’s orders, Hyndman and Athanasopoulos (2018) warned that 
if both p and q are positive, the ACF/PACF plots might not be helpful in determining the specification 
of the ARIMA model. In the next recipe, we will introduce an automatic approach to determine the 
optimal values of ARIMA hyperparameters.

In Step 6, we combined the original series with the predictions from the two models. We extracted 
the fitted values from the ARIMA models and appended the forecasts for 2019 to the end of the series. 
Because we fitted the models to the log transformed series, we had to reverse the transformation by 
using the exponent function (np.exp).

If we want to apply differencing to a given series more than once, we should use the 
np.diff function as it implements recursive differencing. Using the diff method of a 
DataFrame/Series with periods > 1 results in taking the difference between the current 
observations and the one from that many periods before.

When working with series that can have 0 values, it is safer to use np.log1p and np.exp1m. 
This way, we avoid potential errors when taking the logarithm of 0.



Chapter 6 187

In Step 7, we plotted the forecasts and calculated the mean absolute percentage error. The ARIMA(2,1,2) 
provided much better forecasts than the simple ARIMA(1,1,1).

In Step 8, we chained the get_forecast method of the fitted ARIMA model together with the  
summary_frame method to obtain the forecast and its corresponding confidence intervals. We had to use 
the get_forecast method, as the forecast method only returns point forecasts, without any additional 
information. Lastly, we renamed the columns and plotted them together with the original series.

There’s more...
We have already fitted the ARIMA models and explored the accuracy of their forecasts. However, we 
can also investigate some goodness-of-fit criteria of the fitted models. Instead of focusing on the out-
of-sample performance, we can dive a bit deeper into how well the models fit the training data. We 
do so by looking at the residuals of the fitted ARIMA models.

First, we plot diagnostic plots for the residuals of the fitted ARIMA(2,1,2) model:

arima_212.plot_diagnostics(figsize=(18, 14), lags=25)

Running the snippet generates the following figure:

Figure 6.26: The diagnostics plot of the fitted ARIMA(2,1,2) model
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Below we cover the interpretation of each of the plots:

•	 Standardized residuals over time (top left)—the residuals should behave like white noise, that 
is, there should be no clear patterns visible. Also, the residuals should have a mean of zero 
and a uniform variance. In our case, there seem to be more negative values than positive ones, 
so the mean is also probably negative.

•	 The histogram and the KDE estimate (top right)—the KDE curve of the residuals should be very 
similar to the one of the standard normal distribution (labeled as N(0,1)). We can see that this 
is not the case for our model, as the distribution is shifted toward the negative values.

•	 Q-Q plot (bottom left)—the majority of the data points should lie in a straight line. This would 
indicate that the quantiles of a theoretical distribution (Standard Normal) match the empir-
ical ones. Significant deviations from the diagonal line imply that the empirical distribution 
is skewed.

•	 Correlogram (bottom right)—here we are looking at the plot of the autocorrelation function of 
the residuals. We would expect that the residuals of a well-fitted ARIMA model are not auto-
correlated. In our case, we can clearly see correlated residuals at lags 12 and 24. This is a hint 
that the model is not capturing the seasonal patterns present in the data.

To continue investigating the autocorrelation of the residuals, we can also apply Ljung-Box’s test for no 
autocorrelation. To do so, we use the test_serial_correlation method of the fitted ARIMA model. 
Alternatively, we could use the acorr_ljungbox function from statsmodels.

ljung_box_results = arima_212.test_serial_correlation(method="ljungbox")
ljung_box_pvals = ljung_box_results[0][1]

fig, ax = plt.subplots(1, figsize=[16, 5])
sns.scatterplot(x=range(len(ljung_box_pvals)),
                y=ljung_box_pvals,
                ax=ax)
ax.axhline(0.05, ls="--", c="r")
ax.set(title="Ljung-Box test's results",
       xlabel="Lag",
       ylabel="p-value")



Chapter 6 189

Running the snippet generates the following figure:

Figure 6.27: The results of the Ljung-Box test for no autocorrelation in the residuals

All of the returned p-values are below the 5% significance level, which means we should reject the 
null hypothesis stating there is no autocorrelation in the residuals. It makes sense, as we have already 
observed a significant yearly correlation caused by the fact that our model is missing the seasonal 
patterns.

What we should also keep in mind is the number of lags to investigate while performing the Ljung-Box 
test. Different sources suggest a different number of lags to consider. The default value in statsmodels 
is min(10, nobs // 5) for non-seasonal models and min(2*m, nobs // 5) for seasonal time series, 
where m denotes the seasonal period. Other commonly used variants include min(20,nobs − 1) and 
ln(nobs). In our case, we did not use a seasonal model, so the default value is 10. But as we know, the 
data does exhibit seasonal patterns, so we should have looked at more lags.

The fitted ARIMA models also contain the test_normality and test_heteroskedasticity methods, 
which we could use for further evaluation of the model’s fit. We leave exploring those as an exercise 
for the reader.

See also
Please see the following references for more information on fitting ARIMA models and helpful sets 
of rules for manually picking up the correct orders of the models:

•	 https://online.stat.psu.edu/stat510/lesson/3/3.1

•	 https://people.duke.edu/~rnau/arimrule.htm

For more information on the Ljung-Box test:

•	 https://robjhyndman.com/hyndsight/ljung-box-test/

https://online.stat.psu.edu/stat510/lesson/3/3.1
https://people.duke.edu/~rnau/arimrule.htm
https://robjhyndman.com/hyndsight/ljung-box-test/
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Finding the best-fitting ARIMA model with auto-ARIMA
As we have seen in the previous recipe, the performance of an ARIMA model varies greatly depending 
on the chosen hyperparameters (p, d, and q). We can do our best to choose them based on our intuition, 
the statistical tests, and the ACF/PACF plots. However, this can prove to be quite difficult to do in practice.

That is why in this recipe we introduce auto-ARIMA, an automated approach to finding the best hy-
perparameters of the ARIMA class models (including variants such as ARIMAX and SARIMA).

Without going much into the technical details of the algorithm, it first determines the number of 
differences using the KPSS test. Then, the algorithm uses a stepwise search to traverse the model 
space, searching for a model that results in a better fit. A popular choice of evaluation metric used 
for comparing the models is the Akaike Information Criterion (AIC). The metric provides a trade-off 
between the goodness of fit of the model and its simplicity—AIC deals with the risks of overfitting and 
underfitting. When we compare multiple models, the lower the value of AIC, the better the model. For 
a more complete description of the auto-ARIMA procedure, please refer to the sources mentioned in 
the See also section.

The auto-ARIMA framework also works well with the extensions of the ARIMA model:

•	 ARIMAX—adds exogenous variable(s) to the model.
•	 SARIMA (Seasonal ARIMA)—extends ARIMA to account for seasonality in the time series. The 

full specification is SARIMA(p,d,q)(P,D,Q)m, where the capitalized parameters are analogous 
to the original ones, but they refer to the seasonal component of the time series. m refers to 
the period of seasonality.

In this recipe, we will once again work with the monthly US unemployment rates from the years 2010 
to 2019.

Getting ready
We will use the same data that we used in the Time series decomposition recipe.

How to do it...
Execute the following steps to find the best-fitting ARIMA model using the auto-ARIMA procedure:

1.	 Import the libraries:

import pandas as pd
import pmdarima as pm
from sklearn.metrics import mean_absolute_percentage_error

2.	 Create the train/test split:

TEST_LENGTH = 12
df_train = df.iloc[:-TEST_LENGTH]
df_test = df.iloc[-TEST_LENGTH:]
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3.	 Find the best hyperparameters of the ARIMA model using the auto-ARIMA procedure:

auto_arima = pm.auto_arima(df_train,
                           test="adf",
                           seasonal=False,
                           with_intercept=False,
                           stepwise=True,
                           suppress_warnings=True,
                           trace=True)
                            
auto_arima.summary()

Executing the snippet generates the following summary:

Figure 6.28: The summary of the best-fitting ARIMA model, as identified using the auto-ARIMA 
procedure

The procedure indicated that the best-fitting ARIMA model is ARIMA(2,1,2). But as you can 
see, the results in Figure 6.28 and Figure 6.21 are different. That is because in the latter case, 
we have fitted the ARIMA(2,1,2) model to the log transformed series, while in this recipe, we 
have not applied the log transformation.
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Because we indicated trace=True, we also see the following information about the models 
fitted during the procedure:

Performing stepwise search to minimize aic
 ARIMA(2,1,2)(0,0,0)[0]             : AIC=7.411, Time=0.24 sec
 ARIMA(0,1,0)(0,0,0)[0]             : AIC=77.864, Time=0.01 sec
 ARIMA(1,1,0)(0,0,0)[0]             : AIC=77.461, Time=0.01 sec
 ARIMA(0,1,1)(0,0,0)[0]             : AIC=75.688, Time=0.01 sec
 ARIMA(1,1,2)(0,0,0)[0]             : AIC=68.551, Time=0.01 sec
 ARIMA(2,1,1)(0,0,0)[0]             : AIC=54.321, Time=0.03 sec
 ARIMA(3,1,2)(0,0,0)[0]             : AIC=7.458, Time=0.07 sec
 ARIMA(2,1,3)(0,0,0)[0]             : AIC=inf, Time=0.07 sec
 ARIMA(1,1,1)(0,0,0)[0]             : AIC=78.507, Time=0.02 sec
 ARIMA(1,1,3)(0,0,0)[0]             : AIC=60.069, Time=0.02 sec
 ARIMA(3,1,1)(0,0,0)[0]             : AIC=41.703, Time=0.02 sec
 ARIMA(3,1,3)(0,0,0)[0]             : AIC=10.527, Time=0.10 sec
 ARIMA(2,1,2)(0,0,0)[0] intercept   : AIC=inf, Time=0.08 sec

Best model:  ARIMA(2,1,2)(0,0,0)[0]          
Total fit time: 0.740 seconds

Similar to the ARIMA model estimated with the statsmodels library, with pmdarima (which 
is in fact a wrapper around statsmodels) we can also use the plot_diagnostics method to 
analyze the fit of the model by looking at its residuals:

auto_arima.plot_diagnostics(figsize=(18, 14), lags=25)

Executing the snippet generates the following figure:
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Figure 6.29: The diagnostic plots of the best-fitting ARIMA model

Similar to the diagnostics plot in Figure 6.26, this ARIMA(2,1,2) model is also struggling with 
capturing the yearly seasonal patterns—we can clearly see that in the correlogram.

4.	 Find the best hyperparameters of a SARIMA model using the auto-ARIMA procedure:

auto_sarima = pm.auto_arima(df_train,
                            test="adf",
                            seasonal=True,
                            m=12,
                            with_intercept=False,
                            stepwise=True,
                            suppress_warnings=True,
                            trace=True)
auto_sarima.summary()
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Executing the snippet generates the following summary:

Figure 6.30: The summary of the best-fitting SARIMA model, as identified using the auto-ARI-
MA procedure

Just as we have done before, we will also look at the various residual plots:

auto_sarima.plot_diagnostics(figsize=(18, 14), lags=25)
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Executing the snippet generates the following figure:

Figure 6.31: The diagnostic plots of the best-fitting SARIMA model

We can clearly see that the SARIMA model results in a much better fit than the ARIMA(2,1,2) 
model.

5.	 Calculate the forecasts from the two models and plot them:

df_test["auto_arima"] = auto_arima.predict(TEST_LENGTH)
df_test["auto_sarima"] = auto_sarima.predict(TEST_LENGTH)
df_test.plot(title="Forecasts of the best ARIMA/SARIMA models")
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Executing the snippet generates the following plot:

Figure 6.32: The forecasts from the ARIMA and SARIMA models identified using the auto-ARI-
MA procedure

It should not come as a surprise that the SARIMA model is capturing the seasonal patterns better 
than the ARIMA model. That is also reflected in the performance metrics calculated below. We also 
calculate the MAPEs:

mape_auto_arima = mean_absolute_percentage_error(
    df_test["unemp_rate"], 
    df_test["auto_arima"]
)
 
mape_auto_sarima = mean_absolute_percentage_error(
    df_test["unemp_rate"], 
    df_test["auto_sarima"]
)
 
print(f"MAPE of auto-ARIMA: {100*mape_auto_arima:.2f}%")
print(f"MAPE of auto-SARIMA: {100*mape_auto_sarima:.2f}%")
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Executing the snippet generates the following output:

MAPE of auto-ARIMA: 6.17%
MAPE of auto-SARIMA: 5.70%

How it works...
After importing the libraries, we created the training and test set just as we have done in the previous 
recipes.

In Step 3, we used the auto_arima function to find the best hyperparameters of the ARIMA model. 
While using it, we specified that:

•	 We wanted to use the augmented Dickey-Fuller test as the stationarity test instead of the KPSS 
test.

•	 We turned off the seasonality to fit an ARIMA model instead of SARIMA.
•	 We wanted to estimate a model without an intercept, which is also the default setting when 

estimating ARIMA in statsmodels (under the trend argument in the ARIMA class).
•	 We wanted to use the stepwise algorithm for identifying the best hyperparameters. When we 

mark this one as False, the function will run an exhaustive grid search (trying out all possible 
hyperparameter combinations) similarly to the GridSearchCV class of scikit-learn. When 
using that scenario, we can indicate the n_jobs argument to specify how many models can 
be fitted in parallel.

There are also many different settings we can experiment with, for example:

•	 Selecting the starting value of the hyperparameters for the search.
•	 Capping the maximum values of parameters in the search.
•	 Selecting different statistical tests for determining the number of differences (also seasonal).
•	 Selecting an out-of-sample evaluation period (out_of_sample_size). This will make the algo-

rithm fit the models on the data up until a certain point in time (the last observation minus 
out_of_sample_size) and evaluate on the hold-out set. This way of selecting the best model 
might be preferable when we care more about the forecasting performance than the fit to the 
training data.

•	 We can cap the maximum time for fitting the model or the max number of hyperparameter 
combinations to try out. This is especially useful when estimating seasonal models on more 
granular (for example, weekly) data, as such scenarios tend to take quite a long time to fit.

In Step 4, we used the auto_arima function to find the best SARIMA model. To do so, we specified 
seasonal=True and indicated that we are working with monthly data by setting m=12.

Lastly, we calculated the forecasts coming from the two models using the predict method, plotted 
them together with the ground truth, and calculated the MAPEs.
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There’s more...
We can use the auto-ARIMA framework in the pmdarima library to estimate even more complex models 
or entire pipelines, which include transforming the target variable or adding new features. In this 
section, we show how to do so.

We start by importing a few more classes:

from pmdarima.pipeline import Pipeline
from pmdarima.preprocessing import FourierFeaturizer
from pmdarima.preprocessing import LogEndogTransformer
from pmdarima import arima

For the first model, we train an ARIMA model with additional features (exogenous variables). As an 
experiment, we try to provide features indicating which month a given observation comes from. If 
this works, we might not need to estimate a SARIMA model to capture the yearly seasonality.

We create dummy variables using the pd.get_dummies function. Each column contains a Boolean flag 
indicating if the observation came from the given month or not. 

We also need to drop the first column from the new DataFrame to avoid the dummy-variable trap 
(perfect multicollinearity). We added the new variables for both the training and test sets:

month_dummies = pd.get_dummies(
    df.index.month, 
    prefix="month_", 
    drop_first=True
)
month_dummies.index = df.index
df = df.join(month_dummies)
 
df_train = df.iloc[:-TEST_LENGTH]
df_test = df.iloc[-TEST_LENGTH:]

We then use the auto_arima function to find the best-fitting model. The only thing that changes as 
compared to Step 3 of this recipe is that we had to specify the exogenous variables using the exogenous 
argument. We indicated all columns except the one containing the target. Alternatively, we could have 
kept the additional variables in a separate object with identical indices as the target:

auto_arimax = pm.auto_arima(
    df_train[["unemp_rate"]],
    exogenous=df_train.drop(columns=["unemp_rate"]),
    test="adf",
    seasonal=False,
    with_intercept=False,
    stepwise=True,
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    suppress_warnings=True,
    trace=True
)
                           
auto_arimax.summary()

Executing the snippet generates the following summary:

Figure 6.33: The summary of the ARIMA model with exogenous variables
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We also look at the residuals plots by using the plot_diagnostics method. It seems that the auto-
correlation issues connected to the yearly seasonality were fixed by including the dummy variables.

Figure 6.34: The diagnostic plots of the ARIMA model with exogenous variables

Lastly, we also show how to create an entire data transformation and modeling pipeline, which also 
finds the best-fitting ARIMA model. Our pipeline consists of three steps:

•	 We apply the log transformation to the target.
•	 We create new features using the FourierFeaturizer—explaining Fourier series is outside of 

the scope of this book. In practice, using them permits us to account for the seasonality in a 
seasonal time series without using a seasonal model per se. To provide a bit more context, it is 
something similar to what we have done with the month dummies. The FourierFeaturizer 
class supplies decomposed seasonal Fourier terms as an exogenous array of features. We had 
to specify the seasonal periodicity m.
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•	 We find the best-fitting model using the auto-ARIMA procedure. Please keep in mind that 
when using the pipelines, we have to use the AutoARIMA class instead of the pm.auto_arima 
function. Those two offer the same functionalities, just this time we had to use a class to make 
it compatible with the Pipeline functionality.

auto_arima_pipe = Pipeline([
    ("log_transform", LogEndogTransformer()),
    ("fourier", FourierFeaturizer(m=12)),
    ("arima", arima.AutoARIMA(stepwise=True, trace=1, 
                              error_action="warn",
                              test="adf", seasonal=False, 
                              with_intercept=False, 
                              suppress_warnings=True))
])
 
auto_arima_pipe.fit(df_train[["unemp_rate"]])

In the log produced by fitting the pipeline, we can see that the following model was selected as the 
best one:

Best model:  ARIMA(4,1,0)(0,0,0)[0] intercept

The biggest advantage of using the pipeline is that we do not have to carry out all the steps ourselves. 
We just define a pipeline and then provide a time series as input to the fit method. In general, pipe-
lines (also the ones in scikit-learn as we will see in Chapter 13, Applied Machine Learning: Identifying 
Credit Default) are a great functionality that helps us with:

•	 Making the code reusable
•	 Defining a clear order of the operations that are happening on the data
•	 Avoiding potential data leakage when creating features and splitting the data

A potential disadvantage of using the pipelines is that some operations are not that easy to 
track anymore (the intermediate results are not stored as separate objects) and it is a bit 
more difficult to access the particular elements of the pipeline. For example, we cannot run  
auto_arima_pipe.summary() to get the summary of the fitted ARIMA model.

Below, we create forecasts using the predict method. Some noteworthy things about this step:

•	 We created a new DataFrame containing only the target. We did so to remove the extra columns 
we created earlier in this recipe.

•	 When using the predict method with a fitted ARIMAX model, we also need to provide the 
required exogenous variables for the predictions. They are passed as the X argument.
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•	 When we use the predict method of a pipeline that transforms the target variable, the returned 
predictions (or fitted values) are expressed on the same scale as the original input. In our 
case, the following sequence happened under the hood. First, the original time series was log 
transformed. Then, new features were added. Next, we obtained predictions from the model 
(still on the log transformed scale). Finally, the predictions were converted to the original scale 
using the exponent function.

results_df = df_test[["unemp_rate"]].copy()
results_df["auto_arimax"] = auto_arimax.predict(
    TEST_LENGTH,
    X=df_test.drop(columns=["unemp_rate"])
)
results_df["auto_arima_pipe"] = auto_arima_pipe.predict(TEST_LENGTH)
results_df.plot(title="Forecasts of the ARIMAX/pipe models")

Running the code generates the following plot:

Figure 6.35: The forecasts from the ARIMAX model and the ARIMA pipeline

For reference, we also add the scores of those forecasts:

MAPE of auto-ARIMAX: 6.88%
MAPE of auto-pipe: 4.61%
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Of all the ARIMA models we have tried in this chapter, the pipeline model performed best. However, 
it still performs significantly worse than the exponential smoothing methods.

See also
•	 Hyndman, R. J. & Athanasopoulos, G. 2021. “ARIMA Modeling in Fable.” In Forecasting: Prin-

ciples and Practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3. Accessed on 
2022-05-08 – https://otexts.com/fpp3/arima-r.html.

•	 Hyndman, R. J. & Khandakar, Y., 2008. “Automatic time series forecasting: the forecast package 
for R,” Journal of Statistical Software, 27: 1-22.

Summary
In this chapter, we have covered the classical (statistical) approaches to time series analysis and 
forecasting. We learned how to decompose any time series into trend, seasonal, and remainder com-
ponents. This step can be very helpful in getting a better understanding of the explored time series. 
But we can also use it directly for modeling purposes.

Then, we explained how to test if a time series is stationary, as some of the statistical models (for 
example, ARIMA) require stationarity. We also explained which steps we can take to transform a 
non-stationary time series into a stationary one.

Lastly, we explored two of the most popular statistical approaches to time series forecasting—exponen-
tial smoothing methods and ARIMA models. We have also touched upon more modern approaches to 
estimating such models, which involve automatic tuning and hyperparameter selection.

In the next chapter, we will explore ML-based approaches to time series forecasting.

When using the predict method of the ARIMA models/pipelines in the pmdarima library, 
we can set the return_conf_int argument to True. When we do so, the method will not 
only return the point forecast but also the corresponding confidence intervals.

https://otexts.com/fpp3/arima-r.html




7
Machine Learning-Based 
Approaches to Time Series 
Forecasting

In the previous chapter, we provided a brief introduction to time series analysis and demonstrated how 
to use statistical approaches (ARIMA and ETS) for time series forecasting. While those approaches are 
still very popular, they are somewhat dated. In this chapter, we focus on the more recent, ML-based 
approaches to time series forecasting.

We start by explaining different ways of validating time series models. Then, we move on to the 
inputs of ML models, that is, the features. We provide an overview of selected feature engineering 
approaches and introduce a tool for automatic feature extraction that generates hundreds or thou-
sands of features for us.

Having covered those two topics, we introduce the concept of reduced regression, which allows us 
to reframe the time series forecasting problem as a regular regression problem. Thus, it allows us to 
use popular and battle-tested regression algorithms (all the ones available in scikit-learn, XGBoost, 
LightGBM, and so on) for time series forecasting. Then, we also show how to use Meta’s Prophet algo-
rithm. We conclude the chapter by introducing one of the popular AutoML tools, which allows us to 
train and tune dozens of ML models with only a few lines of code.

We cover the following recipes in this chapter:

•	 Validation methods for time series
•	 Feature engineering for time series 
•	 Time series forecasting as reduced regression
•	 Forecasting with Meta’s Prophet
•	 AutoML for time series forecasting with PyCaret
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Validation methods for time series
In the previous chapter, we trained a few statistical models to forecast the future values of time series. 
To evaluate the models’ performance, we initially split the data into training and test sets. However, 
that is definitely not the only approach to model validation.

A very popular approach to evaluating models’ performance is called cross-validation. It is especially 
useful for choosing the best set of a model’s hyperparameters or selecting the best model for the prob-
lem we are trying to solve. Cross-validation is a technique that allows us to obtain reliable estimates 
of the model’s generalization error by providing multiple estimates of the model’s performance. As 
such, cross-validation can help us greatly when we are dealing with smaller datasets.

The basic cross-validation scheme is called k-fold cross-validation, in which we randomly split the 
training data into k folds. Then, we train the model using k−1 folds and evaluate the performance on 
the kth fold. We repeat this process k times and average the resulting scores. Figure 7.1 illustrates the 
procedure.

Figure 7.1: Schema of k-fold cross-validation

As you might have already realized, k-fold cross-validation is not really suited for evaluating time series 
models, as it does not preserve the order of time. For example, in the first round, we train the model 
using the data from the last 4 folds while evaluating it using the first one. 

As k-fold cross-validation is very useful for standard regression and classification tasks, we will come 
back to it and cover it more in-depth in Chapter 13, Applied Machine Learning: Identifying Credit Default.
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Fortunately, we can quite easily adapt the concept of k-fold cross-validation to the time series domain. 
The resulting approach is called the walk-forward validation. In that validation scheme, we expand/
slide the training window by one (or multiple) fold(s) at a time.

Figure 7.2 illustrates the expanding window variant of the walk-forward validation, which is also called 
anchored walk-forward validation. As you can see, we are incrementally increasing the size of the 
training set, while keeping the next fold as a validation set.

Figure 7.2: Walk-forward validation with an expanding window

This approach comes with a sort of bias—in the earlier rounds, we use much less historical data for 
training the model than in the latter ones, which makes the errors coming from different rounds not 
directly comparable. For example, in the first rounds of validation, the model might simply not have 
enough training data to properly learn the seasonal patterns.

Bergmeir et al. (2018) show that in the case of a purely autoregressive model, the use of stan-
dard k-fold cross-validation is possible if the considered models have uncorrelated errors.



Machine Learning-Based Approaches to Time Series Forecasting208

An attempt to solve this problem might be to use a sliding window approach instead of an expanding 
one. As a result, all models are trained with the same amount of data so the errors are directly com-
parable. Figure 7.3 illustrates the process.

Figure 7.3: Walk-forward validation with a sliding window

We could use this approach when we have a lot of training data (and each sliding window offers 
enough for the model to learn the patterns well) or when we do not need to look far into the past to 
learn relevant patterns used to predict the future.

In this recipe, we show how to use the walk-forward validation (using both expanding and sliding 
windows) to evaluate the forecasts of the US unemployment rate.

How to do it…
Execute the following steps to calculate the model’s performance using walk-forward validation:

We can use a nested cross-validation approach to get even more accurate error 
estimates while tuning the model’s hyperparameters at the same time. In nested 
CV, there is an outer loop that estimates the model’s performance and the inner 
loop used for hyperparameter tuning. We provide some useful references on the 
topic in the See also section.



Chapter 7 209

1.	 Import the libraries and authenticate:

import pandas as pd
import numpy as np
from sklearn.model_selection import TimeSeriesSplit, cross_validate
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_percentage_error
import nasdaqdatalink

nasdaqdatalink.ApiConfig.api_key = "YOUR_KEY_HERE"

2.	 Download the monthly US unemployment rate from the years 2010 to 2019:

df = (
    nasdaqdatalink.get(dataset="FRED/UNRATENSA",
                       start_date="2010-01-01",
                       end_date="2019-12-31")
    .rename(columns={"Value": "unemp_rate"})
)
df.plot(title="Unemployment rate (US) - monthly")

Executing the snippet generates the following plot:

Figure 7.4: Monthly US unemployment rate
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3.	 Create simple features:

df["linear_trend"] = range(len(df))
df["month"] = df.index.month

As we are avoiding autoregressive features and we know the values of all the features into the 
future, we are able to forecast for an arbitrarily long forecast horizon.

4.	 Use one-hot encoding for the month feature:

month_dummies = pd.get_dummies(
    df["month"], drop_first=True, prefix="month"
)

df = df.join(month_dummies) \
       .drop(columns=["month"])

5.	 Separate the target from the features:

X = df.copy()
y = X.pop("unemp_rate")

6.	 Define the expanding window walk-forward validation and print the indices of the folds:

expanding_cv = TimeSeriesSplit(n_splits=5, test_size=12)
 
for fold, (train_ind, valid_ind) in enumerate(expanding_cv.split(X)):
    print(f"Fold {fold} ----")
    print(f"Train indices: {train_ind}")
    print(f"Valid indices: {valid_ind}")

Executing the snippet generates the following log:

Fold 0 ----
Train indices: [ 0  1  2  3  4  5  6  7  8  9 10 11 
                12 13 14 15 16 17 18 19 20 21 22 23 
                24 25 26 27 28 29 30 31 32 33 34 35 
                36 37 38 39 40 41 42 43 44 45 46 47 
                48 49 50 51 52 53 54 55 56 57 58 59]
Valid indices: [60 61 62 63 64 65 66 67 68 69 70 71]
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Fold 1 ----
Train indices: [ 0  1  2  3  4  5  6  7  8  9 10 11 
                12 13 14 15 16 17 18 19 20 21 22 23
                24 25 26 27 28 29 30 31 32 33 34 35 
                36 37 38 39 40 41 42 43 44 45 46 47
                48 49 50 51 52 53 54 55 56 57 58 59 
                60 61 62 63 64 65 66 67 68 69 70 71]
Valid indices: [72 73 74 75 76 77 78 79 80 81 82 83]
Fold 2 ----
Train indices: [ 0  1  2  3  4  5  6  7  8  9 10 11 
                12 13 14 15 16 17 18 19 20 21 22 23
                24 25 26 27 28 29 30 31 32 33 34 35 
                36 37 38 39 40 41 42 43 44 45 46 47
                48 49 50 51 52 53 54 55 56 57 58 59 
                60 61 62 63 64 65 66 67 68 69 70 71
                72 73 74 75 76 77 78 79 80 81 82 83]
Valid indices: [84 85 86 87 88 89 90 91 92 93 94 95]
Fold 3 ----
Train indices: [ 0  1  2  3  4  5  6  7  8  9 10 11 
                12 13 14 15 16 17 18 19 20 21 22 23
                24 25 26 27 28 29 30 31 32 33 34 35 
                36 37 38 39 40 41 42 43 44 45 46 47
                48 49 50 51 52 53 54 55 56 57 58 59 
                60 61 62 63 64 65 66 67 68 69 70 71
                72 73 74 75 76 77 78 79 80 81 82 83 
                84 85 86 87 88 89 90 91 92 93 94 95]
Valid indices: [96 97 98 99 100 101 102 103 104 105 106 107]
Fold 4 ----
Train indices: [ 0  1  2  3  4  5  6  7  8  9 10 11  
                12 13 14 15 16 17 18 19 20 21 22 23
                24 25 26 27 28 29 30 31 32 33 34 35
                36 37 38 39 40 41 42 43 44 45 46 47  
                48 49 50 51 52 53 54 55 56 57 58 59  
                60 61 62 63 64 65 66 67 68 69 70 71
                72 73 74 75 76 77 78 79 80 81 82 83  
                84 85 86 87 88 89 90 91 92 93 94 95  
                96 97 98 99 100 101 102 103 104 105 106 107]
Valid indices: [108 109 110 111 112 113 114 115 116 117 118 119]



Machine Learning-Based Approaches to Time Series Forecasting212

By analyzing the log and keeping in mind that we are working with monthly data, we can see 
that in the first iteration, the model would be trained using five years of data and evaluated 
using the sixth year. In the second round, it would be trained using the first six years of data 
and evaluated using the seventh year, and so on.

7.	 Evaluate the model’s performance using the expanding window validation:

scores = []

for train_ind, valid_ind in expanding_cv.split(X):
    lr = LinearRegression()
    lr.fit(X.iloc[train_ind], y.iloc[train_ind])
    y_pred = lr.predict(X.iloc[valid_ind])
    scores.append(
        mean_absolute_percentage_error(y.iloc[valid_ind], y_pred)
    )

print(f"Scores: {scores}")
print(f"Avg. score: {np.mean(scores)}")

Executing the snippet generates the following output:

Scores: [0.03705079312389441, 0.07828415627306308, 0.11981060282173006, 
0.16829494012910876, 0.25460459651634165]
Avg. score: 0.1316090177728276

The average performance (measured by MAPE) over the cross-validation rounds was 13.2%.

Instead of iterating over the splits, we can easily use the cross_validate function from scikit-
learn:

cv_scores = cross_validate(
    LinearRegression(),
    X, y,
    cv=expanding_cv,
    scoring=["neg_mean_absolute_percentage_error",
             "neg_root_mean_squared_error"]
)
pd.DataFrame(cv_scores)
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Executing the snippet generates the following output:

Figure 7.5: The scores of each of the validation rounds using a walk-forward CV with an 
expanding window

By looking at the scores, we see that they are identical (except for the negative sign) to the ones 
we have obtained by manually iterating over the cross-validation splits.

8.	 Define the sliding window validation and print the indices of the folds:

sliding_cv = TimeSeriesSplit(
    n_splits=5, test_size=12, max_train_size=60
)
 
for fold, (train_ind, valid_ind) in enumerate(sliding_cv.split(X)):
    print(f"Fold {fold} ----")
    print(f"Train indices: {train_ind}")
    print(f"Valid indices: {valid_ind}")

Executing the snippet generates the following output:

Fold 0 ----
Train indices: [ 0  1  2  3  4  5  6  7  8  9 10 11 
                12 13 14 15 16 17 18 19 20 21 22 23
                24 25 26 27 28 29 30 31 32 33 34 35 
                36 37 38 39 40 41 42 43 44 45 46 47
                48 49 50 51 52 53 54 55 56 57 58 59]
Valid indices: [60 61 62 63 64 65 66 67 68 69 70 71]
Fold 1 ----
Train indices: [12 13 14 15 16 17 18 19 20 21 22 23 
                24 25 26 27 28 29 30 31 32 33 34 35
                36 37 38 39 40 41 42 43 44 45 46 47 
                48 49 50 51 52 53 54 55 56 57 58 59
                60 61 62 63 64 65 66 67 68 69 70 71]
Valid indices: [72 73 74 75 76 77 78 79 80 81 82 83]
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Fold 2 ----
Train indices: [24 25 26 27 28 29 30 31 32 33 34 35 
                36 37 38 39 40 41 42 43 44 45 46 47
                48 49 50 51 52 53 54 55 56 57 58 59 
                60 61 62 63 64 65 66 67 68 69 70 71
                72 73 74 75 76 77 78 79 80 81 82 83]
Valid indices: [84 85 86 87 88 89 90 91 92 93 94 95]
Fold 3 ----
Train indices: [36 37 38 39 40 41 42 43 44 45 46 47 
                48 49 50 51 52 53 54 55 56 57 58 59
                60 61 62 63 64 65 66 67 68 69 70 71 
                72 73 74 75 76 77 78 79 80 81 82 83
                84 85 86 87 88 89 90 91 92 93 94 95]
Valid indices: [96 97 98 99 100 101 102 103 104 105 106 107]
Fold 4 ----
Train indices: [48 49 50 51 52 53 54 55 56 57 58 59 
                60 61 62 63 64 65 66 67 68 69 70 71 
                72 73 74 75 76 77 78 79 80 81 82 83
                84 85 86 87 88 89 90 91 92 93 94 95 
                96 97 98 99 100 101 102 103 104 105 106 107]
Valid indices: [108 109 110 111 112 113 114 115 116 117 118 119]

By analyzing the log, we can see the following:

•	 Each time, the model would be trained using exactly five years of data.
•	 Between the CV rounds, we are moving by 12 months.
•	 The validation folds correspond to the ones we saw when we used the expanding window 

validation. Hence, we can easily compare the scores to see which approach is better.

9.	 Evaluate the model’s performance using the sliding window validation:

cv_scores = cross_validate(
    LinearRegression(),
    X, y,
    cv=sliding_cv,
    scoring=["neg_mean_absolute_percentage_error",
             "neg_root_mean_squared_error"]
)
pd.DataFrame(cv_scores)
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Executing the snippet generates the following output:

Figure 7.6: The scores of each of the validation rounds using a walk-forward CV with a 
sliding window

By aggregating the MAPE, we arrive at the average score of 9.98%. It seems that using 5 years of data 
in each iteration results in a better average score than when using the expanding window. A potential 
conclusion is that in this particular case, more data does not result in a better model. Instead, we can 
obtain a better model when using only the most recent data points.

How it works….
First, we imported the required libraries and authenticated with Nasdaq Data Link. In the second 
step, we downloaded the monthly US unemployment rate. It is the same time series that we worked 
with in the previous chapter.

In Step 3, we created two simple features:

•	 Linear trend, which is simply the ordinal row number of the ordered time series. Based on the 
inspection of Figure 7.4, we saw that the overall trend in the unemployment rate is decreasing. 
We hope that this feature will capture that pattern.

•	 The month index, which identifies from which calendar month the given observation comes.

In Step 4, we one-hot encoded the month feature using the get_dummies function. We cover one-hot 
encoding in depth in Chapter 13, Applied Machine Learning: Identifying Credit Default, and Chapter 14, 
Advanced Concepts for Machine Learning Projects. In short, we created new columns, each one being a 
Boolean flag indicating whether the given observation comes from a certain month. Additionally, we 
dropped the first column to avoid perfect multicollinearity (that is, the infamous dummy variable trap).

In Step 5, we separated the features from the target using the pop method of a pandas DataFrame.

In Step 6, we defined the walk-forward validation using the TimeSeriesSplit class from  
scikit-learn. We indicated we want to have 5 splits and that the test size should be 12 months. Ideally, 
the validation scheme should reflect the real-life usage of the model. In this case, we can state that 
the ML model will be used to forecast the monthly unemployment rate 12 months into the future.

Then, we used a for loop to print the train and validation indices used in each of the cross-validation 
rounds. The indices returned by the split method of the TimeSeriesSplit class are ordinal, but we 
can easily map those to the actual indices of the time series.
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We decided not to use autoregressive features, as without them we can forecast arbitrarily long into 
the future. Naturally, we can also do so with the AR feature, but then we need to handle them appro-
priately. This specification is simply easier for this use case.

In Step 7, we used a very similar for loop, this time to evaluate the model’s performance. In each iter-
ation of the loop, we trained the linear regression model using that iteration’s training data, created 
predictions for the corresponding validation set, and lastly, calculated the performance expressed 
as MAPE. We appended the CV scores to a list and then we also calculated the average performance 
over all 5 rounds of cross-validation.

Instead of using the custom for loop, we can use the cross_validate function from the  
scikit-learn library. A potential advantage of using it over the loop is that it automatically counts 
the time spent on the fit and prediction steps of the model. We showed how to obtain the MAPE and 
MSE scores using this approach.

Below, you can find a list of the most popular metrics used for evaluating the accuracy of time series 
forecasts:

•	 Mean Squared Error (MSE)—One of the most popular metrics in machine learning. As the unit 
is not very intuitive (not the same unit as the original forecast), we can use MSE to compare 
the relative performance of various models on the same dataset.

•	 Root Mean Squared Error (RMSE)—By taking the square root of MSE, this metric is now at the 
same scale as the original time series.

•	 Mean Absolute Error (MAE)—Instead of taking the square, we take the absolute value of the 
error. As a result, MAE is expressed on the same scale as the original time series. What is more, 
MAE is more tolerant of outliers, as each observation is given the same weight when calculating 
the average. In the case of the squared metrics, the outliers were punished more significantly.

•	 Mean Absolute Percentage Error (MAPE)—Very similar to MAE, but expressed as a percentage. 
Hence, it is easier to understand for many business stakeholders. However, it comes with a 
serious disadvantage—when the actual value is zero, the metric assumes dividing the error by 
the actual value, which is not mathematically possible.

Naturally, these are only a few of the selected metrics. It is highly advised to dive deeper into those 
metrics to fully understand their pros and cons. For example, RMSE is often favored as an optimiza-
tion metric, as squares are easier to handle than absolute values when mathematical optimization 
requires taking derivatives.

In Steps 8 and 9, we showed how to create the validation scheme using the sliding window approach. 
The only difference is the fact that we specified the max_train_size argument while instantiating the 
TimeSeriesSplit class.

One thing to note about using the cross_validate function (or other scikit-learn 
functionalities such as Grid Search) is that we had to provide the metric names as, for 
example, "neg_mean_absolute_percentage_error". That is the convention used in 
the metrics module of scikit-learn, that is, the higher values of the scorers are better 
than the lower values. Hence, as we want to minimize those metrics, they are negated.
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There’s more…
In this recipe, we have described the standard approach to validating time series models. However, 
there are many more advanced validation approaches. Actually, most of them come from the financial 
domain, as validating models based on financial time series proves to be more complex for multiple 
reasons. We briefly mention some of the more advanced approaches below, together with the chal-
lenges they are trying to fix.

One of the limitations of TimeSeriesSplit is that it only works at record-level and cannot handle 
grouping. Imagine we have a dataset of daily stock returns. And due to the specification of our trad-
ing algorithm, we are evaluating the performance on a weekly or monthly level and the observations 
should not overlap between the weekly/monthly groups. Figure 7.7 illustrates the concept by using 
the training group size of 3 and validation group size of 1.

Figure 7.7: Schema of group time series validation 

To account for such a grouping of the observations (by week or month), we need to use group time 
series validation, which is a combination of scikit-learn's TimeSeriesSplit and GroupKFold. There 
are many implementations of this concept on the internet. One of them can be found in the mlxtend 
library.

To better illustrate the potential problems with forecasting financial time series and evaluating the 
model’s performance, we have to expand our mental model connected to the time series. Such time 
series actually have two timestamps for each observation:

•	 A prediction or trade timestamp—when the ML model makes a prediction and we are poten-
tially opening a trade.

Sometimes we might be interested in creating a gap between the training and validation 
sets within cross-validation. For example, in the first iteration, the training should be done 
using the first five values and then the evaluation should be done on the seventh value. We 
can easily incorporate such a scenario by using the gap argument of the TimeSeriesSplit 
class.
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•	 An evaluation or event timestamp—when the response to the prediction/trade becomes avail-
able and we can actually calculate the prediction error.

For example, we can have a classification model that predicts the price of certain stock increases or 
drops by X in the next 5 business days. Based on that prediction, we make a trading decision. We might 
enter a long position. And over the next 5 days, a lot can happen. The price might or might not move 
by X, a stop-loss or take-profit mechanism might be triggered, we might just close the position, or any 
number of possible outcomes. Hence, we can actually evaluate the prediction only at the evaluation 
timestamp, in this case, after 5 business days.

Such a framework comes with the risk of leaking the information from the test set into the training 
set. As a result, this is very likely to inflate the model’s performance. Hence, we need to make sure 
that all the data is point-in-time, meaning that is truly available at the time it is used by the model.

For example, near the training/validation split point, there might be training samples whose eval-
uation time is later than the prediction time of the validation samples. Such overlapping samples 
are most likely correlated or, in other words, unlikely to be independent, which leads to leaking the 
information between the sets.

To solve the look-ahead bias, we can apply purging. The idea is to drop any samples from the train-
ing set whose evaluation time is later than the earliest prediction time of the validation set. In other 
words, we remove observations whose event time overlaps with the prediction time of the validation 
set. Figure 7.8 presents an example.

Figure 7.8: Example of purging
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Purging alone might not be sufficient to remove all the leakage, as there might be correlations between 
the samples over longer periods of time. We can try to solve that by applying an embargo, which 
further eliminates training samples that follow a validation sample. If a training sample’s prediction 
time falls into the embargo period, we simply drop that observation from the train set. We estimate 
the required size of the embargo period for the problem at hand. Figure 7.9 illustrates applying both 
purging and embargo.

Figure 7.9: Example of purging and embargo

For more details about purging and embargo (as well as their implementation in Python), please refer 
to Advances in financial machine learning (De Prado, 2018). 

De Prado (2018) also introduced the combinatorial purged cross-validation algorithm, which combines 
the concepts of purging and embargoing with backtesting (we cover backtesting trading strategies in 
Chapter 12, Backtesting Trading Strategies) and cross-validation.

You can find the code to run a walk-forward cross-validation with purging in Advances in 
financial machine learning (De Prado, 2018) or in the timeseriescv library.
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Feature engineering for time series
In the previous chapter, we trained some statistical models using just the time series as input. On the 
other hand, when we want to approach time series forecasting from the ML perspective, feature en-
gineering becomes crucial. In the time series context, it means creating informative variables (either 
from the time series itself or using its timestamp) that help with getting accurate forecasts. Naturally, 
feature engineering is not only important for the pure ML models but we can use it to enrich the 
statistical models with external regressors, for example, in the ARIMAX model.

As we have mentioned, there are many ways in which we can create features, and it comes down to a 
deep understanding of the dataset. Examples of feature engineering include:

•	 Extracting relevant information from the timestamp. For example, we can extract the year, 
quarter, month, week number, or day of the week.

•	 Adding relevant information about special days based on the timestamp. For example, in the 
retail industry, we might want to add information about all holidays. To get a country-specific 
holiday calendar, we could use the holidays library.

•	 Adding lagged values of the target, similar to the AR models.
•	 Creating features based on aggregate values (such as minimum, maximum, mean, median, or 

standard deviation) over a rolling or expanding window.
•	 Calculating technical indicators.

In a way, feature generation is only limited by the data, your creativity, or the available time. In this 
recipe, we show how to create a selection of features based on the timestamp of the time series.

First, we extract the month information and encode it as a dummy variable (one-hot encoding). The 
biggest issue with this approach in the context of time series is the lack of cyclical continuity in time. 
It is easiest to understand with an example.
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Imagine a scenario of working with energy consumption data. If we use the information about the 
month of the observed consumption, intuitively it makes sense there should be a connection between 
two consecutive months, for example, the connection between December and January or between 
January and February. In comparison, the connection between months further apart, for example, 
January and July, will probably be weaker. The same logic applies to other time-related information 
as well, for example, hours within the day.

We present two possible ways of incorporating this information as features. The first one is based on 
trigonometric functions (sine and cosine transformation). The second one uses radial basis functions 
to encode similar information.

In this recipe, we work with simulated daily data from the years 2017 to 2019. We chose to simulate 
the data as the main point of the exercise is to show how different kinds of encoding time information 
impact the model. And it is easier to show that using simulated data following clear patterns. Naturally, 
the feature engineering methods shown in this recipe can be applied to any time series.

How to do it…
Execute the following steps to create time-related features and fit linear models using them as inputs:

1.	 Import the libraries:

import numpy as np
import pandas as pd
from datetime import date

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import FunctionTransformer
from sklego.preprocessing import RepeatingBasisFunction

2.	 Generate a time series with repeating patterns:

np.random.seed(42)

range_of_dates = pd.date_range(start="2017-01-01",
                               end="2019-12-31")
X = pd.DataFrame(index=range_of_dates)

X["day_nr"] = range(len(X))
X["day_of_year"] = X.index.day_of_year

signal_1 = 2 + 3 * np.sin(X["day_nr"] / 365 * 2 * np.pi)
signal_2 = 2 * np.sin(X["day_nr"] / 365 * 4 * np.pi + 365/2)
noise = np.random.normal(0, 0.81, len(X))

y = signal_1 + signal_2 + noise
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y.name = "y"

y.plot(title="Generated time series")

Executing the snippet generates the following plot:

Figure 7.10: The generated time series with repeating patterns

Thanks to the addition of the sine curves and some random noise, we obtained a time series 
with repeating patterns over the years.

3.	 Store the time series in a new DataFrame:

results_df = y.to_frame()
results_df.columns = ["y_true"]

4.	 Encode the month information as dummies:

X_1 = pd.get_dummies(
    X.index.month, drop_first=True, prefix="month"
)
X_1.index = X.index
X_1
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Executing the snippet generates the following preview of the DataFrame with dummy-encoded 
month features:

Figure 7.11: Preview of the dummy-encoded month features

5.	 Fit a linear regression model and plot the in-sample prediction:

model_1 = LinearRegression().fit(X_1, y)

results_df["y_pred_1"] = model_1.predict(X_1)
(
    results_df[["y_true", "y_pred_1"]]
    .plot(title="Fit using month dummies")
)

Executing the snippet generates the following plot:

Figure 7.12: The fit obtained using linear regression with the month dummies
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We can clearly see the stepwise pattern of the fit, corresponding to 12 unique values of the 
month feature. The jaggedness of the fit is caused by the discontinuity of the dummy features. 
With the other approaches, we try to overcome that issue.

6.	 Define functions used for creating the cyclical encoding:

def sin_transformer(period):
    return FunctionTransformer(lambda x: np.sin(x / period * 2 * np.pi))

def cos_transformer(period):
    return FunctionTransformer(lambda x: np.cos(x / period * 2 * np.pi))

7.	 Encode the month and day information using cyclical encoding:

X_2 = X.copy()
X_2["month"] = X_2.index.month

X_2["month_sin"] = sin_transformer(12).fit_transform(X_2)["month"]
X_2["month_cos"] = cos_transformer(12).fit_transform(X_2)["month"]

X_2["day_sin"] = (
    sin_transformer(365).fit_transform(X_2)["day_of_year"]
)
X_2["day_cos"] = (
    cos_transformer(365).fit_transform(X_2)["day_of_year"]
)

fig, ax = plt.subplots(2, 1, sharex=True, figsize=(16,8))
X_2[["month_sin", "month_cos"]].plot(ax=ax[0])
ax[0].legend(loc="center left", bbox_to_anchor=(1, 0.5))
X_2[["day_sin", "day_cos"]].plot(ax=ax[1])
ax[1].legend(loc="center left", bbox_to_anchor=(1, 0.5))
plt.suptitle("Cyclical encoding with sine/cosine transformation")
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Executing the snippet generates the following plot:

Figure 7.13: Cyclical encoding with sine/cosine transformation

There are two insights we can draw from Figure 7.13:

•	 The curves have a step-wise shape when using the months for encoding. When using 
daily frequency, the curves are much smoother.

•	 The plots illustrate the need to use two curves instead of one. As the curves have a 
repetitive (cyclical) pattern, if we drew a straight horizontal line through the plot for a 
single year, we would cross the curve in two places. Hence, a single curve would not be 
enough for the model to understand the observation’s time point, as two possibilities 
exist. Fortunately, with the two curves, there is no such issue.

To clearly see the cyclical representation obtained using this transformation, we can plot the 
sine and cosine values on a scatterplot for a given year:  

(
    X_2[X_2.index.year == 2017]
    .plot(
        kind="scatter",
        x="month_sin",
        y="month_cos",
        figsize=(8, 8),
        title="Cyclical encoding using sine/cosine transformations"
    )
)
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Executing the snippet generates the following plot:

Figure 7.14: The cyclical representation of time

In Figure 7.14, we can see that there are no overlapping values. Hence, the two curves can be 
used to identify the given observation’s point in time.

8.	 Fit a model using the daily sine/cosine features:

X_2 = X_2[["day_sin", "day_cos"]]

model_2 = LinearRegression().fit(X_2, y)

results_df["y_pred_2"] = model_2.predict(X_2)
(
    results_df[["y_true", "y_pred_2"]]
    .plot(title="Fit using sine/cosine features")
)
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Executing the snippet generates the following plot:

Figure 7.15: The fit obtained using linear regression with the cyclical features

9.	 Create features using the radial basis functions:

rbf = RepeatingBasisFunction(n_periods=12,
                             column="day_of_year",
                             input_range=(1,365),
                             remainder="drop")
rbf.fit(X)
X_3 = pd.DataFrame(index=X.index,
                   data=rbf.transform(X))

X_3.plot(subplots=True, sharex=True,
         title="Radial Basis Functions",
         legend=False, figsize=(14, 10))
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Executing the snippet generates the following plot:

Figure 7.16: Visualization of the features created using the radial basis function 

Figure 7.16 presents the 12 curves that we created using the radial basis functions and the day 
number as input. Each curve tells us how close we are to a certain day of the year. For example, 
the first curve measures the distance from January 1st. As such, we can observe a peak on the 
first day of every year, and then it decreases symmetrically as we move away from that date.

10.	 Fit a model using the RBF features:

model_3 = LinearRegression().fit(X_3, y)

results_df["y_pred_3"] = model_3.predict(X_3)
(
    results_df[["y_true", "y_pred_3"]]
    .plot(title="Fit using RBF features")
)

The basis functions are equally spaced over the input range. We chose to create 
12 curves, as we wanted the radial basis curves to resemble months. This way, 
each function shows the approximate distance to the first day of the month. The 
distance is approximate, as the months have unequal lengths.
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Executing the snippet generates the following plot:

Figure 7.17: The fit obtained using linear regression with the RBF-encoded features

We can clearly see that using the RBF features resulted in the best fit so far.

How it works…
After importing the libraries, we generated the artificial time series by combining two signal lines 
(created using sine curves) and some random noise. The time series we created spans a period of three 
years (2017 to 2019). Then, we created two columns for later use:

•	 day_nr—numeric index representing the passage of time. It is equivalent to the ordinal row 
number.

•	 day_of_year—The ordinal day of the year.

In Step 3, we stored the generated time series in a separate DataFrame. We did so in order to store the 
models’ predictions in that DataFrame.

In Step 4, we created the month dummies using the pd.get_dummies method. For more details on this 
approach, please refer to the previous recipe.

In Step 5, we fitted a linear regression model to the features and used the predict method of the fitted 
model to obtain the fitted values. For predictions, we used the same dataset as we used for training, 
as we were interested only in the in-sample fit.
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In Step 6, we defined the functions used for obtaining cyclical encoding with the sine and cosine func-
tions. We created two separate functions, but that is a matter of preference and we could have created 
a single function to create both features at once. The period argument of the functions corresponds 
to the number of available periods. For example, when encoding the month number, we would use 
12. For the day number, we would use 365 or 366.

In Step 7, we encoded both the month and day information using cyclical encoding. We already had 
the day_of_year column with the day number, so we only had to extract the month number from 
DatetimeIndex. Then, we created four columns with cyclical encoding.

In Step 8, we dropped all the columns except for the cyclical encoding of the day of the year. Then, we 
fitted the linear regression model, calculated the fitted values, and plotted the results.

In Step 9, we instantiated the RepeatingBasisFunction class, which works as a scikit-learn trans-
former. We specified that we wanted 12 RBF curves based on the day_of_year column and that the 
input range is from 1 to 365 (there is no leap year in the sample). Additionally, we specified the 
remainder="drop", which drops all the other columns that were in the input DataFrame before the 
transformation. Alternatively, we could have specified the value as "passthrough", which would keep 
both the old and new features.

It is worth mentioning that there are two key hyperparameters that we can tune when using radial 
basis functions:

•	 n_periods—The number of the radial basis functions.
•	 width—This hyperparameter is responsible for the shape of the bell curves created with RBFs.

We could use a method such as grid search to identify the optimal values of the hyperparameters for a 
given dataset. Please refer to Chapter 13, Applied Machine Learning: Identifying Credit Default, for more 
information on the grid search procedure.

In Step 10, we once again fitted the model, this time using the RBF features as input.

There’s more…
In this recipe, we showed how to manually create time-related features. Naturally, those were just a 
few of the thousands of possible features we could create. Fortunately, there are Python libraries that 
facilitate the process of feature engineering/extraction.

We will show two of those. The first approach comes from the sktime library, which is a comprehen-
sive library that is the equivalent of scikit-learn for time series. The second approach leverages 
a library called tsfresh. The library allows us to automatically generate hundreds or thousands of 
features with a few lines of code. Under the hood, it uses a combination of established algorithms 
from statistics, time-series analysis, physics, and signal processing.

Cyclical encoding has a potentially significant drawback, which is apparent when using 
tree-based models. By design, tree-based models make a split based on a single feature at 
the time. And as we have already explained, the sine/cosine features should be considered 
simultaneously in order to properly identify the time points.
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We show how to use both approaches in the following steps.

1.	 Import the libraries:

from sktime.transformations.series.date import DateTimeFeatures

from tsfresh import extract_features
from tsfresh.feature_extraction import settings
from tsfresh.utilities.dataframe_functions import roll_time_series

2.	 Extract the datetime features using sktime:

dt_features = DateTimeFeatures(
    ts_freq="D", feature_scope="comprehensive"
)
features_df_1 = dt_features.fit_transform(y)
features_df_1.head()

Executing the snippet generates the following preview of a DataFrame containing the extracted 
features:

Figure 7.18: Preview of the DataFrame with the extracted features

In the figure, we can see the extracted features. Depending on the ML algorithm we want to 
use, we might want to further encode those features, for example, using dummy variables.

While instantiating the DateTimeFeatures class, we provided the feature_scope argument. 
In this case, we generated a comprehensive set of features. We can also choose the "minimal" 
or "efficient" sets.

3.	 Prepare the dataset for feature extraction with tsfresh:

df = y.to_frame().reset_index(drop=False)
df.columns = ["date", "y"]
df["series_id"] = "a"

The extracted features are based on the DatetimeIndex of pandas. For a com-
prehensive list of all the features that could be extracted from that index, please 
refer to the documentation of pandas.
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In order to use the feature extraction algorithm, except for the time series itself, our Data-
Frame must contain columns with a date (or an ordinal encoding of time) and an ID. The 
latter is required, as the DataFrame might contain multiple time series (in a long format). For 
example, we could have a DataFrame containing daily stock prices from all the constituents 
of the S&P 500 index.

4.	 Create a rolled-up DataFrame for feature extraction:

df_rolled = roll_time_series(
    df, column_id="series_id", column_sort="date",
    max_timeshift=30, min_timeshift=7
).drop(columns=["series_id"])
df_rolled

Executing the snippet generates the following preview of a rolled-up DataFrame:

Figure 7.19: Preview of a rolled-up DataFrame

We used a sliding window to roll up the DataFrame because we wanted to achieve the following:

•	 Calculate meaningful aggregate features for time series forecasting. For example, we 
might calculate the min/max values in the last 10 days, or the 20-day Simple Moving 
Average technical indicator. Each time, those calculations involve a time window, as cal-
culating those aggregate measures using one observation would simply make no sense.

•	 Extract the features for all available time points, so we can easily plug them into our ML 
forecasting model. This way, we are basically creating the entire training dataset at once.
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To do so, we used the roll_time_series function to create a rolled-up DataFrame, which will 
be then used for feature extraction. We specified the minimum and maximum window sizes. 
In our case, we will discard windows shorter than 7 days and we will use a maximum of 30 days.

In Figure 7.19, we can see the newly added id column. As we can see, multiple 
observations have the same values in the id column. For example, the value of  
(a, 2017-01-08 00:00:00) indicates that we are using that particular data point when extracting 
the features from the time series labeled as a (we created this ID artificially in the previous 
step) for the time point that includes the last 30 days until 2017-01-08. Having prepared the 
rolled-up DataFrame, we can extract the features.

5.	 Extract the minimal set of features:

settings_minimal = settings.MinimalFCParameters()
settings_minimal

Executing the snippet generates the following output:

{'sum_values': None,
 'median': None,
 'mean': None,
 'length': None,
 'standard_deviation': None,
 'variance': None,
 'maximum': None,
 'minimum': None}

In the dictionary, we can see all the features that will be created. The None value implies 
that the feature has no additional hyperparameters. We chose to extract the minimum 
set, as the other ones would take a significant amount of time. Alternatively, we could use  
settings.EfficientFCParameters or settings.ComprehensiveFCParameters to generate 
hundreds or thousands of features.

With the following snippet, we actually extract the features:

features_df_2 = extract_features(
    df_rolled, column_id="id",
    column_sort="date",
    default_fc_parameters=settings_minimal
)
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6.	 Clean up the index and inspect the features:

features_df_2 = (
    features_df_2
    .set_index(
        features_df_2.index.map(lambda x: x[1]), drop=True
    )
)
features_df_2.index.name = "last_date"
features_df_2.head(25)

Executing the snippet generates the following output:

Figure 7.20: Preview of the features generated with tsfresh

In Figure 7.20, we can see that the minimum window length is 8, while the maximum one is 31. That 
is as intended, as we indicated we wanted to use the minimum size of 7, which translates to 7 prior 
days plus the current one. Similarly for the maximum value.

sktime also offers a wrapper around tsfresh. We can access the feature generation 
algorithm by using sktime's TSFreshFeatureExtractor class.
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It is also worth mentioning that tsfresh has three other very interesting features:

•	 A feature selection algorithm based on hypothesis tests. As the library is capable of generating 
hundreds or thousands of features, it is definitely important to select the ones that are relevant 
to our use case. To do so, the library uses the fresh algorithm, which stands for feature extraction 
based on scalable hypothesis tests.

•	 The ability to handle feature generation and selection for large datasets by employing parallel 
processing with either multiprocessing on a local machine or using Spark or Dask clusters 
when the data does not fit into a single machine.

•	 It offers transformer classes (for example, FeatureAugmenter or FeatureSelector), which 
we can use together with scikit-learn pipelines. We cover pipelines in Chapter 13, Applied 
Machine Learning: Identifying Credit Default.

Time series forecasting as reduced regression
Until now, we have mostly used dedicated time series models for forecasting tasks. On the other hand, 
it would also be interesting to experiment with other algorithms that are typically used for solving 
regression tasks. This way, we might improve the performance of our models.

One of the reasons to use those models is their flexibility. For example, we could go beyond univar-
iate setup, that is, we could enrich our dataset with a wide variety of additional features. We have 
covered some approaches to feature engineering in the previous recipe. Alternatively, we could add 
external regressors such as time series, which historically proved to be correlated with the target of 
our forecasting exercise.

Given the temporal dependency of the time series data (relevant for the lagged values of the time se-
ries), we cannot directly use regression models for time series forecasting. First, we need to convert 
such temporal data into a supervised learning problem, to which we can apply traditional regression 
algorithms. That process is called reduction and it decomposes certain learning tasks (time series 
forecasting) into simpler tasks. Then, those can be composed again to offer a solution to the origi-
nal task. In other words, reduction refers to the concept of using an algorithm or model to solve a 
learning task that it was not originally designed for. Hence, in reduced regression, we are effectively 
transforming a forecasting task into a tabular regression problem.

tsfresh is only one of the available libraries for automatic feature generation for 
time series data. Other libraries include feature_engine and tsflex.

When adding additional time series as external regressors, we should be cautious about 
their availability. If we do not know their future values, we might use their lagged values 
or forecast them separately and feed them back into the initial model.
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In practice, reduction uses a sliding window to split the time series into fixed-length windows. It will 
be easier to understand how reduction works with an example. Imagine a time series of consecutive 
numbers from 1 to 100. Then, we take a sliding window of length 5. The first window contains ob-
servations 1 to 4 as features and observation 5 as the target. The second window uses observations 
2 to 5 as features and observation 6 as the target. And so on. Once we arrange all those windows on 
top of each other, we obtain a tabular format of the data that allows us to use traditional regression 
algorithms for time series forecasting. Figure 7.21 illustrates the reduction procedure.

Figure 7.21: Schema of the reduction procedure

It is also worth mentioning that there are some nuances to working with reduced regression. For 
example, reduced regression models lose the typical characteristics of time series models, that is, 
they lose the notion of time. As a result, they are unable to handle trends and seasonality. That is 
why it is often useful to first detrend and deseasonalize the data and only then perform the reduction. 
Intuitively, this is similar to modeling only the AR terms. Deseasonalizing and detrending the data 
first makes it easier to find a better fitting model as we are not accounting for trend and seasonality 
on top of the AR terms.

In this recipe, we show an example of a reduced regression procedure using the US unemployment 
rates dataset.

Getting ready
In this recipe, we are working with the already familiar US unemployment rates time series. For brevity, 
we do not repeat the steps on how to download the data. You can find the code in the accompanying 
notebook. For the remainder of the recipe, assume that the downloaded data is in a DataFrame called y.

How to do it…
Execute the following steps to create 12 steps ahead forecasts of the US unemployment rate using 
reduced regression:

1.	 Import the libraries:

from sktime.utils.plotting import plot_series
from sktime.forecasting.model_selection import (
    temporal_train_test_split, ExpandingWindowSplitter
)
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from sktime.forecasting.base import ForecastingHorizon
from sktime.forecasting.compose import (
    make_reduction, TransformedTargetForecaster, EnsembleForecaster
)
from sktime.performance_metrics.forecasting import (
    mean_absolute_percentage_error
)
from sktime.transformations.series.detrend import (
    Deseasonalizer, Detrender
)
from sktime.forecasting.trend import PolynomialTrendForecaster
from sktime.forecasting.model_evaluation import evaluate
from sktime.forecasting.arima import AutoARIMA
from sklearn.ensemble import RandomForestRegressor

2.	 Split the time series into training and tests sets:

y_train, y_test = temporal_train_test_split(
    y, test_size=12
)
plot_series(
    y_train, y_test,
    labels=["y_train", "y_test"]
)

Executing the snippet generates the following plot:

Figure 7.22: The time series divided into training and test sets

3.	 Set the forecast horizon to 12 months:

fh = ForecastingHorizon(y_test.index, is_relative=False)
fh

Executing the snippet generates the following output:

ForecastingHorizon(['2019-01', '2019-02', '2019-03', '2019-04', '2019-
05', '2019-06', '2019-07', '2019-08', '2019-09', '2019-10', '2019-11', 
'2019-12'], dtype='period[M]', is_relative=False)
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Whenever we will use this fh object to create forecasts, we will create forecasts for the 12 
months of 2019.

4.	 Instantiate the reduced regression model, fit it to the data, and create predictions:

regressor = RandomForestRegressor(random_state=42)
rf_forecaster = make_reduction(
    estimator=regressor,
    strategy="recursive",
    window_length=12
)
rf_forecaster.fit(y_train)
y_pred_1 = rf_forecaster.predict(fh)

5.	 Evaluate the performance of the forecasts:

mape_1 = mean_absolute_percentage_error(
    y_test, y_pred_1, symmetric=False
)
fig, ax = plot_series(
    y_train["2016":], y_test, y_pred_1,
    labels=["y_train", "y_test", "y_pred"]
)
ax.set_title(f"MAPE: {100*mape_1:.2f}%")

Executing the snippet generates the following plot:

Figure 7.23: Forecasts vs. actuals using the reduced Random Forest 

The almost flat forecast is most likely connected to the drawback of the reduced regression 
approach we have mentioned in the introduction. By reshaping the data into a tabular format, 
we are effectively losing information about trends and seasonality. To account for those, we 
can first deseasonalize and detrend the time series and only then use the reduced regression 
approach.
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6.	 Deseasonalize the time series:

deseasonalizer = Deseasonalizer(model="additive", sp=12)
y_deseas = deseasonalizer.fit_transform(y_train)
plot_series(
    y_train, y_deseas,
    labels=["y_train", "y_deseas"]
)

Executing the snippet generates the following plot:

Figure 7.24: The original time series and the deseasonalized one

To provide more context, we can plot the extracted seasonal component:

plot_series(
    deseasonalizer.seasonal_,
    labels=["seasonal_component"]
)

Executing the snippet generates the following plot:

Figure 7.25: The extracted seasonal component

While analyzing Figure 7.25, we should not pay much attention to the x-axis labels, as the 
extracted seasonal pattern is the same for each year.
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7.	 Detrend the time series:

forecaster = PolynomialTrendForecaster(degree=1)
transformer = Detrender(forecaster=forecaster)
y_detrend = transformer.fit_transform(y_deseas)

# in-sample predictions
forecaster = PolynomialTrendForecaster(degree=1)
y_in_sample = (
    forecaster
    .fit(y_deseas)
    .predict(fh=-np.arange(len(y_deseas)))
)

plot_series(
    y_deseas, y_in_sample, y_detrend,
    labels=["y_deseas", "linear trend", "resids"]
)

Executing the snippet generates the following plot:

Figure 7.26: The deseasonalized time series together with the fitted linear trend and the 
corresponding residuals

In Figure 7.26, we can see 3 lines:

•	 The deseasonalized time series from the previous step
•	 The linear trend fitted to the deseasonalized time series
•	 The residuals, which are created by subtracting the fitted linear trend from the desea-

sonalized time series
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8.	 Combine the components into a pipeline, fit it to the original time series, and obtain predictions:

rf_pipe = TransformedTargetForecaster(
    steps = [
        ("deseasonalize", Deseasonalizer(model="additive", sp=12)),
        ("detrend", Detrender(
            forecaster=PolynomialTrendForecaster(degree=1)
        )),
        ("forecast", rf_forecaster),
    ]
)
rf_pipe.fit(y_train)
y_pred_2 = rf_pipe.predict(fh)

9.	 Evaluate the pipeline’s predictions:

mape_2 = mean_absolute_percentage_error(
    y_test, y_pred_2, symmetric=False
)
fig, ax = plot_series(
    y_train["2016":], y_test, y_pred_2,
    labels=["y_train", "y_test", "y_pred"]
)
ax.set_title(f"MAPE: {100*mape_2:.2f}%")

Executing the snippet generates the following plot:

Figure 7.27: The fit of the pipeline containing deseasonalization and detrending before 
reduced regression

By analyzing Figure 7.27, we can draw the following conclusions:

•	 The shape of the forecast obtained using the pipeline is much more similar to the actual 
values—it captures the trend and seasonality components.

•	 The error measured by MAPE seems to be worse than that of an almost flat line forecast 
visible in Figure 7.23.
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10.	 Evaluate the performance using expanding window cross-validation:

cv = ExpandingWindowSplitter(
    fh=list(range(1,13)),
    initial_window=12*5,
    step_length=12
)

cv_df = evaluate(
    forecaster=rf_pipe,
    y=y,
    cv=cv,
    strategy="refit",
    return_data=True
)

cv_df

Executing the snippet generates the following DataFrame:

Figure 7.28: The DataFrame containing the cross-validation results

Additionally, we can investigate the range of dates used for training and evaluating the pipeline 
within the cross-validation procedure:

for ind, row in cv_df.iterrows():
    print(f"Fold {ind} ----")
    print(f"Training: {row['y_train'].index.min()} - {row['y_train'].
index.max()}")
    print(f"Training: {row['y_test'].index.min()} - {row['y_test'].index.
max()}")

Executing the snippet generates the following output:

Fold 0 ----
Training: 2010-01 - 2014-12
Training: 2015-01 - 2015-12
Fold 1 ----
Training: 2010-01 - 2015-12
Training: 2016-01 - 2016-12
Fold 2 ----
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Training: 2010-01 - 2016-12
Training: 2017-01 - 2017-12
Fold 3 ----
Training: 2010-01 - 2017-12
Training: 2018-01 - 2018-12
Fold 4 ----
Training: 2010-01 - 2018-12
Training: 2019-01 - 2019-12

Effectively, we have created a 5-fold cross-validation in which the expanding window is growing 
by 12 months between the folds and we are always evaluating using the following 12 months.

11.	 Plot the predictions from the cross-validation folds:

n_fold = len(cv_df)

plot_series(
    y,
    *[cv_df["y_pred"].iloc[x] for x in range(n_fold)],
    markers=["o", *["."] * n_fold],
    labels=["y_true"] + [f"cv: {x}" for x in range(n_fold)]
)

Executing the snippet generates the following plot:

Figure 7.29: Forecasts from each of the cross-validation folds plotted against the actuals

12.	 Create an ensemble forecast using the RF pipeline and AutoARIMA:

ensemble = EnsembleForecaster(
    forecasters = [
        ("autoarima", AutoARIMA(sp=12)),
        ("rf_pipe", rf_pipe)
    ]
)
ensemble.fit(y_train)
y_pred_3 = ensemble.predict(fh)
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In this case, we fitted an AutoARIMA model directly to the original time series. However, we 
could have also deseasonalized and detrended the time series before fitting the model. In such 
a scenario, indicating the seasonal period might not have been necessary (depending on how 
well the seasonality is removed using classical decomposition).

13.	 Evaluate the ensemble’s predictions:

mape_3 = mean_absolute_percentage_error(
    y_test, y_pred_3, symmetric=False
)
fig, ax = plot_series(
    y_train["2016":], y_test, y_pred_3,
    labels=["y_train", "y_test", "y_pred"]
)
ax.set_title(f"MAPE: {100*mape_3:.2f}%")

Executing the snippet generates the following plot:

Figure 7.30: The fit of the ensemble model aggregating the reduced regression pipeline 
and AutoARIMA

As we can see in Figure 7.30, ensembling the two models results in improved performance compared 
to the reduced Random Forest pipeline.

How it works…
After importing the libraries, we used the temporal_train_test_split function to split the data into 
training and test sets. We kept the last 12 observations (the entire 2019) as a test set. We also plotted the 
time series using the plot_series function, which is especially useful when we want to plot multiple 
time series in a single plot.

In Step 3, we defined the ForecastingHorizon. In sktime, the forecasting horizon can be an array of 
values that are either relative (indicating time differences compared to the latest time point in the 
training data) or absolute (indicating specific points in time). In our case, we used the absolute values 
by providing the indices of the test set and setting is_relative=False.
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In Step 4, we fitted a reduced regression model to the training data. To do so, we used the  
make_reduction function and provided three arguments. The estimator argument is used to indicate 
any regression model that we would like to use in the reduced regression setting. In this case, we chose 
Random Forest (more details on the Random Forest algorithm can be found in Chapter 14, Advanced 
Concepts for Machine Learning Projects). The window_length indicates how many past observations to 
use to create the reduced regression task, that is, convert the time series into a tabular dataset. Lastly, 
the strategy argument determines the way multi-step forecasts will be created. We can choose one 
of the following strategies to obtain multi-step forecasts:

•	 Direct—This strategy assumes creating a separate model for each horizon we are forecasting. 
In our case, we are forecasting 12 steps ahead. This would mean that the strategy would create 
12 separate models to obtain the forecasts.

•	 Recursive—This strategy assumes fitting a single one-step ahead model. However, to create 
the forecasts, it uses the previous time step’s output as the input for the next time step. For 
example, to obtain the forecast for the second observation into the future, it would use the 
forecast obtained for the first observation into the future as part of the feature set.

•	 Multioutput—In this strategy, we use one model to predict all the values for the entire forecast 
horizon. This strategy depends on having a model capable of predicting entire sequences in 
one go.

After defining the reduced regression model, we fitted it to the training data using the fit method 
and obtained predictions using the predict method. For the latter, we had to provide the forecasting 
horizon object as the argument. Alternatively, we could have provided a list/array of steps for which 
we wanted to obtain the forecasts.

In Step 5, we evaluated the forecast by calculating the MAPE score and plotting the fore-
casts compared to the actual values. To calculate the error metric, we used sktime's  
mean_absolute_percentage_error function. An additional benefit of using sktime's implementation 
is that we can easily calculate the symmetric MAPE (sMAPE) by specifying symmetric=True while 
calling the function.

At this point, we have noticed that the reduced regression model is suffering from the problem men-
tioned in the introduction—it does not capture the trend and seasonality of the time series. Hence, in 
the next steps, we showed how to deseasonalize and detrend the time series before using the reduced 
regression approach.

On the other hand, the relative values of the forecasting horizon include a list of steps 
for which we want to obtain predictions. The relative horizon could be very useful when 
making rolling predictions, as we can reuse it when we add new data.
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In Step 6, we deseasonalized the original time series. First, we instantiated the Deseasonalizer trans-
former. We indicated that there is monthly seasonality by providing sp=12 and chose additive season-
ality, as the magnitude of seasonal patterns does not seem to change over time. Under the hood, the 
Deseasonalizer class carries out the seasonal decomposition available in the statsmodels library (we 
covered it in the Time series decomposition recipe in the previous chapter) and removes the seasonal 
component from the time series. To fit the transformer and obtain the deseasonalized time series in a 
single step, we used the fit_transform method. After fitting the transformer, the seasonal component 
can be inspected by accessing the seasonal_ attribute.

In Step 7, we removed the trend from the deseasonalized time series. First, we instantiated the 
PolynomialTrendForecaster class and specified degree=1. By doing so, we indicated that we were 
interested in a linear trend. Then, we passed the instantiated class to the Detrender transformer. Using 
the already familiar fit_transform method, we removed the trend from the deseasonalized time series.

In Step 8, we combined all the steps into a pipeline. We instantiated the TransformedTargetForecaster 
class, which is used when we first transform the time series and only then fit an ML model to create 
a forecast. As the steps argument, we provided a list of tuples, each of those containing the name of 
the step and the transformer/estimator used for carrying it out. In this pipeline, we chained desea-
sonalizing, detrending, and the reduced Random Forest model we have already used in Step 4. Then, 
we fitted the entire pipeline to the training data and obtained the predictions. In Step 9, we evaluated 
the pipeline’s performance by calculating the MAPE and plotting the forecasts versus the actuals.

In Step 10, we carried out an additional evaluation step. We used the walk-forward cross-validation us-
ing an expanding window to evaluate the model’s performance. To define the cross-validation scheme, 
we used the ExpandingWindowSplitter class. As inputs, we had to provide:

•	 fh—The forecasting horizon. As we wanted to evaluate 12-steps-ahead forecasts, we provided 
a list of integers from 1 to 12.

•	 initial_window—The length of the initial training window. We set it to 60, which corresponds 
to 5 years of training data.

•	 step_length—This value indicates how many periods the expanding window is actually ex-
panding by. We set it to 12, so each fold will have an extra year of training data.

After defining the validation scheme, we used the evaluate function to assess the performance of the 
pipeline defined in Step 8. While using the evaluate function, we also had to specify the strategy 
argument, which defined the approach to ingesting new data when the window expands. The options 
are as follows:

In this example, we only focused on creating the model using the original time series. 
Naturally, we can also have other features used for making predictions. sktime also offers 
functionalities to create pipelines containing relevant transformations for the regressors. 
Then, we should use the ForecastingPipeline class to apply the given transformers to X 
(features). We might also want to apply some transformations to X and other ones to the y 
(target). In such a case, we can pass the TransformedTargetForecaster containing any 
transformers that need to be applied to y as a step of the ForecastingPileline.
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•	 refit—The model is refitted in each training window.
•	 update—The forecaster is updated with the new training in the window, but it is not refitted.
•	 no-update_params—The model is fitted to the first training window, and then it is reused 

without fitting or updating the model.

In Step 11, we used the plot_series function combined with a list comprehension to plot the original 
time series and the predictions obtained in each of the validation folds.

In the last two steps, we created and evaluated an ensemble model. First, we instantiated the 
EnsembleForecaster class and provided a list of tuples containing the names of the models and their 
respective classes/definitions. For this ensemble, we combined an AutoARIMA model with monthly 
seasonality (a SARIMA model) and the reduced Random Forest pipeline defined in Step 8. Additionally, 
we used the default value of the aggfunc argument, which is "mean". The argument determines the 
aggregation strategy used to create the final forecasts. In this case, the prediction of the ensemble 
model was the average of the predictions of the individual models. Other options include taking the 
median, minimum, or maximum values.

After instantiating the model, we used the already familiar fit and predict methods to fit the model 
and obtain the predictions.

There’s more…
In this recipe, we covered reduced regression using sktime. As we have already mentioned, sktime 
is a framework offering all the tools you might need while working with time series. Below, we list 
some of the advantages of using sktime and its features:

•	 The library is suitable not only for working with time series forecasting but also regression, 
classification, and clustering. Additionally, it also provides feature extraction functionalities.

•	 sktime offers a few naive models, which are very useful for creating benchmarks. For example, 
we can use the NaiveForecaster model to create forecasts that are simply the last known value. 
Alternatively, we can use the last known seasonal value, for example, the forecast for January 
2019 would be the value of the time series in January 2018.

•	 It provides a unified API as a wrapper around many popular time series libraries, such as 
statsmodels, pmdarima, tbats, or Meta’s Prophet. To inspect all the available forecasting models, 
we can execute the all_estimators("forecaster", as_dataframe=True) command.

•	 By using reduction, it is possible to forecast using all the estimators compatible with the 
scikit-learn API.

•	 sktime provides functionalities for hyperparameter tuning with temporal cross-validation. 
Additionally, we can also tune hyperparameters connected to the reduction process, such as 
the number of lags or the window length.

•	 The library offers a wide range of performance evaluation metrics (not available in  
scikit-learn) and allows us to easily create custom scorers.

•	 The library extends scikit-learn's pipelines to combine multiple transformers (detrending, 
deseasonalizing, and so on) with forecasting algorithms.
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•	 The library provides AutoML capabilities to automatically determine the best forecaster from 
a wide range of models and their hyperparameters.

See also
•	 Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., & Király, F. J. 2019. sktime: A Unified 

Interface for Machine Learning with Time Series. arXiv preprint arXiv:1909.07872.

Forecasting with Meta’s Prophet
In the previous recipe, we showed how to reframe a time series forecasting problem in order to use 
popular machine learning models that are commonly used for regression tasks. This time, we present 
a model specifically designed for time series forecasting.

Prophet was introduced by Facebook (now Meta) back in 2017 and since then, it has become a very 
popular tool for time series forecasting. Some of the reasons for its popularity:

•	 Most of the time, it produces reasonable results/forecasts out of the box.
•	 It was designed to forecast business-related time series.
•	 It works best with daily time series with a strong seasonal component and at least a few sea-

sons of training data.
•	 It can model any number of seasonalities (such as hourly, daily, weekly, monthly, quarterly, 

or yearly).
•	 The algorithm is quite robust to missing data and shifts in trend (it uses automatic changepoint 

detection for that).
•	 It easily accounts for holidays and special events.
•	 Compared to autoregressive models (such as ARIMA), it does not require stationary time series.
•	 We can employ business/domain knowledge to tune the forecasts by adjusting the human-in-

terpretable hyperparameters of the model.
•	 We can use additional regressors to improve the model’s predictive performance.

The creators of Prophet approached the time series forecasting problem as a curve-fitting exercise 
(which raises quite a lot of controversies in the data science community) rather than explicitly look-
ing at the time-based dependencies of each observation within a time series. As a result, Prophet is 
an additive model (a form of generalized additive models or GAMs) and can be presented as follows:𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑡𝑡 

Naturally, the model is by no means perfect and it suffers from its own set of issues. In the 
See also section, we listed a few references showing the model’s weaknesses.
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where:

•	 g(t)—Growth term, which is piecewise linear, logistic, or flat. The trend component models 
the non-periodic changes in the time series.

•	 h(t)—Describes the effects of holidays and special days (which potentially occur on an irregular 
basis). They are added to the model as dummy variables.

•	 s(t)—Describes various seasonal patterns modeled using the Fourier series.
•	 𝜀𝜀𝑡𝑡 —Error term, which is assumed to be normally distributed.

GAMs are simple yet powerful models that are gaining popularity. They assume that relationships 
between individual features and the target follow smooth patterns. Those can be linear or non-linear. 
Then, those relationships can be estimated simultaneously and added up to create the models’ predicted 
values. For example, modeling seasonality as an additive component is the same approach as the one 
taken in Holt-Winters’ exponential smoothing method. The GAM formulation used by Prophet has 
its advantages. First, it decomposes easily. Second, it accommodates new components, for example, 
when we identify a new source of seasonality.

Another important aspect of Prophet is the inclusion of changepoints in the process of estimating the 
trend, which makes the trend curve more flexible. Thanks to changepoints, the trend can be adjusted 
to sudden changes in the patterns, for example, the changes to sales patterns caused by the COVID 
pandemic. Prophet has an automatic procedure for detecting changepoints, but it can also accept 
manual inputs in the form of dates. 

Prophet is estimated using a Bayesian approach (thanks to using Stan, which is a programming lan-
guage for statistical inference written in C++), which allows for automatic changepoint selection, cre-
ating confidence intervals using methods like Markov Chain Monte Carlo (MCMC) or the Maximum 
A Posteriori (MAP) estimate.

In this recipe, we show how to forecast daily gold prices using data from the years 2015 to 2019. While 
we very well realize that the model will be unlikely to accurately forecast the gold prices, we use them 
as an illustration of how to train and use the model.

The logistic growth trend is especially useful for modeling saturated (or capped) growth. 
For example, when we are forecasting the number of customers in a given country, we 
should not forecast more than the total number of the country’s inhabitants. With Prophet, 
we can also account for the saturating minimum.
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How to do it…
Execute the following steps to forecast daily gold prices with the Prophet model:

1.	 Import the libraries and authenticate with Nasdaq Data Link:

import pandas as pd
import nasdaqdatalink
from prophet import Prophet
from prophet.plot import add_changepoints_to_plot

nasdaqdatalink.ApiConfig.api_key = "YOUR_KEY_HERE"

2.	 Download the daily gold prices:

df = nasdaqdatalink.get(
    dataset="WGC/GOLD_DAILY_USD",
    start_date="2015-01-01",
    end_date="2019-12-31"
)

df.plot(title="Daily gold prices (2015-2019)")

Executing the snippet generates the following plot:

Figure 7.31: Daily gold prices from the years 2015 to 2019
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3.	 Rename the columns:

df = df.reset_index(drop=False)
df.columns = ["ds", "y"]

4.	 Split the series into the training and test sets:

train_indices = df["ds"] < "2019-10-01"
df_train = df.loc[train_indices].dropna()
df_test = (
    df
    .loc[~train_indices]
    .reset_index(drop=True)
)

We arbitrarily chose to use the last quarter of 2019 as the test set. Hence, we will create a model 
forecasting around 60 observations in the future.

5.	 Create the instance of the model and fit it to the data:

prophet = Prophet(changepoint_range=0.9)
prophet.add_country_holidays(country_name="US")
prophet.add_seasonality(
    name="monthly", period=30.5, fourier_order=5
)
prophet.fit(df_train)

6.	 Forecast the gold prices for the fourth quarter of 2019 and plot the results:

df_future = prophet.make_future_dataframe(
    periods=len(df_test), freq="B"
)
df_pred = prophet.predict(df_future)
prophet.plot(df_pred)
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Executing the snippet generates the following plot:

Figure 7.32: The forecast obtained using Prophet

To interpret the figure, we should know that:

•	 The black dots are the actual observations of the gold price.
•	 The blue line representing the fit does not match the observations exactly, as the model 

smooths out the noise in the data (also reducing the chance of overfitting).
•	 Prophet attempts to quantify uncertainty, which is represented by the light blue in-

tervals around the fitted line. The interval is calculated assuming that the average 
frequency and magnitude of trend changes in the future will be the same as in the 
historical data.

It is also possible to create an interactive plot using plotly. To do so, we 
need to use the plot_plotly function instead of the plot method.
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Additionally, it is worth mentioning that the prediction DataFrame contains quite a lot of col-
umns with potentially useful information: 

df_pred.columns

Using the snippet, we can see all the columns:

['ds', 'trend', 'yhat_lower', 'yhat_upper', 'trend_lower', 
'trend_upper', 'Christmas Day', 'Christmas Day_lower', 
'Christmas Day_upper', 'Christmas Day (Observed)', 
'Christmas Day (Observed)_lower', 'Christmas Day (Observed)_upper', 
'Columbus Day', 'Columbus Day_lower', 'Columbus Day_upper', 
'Independence Day', 'Independence Day_lower', 
'Independence Day_upper', 'Independence Day (Observed)',
'Independence Day (Observed)_lower', 
'Independence Day (Observed)_upper', 'Labor Day', 'Labor Day_lower',
'Labor Day_upper', 'Martin Luther King Jr. Day',
'Martin Luther King Jr. Day_lower', 
'Martin Luther King Jr. Day_upper',
'Memorial Day', 'Memorial Day_lower', 'Memorial Day_upper',
'New Year's Day', 'New Year's Day_lower', 'New Year's Day_upper',
'New Year's Day (Observed)', 'New Year's Day (Observed)_lower',
'New Year's Day (Observed)_upper', 'Thanksgiving', 
'Thanksgiving_lower', 'Thanksgiving_upper', 'Veterans Day',
'Veterans Day_lower', 'Veterans Day_upper', 
'Veterans Day (Observed)', 'Veterans Day (Observed)_lower',
'Veterans Day (Observed)_upper', 'Washington's Birthday',
'Washington's Birthday_lower', 'Washington's Birthday_upper',
'additive_terms', 'additive_terms_lower', 'additive_terms_upper',
'holidays', 'holidays_lower', 'holidays_upper', 'monthly',
'monthly_lower', 'monthly_upper', 'weekly', 'weekly_lower',
'weekly_upper', 'yearly', 'yearly_lower', 'yearly_upper',
'multiplicative_terms', 'multiplicative_terms_lower',
'multiplicative_terms_upper', 'yhat']
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By analyzing the list, we can see all the components returned by the Prophet mod-
el. Naturally, we see the forecast (yhat) and its corresponding confidence intervals  
('yhat_lower' and 'yhat_upper'). Additionally, we see all the individual components of the 
model (such as trends, holiday effects, and seasonalities) together with their confidence inter-
vals. Those might be interesting to us because of the following considerations:

•	 As Prophet is an additive model, we can sum up all the components to arrive at the final 
forecast. Hence, we can look at those values as a type of feature importance, which 
can be used to explain the forecast.

•	 We could also use the Prophet model to obtain those component values and then feed 
them to another model (for example, a tree-based model) as features.

7.	 Add changepoints to the plot:

fig = prophet.plot(df_pred)
a = add_changepoints_to_plot(
    fig.gca(), prophet, df_pred
)

Executing the snippet generates the following plot:

Figure 7.33: The model’s fit together with the identified changepoints

We can also look up the exact dates that were identified as changepoints using the changepoints 
method of a fitted Prophet model.
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8.	 Inspect the decomposition of the time series:

prophet.plot_components(df_pred)

Executing the snippet generates the following plot:

Figure 7.34: The decomposition plot showing the individual components of the Prophet model
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We do not spend much time inspecting the components, as the time series of gold prices prob-
ably does not have many seasonal effects or should not be impacted by the US holidays. That 
is especially true for the holidays, as the stock market is closed on major holidays. Therefore, 
the effect of these holidays may be reflected by the market on the days before and after. As we 
have mentioned before, we are aware of that and we just wanted to show how Prophet works.

One thing to note is that the weekly seasonality is noticeably different for Saturday and Sunday. 
That is caused by the fact that the gold prices are collected during weekdays. Hence, we can 
safely ignore the weekend patterns.

However, it is interesting to observe the trend component, which we can also see plotted in 
Figure 7.33, together with the detected changepoints.

9.	 Merge the test set with the forecasts:

SELECTED_COLS = [
    "ds", "yhat", "yhat_lower", "yhat_upper"
]

df_pred = (
    df_pred
    .loc[:, SELECTED_COLS]
    .reset_index(drop=True)
)
df_test = df_test.merge(df_pred, on=["ds"], how="left")
df_test["ds"] = pd.to_datetime(df_test["ds"])
df_test = df_test.set_index("ds")

10.	 Plot the test values vs. predictions:

fig, ax = plt.subplots(1, 1)

PLOT_COLS = [
    "y", "yhat", "yhat_lower", "yhat_upper"
]
ax = sns.lineplot(data=df_test[PLOT_COLS])
ax.fill_between(
    df_test.index,
    df_test["yhat_lower"],
    df_test["yhat_upper"],
    alpha=0.3
)
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ax.set(
    title="Gold Price - actual vs. predicted",
    xlabel="Date",
    ylabel="Gold Price ($)"
)

Executing the snippet generates the following plot:

Figure 7.35: Forecast vs ground truth

As we can see in Figure 7.35, the model’s prediction is quite off. As a matter of fact, the 80% confidence 
interval (the default setting, we can change it using the interval_width hyperparameter) does not 
capture almost any of the actual values.

How it works…
After importing the libraries, we downloaded the daily gold prices from Nasdaq Data Link.

In Step 3, we renamed the columns of the DataFrame in order to make it compatible with Prophet. 
The algorithm requires two columns:

•	 ds—Indicating the timestamp
•	 y—The target variable

In Step 4, we split the DataFrame into training and test sets. We arbitrarily chose to use the fourth 
quarter of 2019 as the test set.
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In Step 5, we instantiated the Prophet model. While doing so, we specified a few settings:

•	 We set changepoint_range to 0.9, which means that the algorithm can identify changepoints 
in the first 90% of the training dataset. By default, Prophet adds 25 changepoints in the first 
80% of the time series. In this case, we wanted to capture the more recent trends as well.

•	 We added the monthly seasonality by using the add_seasonality method with values 
suggested by Prophet’s documentation. Specifying period as 30.5 means that we ex-
pect the patterns to repeat themselves after roughly 30.5 days. The other parameter— 
fourier_order—can be used to specify the number of Fourier terms that are used to build the 
particular seasonal component (in this case, monthly). In general, the higher the order, the 
more flexible the seasonality component.

•	 We used the add_country_holidays method to add the US holidays to the model. We have used 
the default calendar (available via the holidays library), but it is also possible to add custom 
events that are not available in the calendar. One example might be Black Friday. It is also 
worth mentioning that when providing the custom events, we can also specify if we expect the 
surrounding days to be affected as well. For example, in a retail scenario, we might expect the 
traffic/sales to be lower in the days following Christmas. On the other hand, we might expect 
a peak just before Christmas.

Then, we fitted the model using the fit method.

In Step 6, we used the fitted model to obtain predictions. To create forecasts with Prophet, we had to 
create a special DataFrame using the make_future_dataframe method. While doing so, we indicated 
that we want to forecast for the length of the test set (by default, this is measured in days) and that we 
wanted to use business days. That part is important, as we do not have gold prices for the weekends. 
Then, we created the predictions using the predict method of the fitted model.

In Step 7, we added the identified changepoints to the plot using the add_changepoints_to_plot 
function. One thing to note here is that we had to use the gca method of the created figure to get its 
current axis. We had to use it to correctly identify to which plot we wanted to add the changepoints.

In Step 8, we inspected the components of the model. To do so, we used the plot_components method 
with the prediction DataFrame as the method’s argument.

In Step 9, we merged the test set with the prediction DataFrame. We used a left join, which returns all 
the rows from the left table (test set) and the matched rows from the right table (prediction DataFrame) 
while leaving the unmatched rows empty.

Finally, we plotted the predictions (together with the confidence intervals) and the ground truth to 
visually evaluate the model’s performance.

There’s more…
Prophet offers quite a lot of interesting functionalities. While it is definitely too much to mention in 
a single recipe, we wanted to highlight two things.
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Built-in cross-validation
In order to properly evaluate the model’s performance (and potentially tune its hyperparameters), we 
do need a validation framework. Prophet implements the already familiar walk-forward cross-valida-
tion in its cross_validation function. In this subsection, we show how to use it:

1.	 Import the libraries:

from prophet.diagnostics import (cross_validation, 
                                 performance_metrics)
from prophet.plot import plot_cross_validation_metric

2.	 Run Prophet’s cross-validation:

df_cv = cross_validation(
    prophet,
    initial="756 days",
    period="60 days",
    horizon = "60 days"
)

df_cv

We have specified that we want:

•	 The initial window to contain 3 years of data (a year contains approximately 252 trading days)
•	 A forecast horizon of 60 days
•	 The forecasts to be calculated every 60 days

Executing the snippet generates the following output:

Figure 7.36: The output of Prophet’s cross-validation
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The DataFrame contains the predictions (including the confidence intervals) and the actual 
value for a combination of cutoff dates (the last time point in the training set used to generate 
the forecast) and ds dates (the date in the validation set for which the forecast was generated). 
In other words, the procedure creates a forecast for every observed point between cutoff and 
cutoff + horizon.

The algorithm also informed us what it was going to do:

Making 16 forecasts with cutoffs between 2017-02-12 00:00:00 and 2019-08-
01 00:00:00

3.	 Calculate the aggregated performance metrics:

df_p = performance_metrics(df_cv)
df_p

Executing the snippet generates the following output:

Figure 7.37: The first 10 lines of the performance overview

Figure 7.37 presents the first 10 rows of the DataFrame containing the aggregated performance 
scores from our cross-validation. As per our cross-validation scheme, the entire DataFrame 
contains all the horizons until 60 days.

4.	 Plot the MAPE score:

plot_cross_validation_metric(df_cv, metric="mape")

Please refer to Prophet’s documentation for the exact logic behind the aggregated 
performance metrics generated by the performance_metrics function.
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Executing the snippet generates the following plot:

Figure 7.38: The MAPE score over horizons

The dots in Figure 7.38 represent the absolute percent error for each prediction in the cross-validation 
DataFrame. The blue line represents the MAPE. The average is taken over a rolling window of the dots. 
For more information about the rolling window, please refer to Prophet’s documentation.

Tuning the model
As we have already seen, Prophet has quite a few tunable hyperparameters. The authors of the library 
suggest that the following hyperparameters might be worth tuning in order to achieve a better fit:

•	 changepoint_prior_scale—Possibly the most impactful hyperparameter, which determines 
the flexibility of the trend. Particularly, how much the trend changes at the trend changepoints. 
A too-small value will make the trend less flexible and might cause the trend to underfit, while 
a too-large value might cause the trend to overfit (and potentially capture the yearly seasonality 
as well).

•	 seasonality_prior_scale—A hyperparameter controlling the flexibility of the seasonality 
terms. Large values allow the seasonality to fit significant fluctuations, while small values 
shrink the seasonality’s magnitude. The default value of 10 applies basically no regularization.

•	 holidays_prior_scale—Very similar to seasonality_prior_scale, but controls the flexibility 
to fit holiday effects.

•	 seasonality_mode—We can choose either additive or multiplicative seasonality. The best way 
to choose this one is to inspect the time series and see if the magnitude of seasonal fluctuations 
grows with the passage of time.
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•	 changepoint_range—This parameter corresponds to the percentage of the time series in which 
the algorithm can identify changepoints. A rule of thumb to identify a good value for this hyper-
parameter is to look at the model’s fit in the last 1−changepoint_range percent of training data. 
If the model is doing a bad job there, we might want to increase the value of the hyperparameter.

As in the other cases, we might want to use a procedure like grid search (combined with cross-valida-
tion) to identify the best set of hyperparameters, while trying to avoid/minimize the risk of overfitting 
to the training data.

See also
•	 Rafferty, G. 2021. Forecasting Time Series Data with Facebook Prophet. Packt Publishing Ltd.
•	 Taylor, S. J., & Letham, B. 2018. “Forecasting at scale,” The American Statistician, 72(1): 37-45.

AutoML for time series forecasting with PyCaret
We have already spent some time explaining how to build ML models for time series forecasting, how 
to create relevant features, and how to use dedicated models (such as Meta’s Prophet) for the task. It is 
only fitting to conclude the chapter with an extension of all of the mentioned parts—an AutoML tool.

One of the available tools is PyCaret, which is an open-source, low-code ML library. The goal of the 
tool is to automate machine learning workflows. Using PyCaret, we can train and tune dozens of pop-
ular ML models with only a few lines of code. While it was originally built for classic regression and 
classification tasks, it also has a dedicated time series module, which we will present in this recipe.

The PyCaret library is essentially a wrapper around several popular machine learning libraries and 
frameworks such as scikit-learn, XGBoost, LightGBM, CatBoost, Optuna, Hyperopt, and a few more. 
And to be more precise, PyCaret’s time series module is built on top of the functionalities provided by 
sktime, for example, its reduction framework and pipelining capabilities.

In this recipe, we will use the PyCaret library to find the best model for predicting the monthly US 
unemployment rate.

Getting ready
In this recipe, we will use the same dataset we have already used in the previous recipes. You can 
find more information on how to download and prepare the time series in the Validation methods for 
time series recipe. 

How to do it…
Execute the following steps to forecast the US unemployment rates using PyCaret:

1.	 Import the libraries:

from pycaret.datasets import get_data
from pycaret.time_series import TSForecastingExperiment
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2.	 Set up the experiment:

exp = TSForecastingExperiment()
exp.setup(df, fh=6, fold=5, session_id=42)

Executing the snippet generates the following experiment summary:

Figure 7.39: The summary of PyCaret’s experiment

We can see that the library automatically took the last 6 observations as the test set and iden-
tified monthly seasonality in the provided time series.
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3.	 Explore the time series using visualizations:

exp.plot_model(
    plot="diagnostics",
    fig_kwargs={"height": 800, "width": 1000}
)

Executing the snippet generates the following plot:

Figure 7.40: Diagnostics plots of the time series

While most of the plots are already familiar, the new one is the periodogram. We can use it 
(together with the fast Fourier transform plot) to study the frequency components of the an-
alyzed time series. While this might be outside of the scope of this book, we can mention the 
following highlights of interpreting those plots:
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•	 Peaking around 0 can indicate the need to difference the time series. It could be indic-
ative of a stationary ARMA process.

•	 Peaking at some frequency and its multiples indicates seasonality. The lowest of those 
frequencies is called the fundamental frequency. Its inverse is the seasonal period of 
the model. For example, a fundamental frequency of 0.0833 corresponds to the seasonal 
period of 12, as 1/0.0833 = 12.

Using the following snippet, we can visualize the cross-validation scheme that will be used 
for the experiment:

exp.plot_model(plot="cv")

Executing the snippet generates the following plot:

Figure 7.41: An example of 5-fold walking cross-validation using expanding window

4.	 Run statistical tests on the time series:

exp.check_stats()

In the accompanying notebook, we also show some of the other available plots, for 
example, seasonal decomposition, fast Fourier transform (FFT), and more.
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Executing the snippet generates the following DataFrame with the results of various tests:

Figure 7.42: DataFrame with the results of various statistical tests

We can also carry out only subsets of all the tests. For example, we can execute the summary 
tests using the following snippet:

exp.check_stats(test="summary")
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5.	 Find the five best-fitting pipelines:

best_pipelines = exp.compare_models(
    sort="MAPE", turbo=False, n_select=5
)

Executing the snippet generates the following DataFrame with the performance overview:

Figure 7.43: DataFrame with the cross-validation scores of all the fitted models

Inspecting the best_pipelines object prints the best pipelines:

[BATS(show_warnings=False, sp=12, use_box_cox=True),
 TBATS(show_warnings=False, sp=[12], use_box_cox=True),
 AutoARIMA(random_state=42, sp=12, suppress_warnings=True),
 ProphetPeriodPatched(), 
ThetaForecaster(sp=12)]
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6.	 Tune the best pipelines:

best_pipelines_tuned = [
    exp.tune_model(model) for model in best_pipelines
]
best_pipelines_tuned

After tuning, the best-performing pipelines are the following:

[BATS(show_warnings=False, sp=12, use_box_cox=True),
 TBATS(show_warnings=False, sp=[12], use_box_cox=True,  
       use_damped_trend=True, use_trend=True),
 AutoARIMA(random_state=42, sp=12, suppress_warnings=True),
 ProphetPeriodPatched(changepoint_prior_scale=0.016439324494196616,
                      holidays_prior_scale=0.01095960453692584,
                      seasonality_prior_scale=7.886714129990491),
 ThetaForecaster(sp=12)]

Calling the tune_model method also prints out the cross-validation performance summary of 
each of the tuned models. For brevity, we do not print it here. However, you can inspect the 
accompanying notebook to see how the performance has changed as a result of tuning.

7.	 Blend the five tuned pipelines:

blended_model = exp.blend_models(
    best_pipelines_tuned, method="mean"
)

8.	 Create the predictions using the blended model and plot the forecasts:

y_pred = exp.predict_model(blended_model)

Executing the snippet also generates the test set performance summary:

Figure 7.44: The scores calculated using the predictions for the test set

Then, we plot the forecast for the test set:

exp.plot_model(estimator=blended_model)
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Executing the snippet generates the following plot:

Figure 7.45: The time series, together with the predictions made for the test set

9.	 Finalize the model:

final_model = exp.finalize_model(blended_model)
exp.plot_model(final_model)

Executing the snippet generates the following plot:

Figure 7.46: Out-of-sample prediction for the first 6 months of 2020

Just by looking at the plot, it seems that the forecasts are plausible and contain a clearly identifiable 
seasonal pattern. We can also generate and print the predictions we have already seen in the plot:

y_pred = exp.predict_model(final_model)
print(y_pred)

.
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Executing the snippet generates the following predictions for the next 6 months:

y_pred
2020-01  3.8437
2020-02  3.6852
2020-03  3.4731
2020-04  3.0444
2020-05  3.0711
2020-06  3.4585

How it works…
After importing the libraries, we set up the experiment. First, we instantiated an object of the 
TSForecastingExperiment class. Then, we used the setup method to provide the DataFrame with 
the time series, the forecast horizon, the number of cross-validation folds, and a session ID. For our 
experiment, we specified that we are interested in forecasting 6 months ahead and that we want to 
use 5 walk-forward cross-validation folds using an expanding window (the default variant). It is also 
possible to use the sliding window.

While setting up the experiment, we could also indicate whether we want to apply some 
transformation to the target time series. We could select one of the following options:  
"box-cox", "log", "sqrt", "exp", "cos".

In Step 3, we carried out a quick EDA of the time series using the plot_model method of the 
TSForecastingExperiment object. To generate different plots, we simply changed the plot argument 
of the method.

In Step 4, we looked into a variety of statistical tests using the check_stats method of the 
TSForecastingExperiment class.

In Step 5, we used the compare_models method to train a selection of statistical and machine learning 
models and evaluate their performance using the selected cross-validation scheme. We indicated that 
we wanted to select the five best pipelines based on the MAPE score. We set turbo=False to also train 
models that might be a bit more time-consuming to train (for example, Prophet, BATS, and TBATS).

PyCaret offers two APIs: the functional one and the object-oriented one (using classes). 
In this recipe, we are presenting the latter.

To extract the training and test sets from the experiment, we can use the following com-
mands: exp.get_config("y_train") and exp.get_config("y_test").
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There are a few things worth mentioning at this step:

•	 We can extract the DataFrame with the performance comparison using the pull method.
•	 We can use the models method to print a list of all the available models, together with their 

reference (to the original library, as PyCaret is a wrapper), and an indication of whether the 
model is taking more time to train and is hidden behind the turbo flag.

•	 We can also decide whether we only want to train some of the models (using the include 
argument of the compare_models method) or whether we want to train all the models except 
for a selected few (using the exclude argument).

In Step 6, we tuned the best pipelines. To do so, we used list comprehension to iterate over the identi-
fied pipelines and then used the tune_model method to carry out hyperparameter tuning. By default, 
it uses a randomized grid search (more on that in Chapter 13, Applied Machine Learning: Identifying 
Credit Default) using a grid of hyperparameters provided by the authors of the library. Those work as 
a good starting point, and in case we want to adjust them, we can easily do so.

In Step 7, we create an ensemble model, which is a blend of the five best pipelines (tuned versions). We 
decided to take the mean of the forecasts created by the individual models. Alternatively, we could use 
the median or voting. The latter is a voting scheme in which each model is weighed by the provided 
weights. For example, we could create weights based on the cross-validation error, that is, the lower 
the error, the larger the weight.

In Step 8, we created predictions using the blended models. To do so, we used the  
predict_model method and provided the blended model as the method’s argument. At this point, the  
predict_model method creates a forecast for the test set.

We also used the already familiar plot_model method to create a plot. When provided with a model, 
the plot_model method can display the model’s in-sample fit, the predictions on the test set, the out-
of-sample predictions, or the model’s residuals.

PyCaret uses the concept of pipelines as sometimes the “model” is actually built from 
several steps. For example, we might first detrend and deseasonalize the time series before 
fitting a regression model. For example, a Random Forest w/ Cond. Deseasonalize & 
Detrending model is a sktime pipeline that first conditionally deseasonalizes the time 
series. Afterward, detrending is applied, and only then, the reduced Random Forest is 
fitted. The conditional part by deseasonalizing refers to first checking with a statistical test 
if there is seasonality in the time series. If it is detected, then deseasonalization is applied.

Similar to the case of the plot_model method, we can also use the check_stats method 
together with the created model. When we pass the estimator, the method will perform 
the statistical tests on the model’s residuals.
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In Step 9, we finalized the model using the finalize_model method. As we have seen in Step 8, the 
predictions we obtained were for the test set. In PyCaret’s terminology, finalizing the model means 
that we take the model from the previous stages (without changing the selected hyperparameters) 
and then train the model using the entire dataset (both training and test sets). Having done so, we 
can create forecasts for the future.

After finalizing the model, we used the same predict_model and plot_model methods to create and 
plot the forecasts for the first 6 months of 2020 (which are outside of our dataset). While calling the 
methods, we passed the finalized model as the estimator argument.

There’s more…
PyCaret is a very versatile library and we have only scratched the surface of what it offers. For brevity’s 
sake, we only mention some of its features:

•	 Mature classification and regression AutoML capabilities. In this recipe, we have only used 
the time series module. 

•	 Anomaly detection for time series.
•	 Integration with MLFlow for experiment logging.
•	 Using the time series module, we can easily train a single model instead of all of the available 

ones. We can do so using the create_model method. As the estimator argument, we need to 
pass the name of the model. We can get the names of the available models using the models 
method. Additionally, depending on the model we choose, we might want to pass some kwargs. 
For example, we might want to specify the order parameters of ARIMA models.

•	 As we have seen in the list of available models, except for the classic statistical models, PyCaret 
also offers selected ML models using the reduced regression approach. Those models also 
detrend and conditionally deseasonalize the time series to make it easier for the regression 
model to capture the autoregressive properties of the data.

Summary
In this chapter, we have covered the ML-based approaches to time series forecasting. We started with 
an extensive overview of validation approaches relevant to the time series domain. Furthermore, 
some of those were created to account for the intricacies of validating time series predictions in the 
financial domain.

Then, we explored feature engineering and the concept of reduced regression, which allows us to 
use any regression algorithms for a time series forecasting task. Lastly, we covered Meta’s Prophet 
algorithm and PyCaret—a low-code tool that automates machine learning workflows.

You might also want to explore the autots library, which is another AutoML tool 
for time series forecasting.
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While exploring time series forecasting, we tried to introduce the most relevant Python libraries. 
However, there are quite a few other interesting positions worth mentioning. You can find some of 
them below:

•	 autots—AutoTS is an alternative AutoML library for time series forecasting.
•	 darts—Similar to sktime, it offers an entire framework for working with time series. The 

library contains a wide variety of models, starting with classic models such as ARIMA and 
ending with various popular neural network architectures used for time series forecasting.

•	 greykite—LinkedIn’s Greykite library for time series forecasting, including its Silverkite al-
gorithm.

•	 kats—A toolkit to analyze time series analysis developed by Meta. The library attempts to pro-
vide a one-stop shop for time series analysis, including tasks such as detection (for example, 
changepoint), forecasting, feature extraction, and more.

•	 merlion—Salesforce’s ML library for time series analysis.
•	 orbit—Uber’s library for Bayesian time series forecasting and inference.
•	 statsforecast—The library offers a collection of popular time series forecasting models (for 

example, autoARIMA and ETS), which are further optimized for high performance using numba.
•	 stumpy—A library that efficiently computes the matrix profile, which can be used for many 

time series-related tasks.
•	 tslearn—A toolkit for time series analysis.
•	 tfp.sts—A library in TensorFlow Probability used for forecasting using structural time series 

models.

Join us on Discord!
To join the Discord community for this book – where you can share feedback, ask questions to the 
author, and learn about new releases – follow the QR code below:

https://packt.link/ips2H

https://packt.link/ips2H




8
Multi-Factor Models

This chapter is devoted to estimating various factor models. Factors are variables/attributes that in the 
past were correlated with (then future) stock returns and are expected to contain the same predictive 
signals in the future.

These risk factors can be considered a tool for understanding the cross-section of (expected) returns. 
That is why various factor models are used to explain the excess returns (over the risk-free rate) of 
a certain portfolio or asset using one or more factors. We can think of the factors as the sources of 
risk that are the drivers of those excess returns. Each factor carries a risk premium and the overall 
portfolio/asset return is the weighted average of those premiums.

Factor models play a crucial role in portfolio management, mainly because:

•	 They can be used to identify interesting assets that can be added to the investment portfolio, 
which—in turn—should lead to better-performing portfolios.

•	 Estimating the exposure of a portfolio/asset to the factors allows for better risk management.
•	 We can use the models to assess the potential incremental value of adding a new risk factor.
•	 They make portfolio optimization easier, as summarizing the returns of many assets with a 

smaller number of factors reduces the amount of data required to estimate the covariance 
matrix.

•	 They can be used to assess a portfolio manager’s performance—whether the performance 
(relative to the benchmark) is due to asset selection and timing of the trades, or if it comes 
from the exposure to known return drivers (factors).

By the end of this chapter, we will have constructed some of the most popular factor models. We will 
start with the simplest, yet very popular, one-factor model (which is the same as the Capital Asset 
Pricing Model when the considered factor is the market return) and then explain how to estimate 
more advanced three-, four-, and five-factor models. We will also cover the interpretation of what 
these factors represent and give a high-level overview of how they are constructed.
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In this chapter, we cover the following recipes:

•	 Estimating the CAPM
•	 Estimating the Fama-French three-factor model
•	 Estimating the rolling three-factor model on a portfolio of assets
•	 Estimating the four- and five-factor models
•	 Estimating cross-sectional factor models using the Fama-MacBeth regression

Estimating the CAPM
In this recipe, we learn how to estimate the famous Capital Asset Pricing Model (CAPM) and obtain 
the beta coefficient. This model represents the relationship between the expected return on a risky 
asset and the market risk (also known as systematic or undiversifiable risk). CAPM can be considered 
a one-factor model, on top of which more complex factor models were built.

CAPM is represented by the following equation:𝐸𝐸(𝑟𝑟𝑖𝑖) = 𝑟𝑟𝑓𝑓 + 𝛽𝛽𝑖𝑖(𝐸𝐸(𝑟𝑟𝑚𝑚) − 𝑟𝑟𝑓𝑓) 
Here, E(ri) denotes the expected return on asset i, rf is the risk-free rate (such as a government bond), 
E(rm) is the expected return on the market, and 𝛽𝛽  is the beta coefficient.

Beta can be interpreted as the level of the asset return’s sensitivity, as compared to the market in 
general. Below we mention the possible interpretations of the coefficient:

•	 𝛽𝛽  <= -1: The asset moves in the opposite direction to the benchmark and in a greater amount 
than the negative of the benchmark.

•	 -1 < 𝛽𝛽  < 0: The asset moves in the opposite direction to the benchmark.

•	 𝛽𝛽  = 0: There is no correlation between the asset’s price movement and the market benchmark.

•	 0 < 𝛽𝛽  < 1: The asset moves in the same direction as the market, but the amount is smaller. An 
example might be the stock of a company that is not very susceptible to day-to-day fluctuations.

•	 𝛽𝛽  = 1: The asset and the market are moving in the same direction by the same amount.
•	 𝛽𝛽  > 1: The asset moves in the same direction as the market, but the amount is greater. An 

example might be the stock of a company that is very susceptible to day-to-day market news.

CAPM can also be represented as: 𝐸𝐸(𝑟𝑟𝑖𝑖) − 𝑟𝑟𝑓𝑓 = 𝛽𝛽𝑖𝑖(𝐸𝐸(𝑟𝑟𝑚𝑚) − 𝑟𝑟𝑓𝑓) 

In this specification, the left-hand side of the equation can be interpreted as the risk premium, while 
the right-hand side contains the market premium. The same equation can be further reshaped into:𝛽𝛽 𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖, 𝑅𝑅𝑚𝑚)𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑚𝑚)  

Here, 𝑅𝑅𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝑖𝑖) − 𝑟𝑟𝑓𝑓  and 𝑅𝑅𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝑚𝑚) − 𝑟𝑟𝑓𝑓 .
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In this example, we consider the case of Amazon and assume that the S&P 500 index represents the 
market. We use 5 years (2016 to 2020) of monthly data to estimate the beta. In current times, the risk-
free rate is so low that, for simplicity’s sake, we assume it is equal to zero.

How to do it...
Execute the following steps to implement the CAPM in Python:

1.	 Import the libraries:

import pandas as pd
import yfinance as yf
import statsmodels.api as sm

2.	 Specify the risky asset, the benchmark, and the time horizon:

RISKY_ASSET = "AMZN"
MARKET_BENCHMARK = "^GSPC"
START_DATE = "2016-01-01"
END_DATE = "2020-12-31"

3.	 Download the necessary data from Yahoo Finance:

df = yf.download([RISKY_ASSET, MARKET_BENCHMARK],
                 start=START_DATE,
                 end=END_DATE,
                 adjusted=True,
                 progress=False)

4.	 Resample to monthly data and calculate the simple returns: 

X = (
    df["Adj Close"]
    .rename(columns={RISKY_ASSET: "asset", 
                     MARKET_BENCHMARK: "market"})
    .resample("M")
    .last()
    .pct_change()
    .dropna()
)

5.	 Calculate beta using the covariance approach: 

covariance = X.cov().iloc[0,1]
benchmark_variance = X.market.var()
beta = covariance / benchmark_variance

The result of the code is beta = 1.2035. 
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6.	 Prepare the input and estimate the CAPM as a linear regression: 

# separate target
y = X.pop("asset")

# add constant
X = sm.add_constant(X)

# define and fit the regression model
capm_model = sm.OLS(y, X).fit()

# print results
print(capm_model.summary())

Figure 8.1 shows the results of estimating the CAPM model: 

Figure 8.1: The summary of the CAPM estimated using OLS

These results indicate that the beta (denoted as the market here) is equal to 1.2, which means that 
Amazon’s returns are 20% more volatile than the market (proxied by S&P 500). Or in other words, 
Amazon’s (excess) return is expected to move 1.2 times the market (excess) return. The value of the 
intercept is relatively small and statistically insignificant at the 5% significance level.
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How it works...
First, we specified the assets we wanted to use (Amazon and S&P 500) and the time frame. In Step 3, 
we downloaded the data from Yahoo Finance. Then, we only kept the last available price per month 
and calculated the monthly returns as the percentage change between the subsequent observations.

In Step 5, we calculated the beta as the ratio of the covariance between the risky asset and the bench-
mark to the benchmark’s variance.

In Step 6, we separated the target (Amazon’s stock returns) and the features (S&P 500 returns) using 
the pop method of a pandas DataFrame. Afterward, we added the constant to the features (effectively 
adding a column of ones to the DataFrame) with the add_constant function.

The idea behind adding the intercept to this regression is to investigate whether—after estimating the 
model—the intercept (in the case of the CAPM, also known as Jensen’s alpha) is zero. If it is positive 
and significant, it means that— assuming the CAPM model is true—the asset or portfolio generates 
abnormally high risk-adjusted returns. There are two possible implications: either the market is in-
efficient or there are some other undiscovered risk factors that should be included in the model. This 
issue is known as the joint hypothesis problem.

Lastly, we ran the OLS regression and printed the summary. Here, we could see that the coefficient 
by the market variable (that is, the CAPM beta) is equal to the beta that was calculated using the co-
variance between the asset and the market in Step 5.

There’s more...
In the example above, we assumed there was no risk-free rate, which is a reasonable assumption to 
make nowadays. However, there might be cases when we would like to account for a non-zero risk-
free rate. To do so, we could use one of the following approaches.

Using data from Prof. Kenneth French’s website 
The market premium (rm - rf ) and the risk-free rate (approximated by the one-month Treasury Bill) 
can be downloaded from Professor Kenneth French’s website (please refer to the See also section of 
this recipe for the link).

We can also use the formula notation, which adds the constant automatically. To do so, we 
must import statsmodels.formula.api as smf and then run the slightly modified line:  
capm_model = smf.ols(formula="asset ~ market", data=X).fit(). The results of 
both approaches are the same. You can find the complete code in the accompanying Jupyter 
notebook.

Please bear in mind that the definition of the market benchmark used by Prof. French is 
different from the S&P 500 index—a detailed description is available on his website. For 
a description of how to easily download the data, please refer to the Implementing the 
Fama-French three-factor model recipe.
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Using the 13-Week T-bill
The second option is to approximate the risk-free rate with, for example, the 13-Week (3-month) Trea-
sury Bill (Yahoo Finance ticker: ^IRX).

Follow these steps to learn how to download the data and convert it into the appropriate risk-free rate:

1.	 Define the length of the period in days:

N_DAYS = 90

2.	 Download the data from Yahoo Finance:

df_rf = yf.download("^IRX",
                    start=START_DATE,
                    end=END_DATE,
                    progress=False)

3.	 Resample the data to monthly frequency (by taking the last value for each month):

rf = df_rf.resample("M").last().Close / 100

4.	 Calculate the risk-free return (expressed as daily values) and convert the values to monthly:

rf = ( 1 / (1 - rf * N_DAYS / 360) )**(1 / N_DAYS)  
rf = (rf ** 30) - 1

5.	 Plot the calculated risk-free rate:

rf.plot(title="Risk-free rate (13-Week Treasury Bill)")
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Figure 8.2 shows the visualization of the risk-free rate over time:

Figure 8.2: The risk-free rate calculated using the 13-Week Treasury Bill

Using the 3-Month T-bill from the FRED database
The last approach is to approximate the risk-free rate using the 3-Month Treasury Bill (Secondary 
Market Rate), which can be downloaded from the Federal Reserve Economic Data (FRED) database.
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Follow these steps to learn how to download the data and convert it to a monthly risk-free rate:

1.	 Import the library:

import pandas_datareader.data as web

2.	 Download the data from the FRED database:

rf = web.DataReader(
    "TB3MS", "fred", start=START_DATE, end=END_DATE
)

3.	 Convert the obtained risk-free rate to monthly values: 

rf = (1 + (rf / 100)) ** (1 / 12) - 1

4.	 Plot the calculated risk-free rate: 

rf.plot(title="Risk-free rate (3-Month Treasury Bill)")

We can compare the results of the two methods by comparing the plots of the risk-free rates:

Figure 8.3: The risk-free rate calculated using the 3-Month Treasury Bill

The above lets us conclude that the plots look very similar.
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See also
Additional resources are available here:

•	 Sharpe, W. F., “Capital asset prices: A theory of market equilibrium under conditions of risk,” 
The Journal of Finance, 19, 3 (1964): 425–442.

•	 Risk-free rate data on Prof. Kenneth French’s website: http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_CSV.zip.

Estimating the Fama-French three-factor model
In their famous paper, Fama and French expanded the CAPM model by adding two additional factors 
explaining the excess returns of an asset or portfolio. The factors they considered are:

•	 The market factor (MKT): It measures the excess return of the market, analogical to the one 
in the CAPM.

•	 The size factor (SMB; Small Minus Big): It measures the excess return of stocks with a small 
market cap over those with a large market cap.

•	 The value factor (HML; High Minus Low): It measures the excess return of value stocks over 
growth stocks. Value stocks have a high book-to-market ratio, while growth stocks are char-
acterized by a low ratio.

The model can be represented as follows:𝐸𝐸(𝑟𝑟𝑖𝑖) = 𝑟𝑟𝑓𝑓 + 𝛼𝛼 𝛼 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸(𝑟𝑟𝑚𝑚) − 𝑟𝑟𝑓𝑓) + 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 ℎ𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻 

Or in its simpler form: 𝐸𝐸(𝑟𝑟𝑖𝑖) − 𝑟𝑟𝑓𝑓 = 𝛼𝛼 𝛼 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 ℎ𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻 

Here, E(ri ) denotes the expected return on asset i, rf is the risk-free rate (such as a government bond), 
and 𝛼𝛼  is the intercept. The reason for including the intercept is to make sure its value is equal to 0. 
This confirms that the three-factor model correctly evaluates the relationship between the excess 
returns and the factors.

Please see the See also section for a reference to how the factors are calculated.

In the case of a statistically significant, non-zero intercept, the model might not evaluate 
the asset/portfolio return correctly. However, the authors stated that the three-factor model 
is “fairly correct,” even when it is unable to pass the statistical test.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_CSV.zip
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_CSV.zip
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Due to the popularity of this approach, these factors became collectively known as the Fama-French 
Factors or the Three-Factor Model. They have been widely accepted in both academia and the industry 
as stock market benchmarks and they are often used to evaluate investment performance. 

In this recipe, we estimate the three-factor model using 5 years (2016 to 2020) of monthly returns on 
Apple’s stock. 

How to do it... 
Follow these steps to implement the three-factor model in Python: 

1.	 Import the libraries:

import pandas as pd
import yfinance as yf
import statsmodels.formula.api as smf
import pandas_datareader.data as web

2.	 Define the parameters:

RISKY_ASSET = "AAPL"
START_DATE = "2016-01-01"
END_DATE = "2020-12-31"

3.	 Download the dataset containing the risk factors:

ff_dict = web.DataReader("F-F_Research_Data_Factors",
                         "famafrench",
                         start=START_DATE,
                         end=END_DATE)

The downloaded dictionary contains three elements: the monthly factors from the requested 
time frame (indexed as 0), the corresponding annual factors (indexed as 1), and a short de-
scription of the dataset (indexed as DESCR).

4.	 Select the appropriate dataset and divide the values by 100:

factor_3_df = ff_dict[0].rename(columns={"Mkt-RF": "MKT"}) \
                        .div(100)
factor_3_df.head()
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The resulting data should look as follows: 

Figure 8.4: Preview of the downloaded factors 

5.	 Download the prices of the risky asset:

asset_df = yf.download(RISKY_ASSET,
                       start=START_DATE,
                       end=END_DATE,
                       adjusted=True)

6.	 Calculate the monthly returns on the risky asset:

y = asset_df["Adj Close"].resample("M") \
                         .last() \
                         .pct_change() \
                         .dropna()

y.index = y.index.to_period("m")
y.name = "rtn"

7.	 Merge the datasets and calculate the excess returns: 

factor_3_df = factor_3_df.join(y)
factor_3_df["excess_rtn"] = (
    factor_3_df["rtn"] - factor_3_df["RF"]
)

8.	 Estimate the three-factor model:

ff_model = smf.ols(formula="excess_rtn ~ MKT + SMB + HML",
                   data=factor_3_df).fit()
print(ff_model.summary())
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The results of the three-factor model are presented below: 

 

Figure 8.5: The summary of the estimated three-factor model

When interpreting the results of the three-factor model, we should pay attention to two issues: 

•	 Whether the intercept is positive and statistically significant 
•	 Which factors are statistically significant and if their direction matches past results (for example, 

based on a literature study) or our assumptions

In our case, the intercept is positive, but not statistically significant at the 5% significance level. Of the 
risk factors, only the SMB factor is not significant. However, a thorough literature study is required to 
formulate a hypothesis about the factors and their direction of influence.

We can also look at the F-statistic that was presented in the regression summary, which tests the joint 
significance of the regression. The null hypothesis states that coefficients of all features (factors, in 
this case), except for the intercept, have values equal to 0. We can see that the corresponding p-value is 
much lower than 0.05, which gives us reason to reject the null hypothesis at the 5% significance level.
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How it works...
In the first two steps, we imported the required libraries and defined the parameters – the risky asset 
(Apple’s stock) and the considered time frame.

In Step 3, we downloaded the data using the functionality of the pandas_datareader library. We 
had to specify which dataset (see the There’s more... section for information on inspecting the avail-
able datasets) and reader (famafrench) we wanted to use, as well as the start/end dates (by default,  
web.DataReader downloads the last 5 years’ worth of data).

In Step 4, we selected only the dataset containing monthly values (indexed as 0 in the downloaded 
dictionary), renamed the column containing the MKT factor, and divided all the values by 100. We 
did it to arrive at the correct encoding of percentages; for example, a value of 3.45 in the dataset 
represents 3.45%.

In Steps 5 and 6, we downloaded and wrangled the prices of Apple’s stock. We obtained the monthly 
returns by calculating the percentage change of the end-of-month prices. In Step 6, we also changed 
the formatting of the index to %Y-%m (for example, 2000-12) since the Fama-French factors contain 
dates in such a format. Then, we joined the two datasets in Step 7.

Finally, in Step 8, we ran the regression using the formula notation—we do not need to manually add 
an intercept when doing so. One thing worth mentioning is that the coefficient by the MKT variable 
will not be equal to the CAPM’s beta, as there are also other factors in the model, and the factors’ in-
fluence on the excess returns is distributed differently.

There’s more...
We can use the following snippet to see what datasets from the Fama-French category are available 
for download using pandas_datareader. For brevity, we only display 5 of the approximately 300 
available datasets:

from pandas_datareader.famafrench import get_available_datasets
get_available_datasets()[:5]

Running the snippet returns the following list:

['F-F_Research_Data_Factors',
 'F-F_Research_Data_Factors_weekly',
 'F-F_Research_Data_Factors_daily',
 'F-F_Research_Data_5_Factors_2x3',
 'F-F_Research_Data_5_Factors_2x3_daily']

In the previous edition of the book, we also showed how to directly download the CSV files from Prof. 
French’s website using simple Bash commands from within a Jupyter notebook. You can find the code 
explaining how to do that in the accompanying notebook.
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See also 
Additional resources:

•	 For details on how all the factors were calculated, please refer to Prof. French’s website at 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.
html

•	 Fama, E. F., and French, K. R., “Common risk factors in the returns on stocks and bonds,” Journal 
of Financial Economics, 33, 1 (1993): 3-56

Estimating the rolling three-factor model on a portfolio 
of assets 
In this recipe, we learn how to estimate the three-factor model in a rolling fashion. What we mean by 
rolling is that we always consider an estimation window of a constant size (60 months, in this case) 
and roll it through the entire dataset, one period at a time. A potential reason for doing such an ex-
periment is to test the stability of the results. Alternatively, we could also use an expanding window 
for this exercise.

In contrast to the previous recipes, this time, we use portfolio returns instead of a single asset. To keep 
things simple, we assume that our allocation strategy is to have an equal share of the total portfolio’s 
value in each of the following stocks: Amazon, Google, Apple, and Microsoft. For this experiment, we 
use stock prices from the years 2010 to 2020.

How to do it... 
Follow these steps to implement the rolling three-factor model in Python:

1.	 Import the libraries:

import pandas as pd
import numpy as np
import yfinance as yf
import statsmodels.formula.api as smf
import pandas_datareader.data as web

2.	 Define the parameters:

ASSETS = ["AMZN", "GOOG", "AAPL", "MSFT"]
WEIGHTS = [0.25, 0.25, 0.25, 0.25]
START_DATE = "2010-01-01"
END_DATE = "2020-12-31"

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html
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3.	 Download the factor-related data:

factor_3_df = web.DataReader("F-F_Research_Data_Factors",
                             "famafrench",
                             start=START_DATE,
                             end=END_DATE)[0]
factor_3_df = factor_3_df.div(100)

4.	 Download the prices of risky assets from Yahoo Finance:

asset_df = yf.download(ASSETS,
                       start=START_DATE,
                       end=END_DATE,
                       adjusted=True,
                       progress=False)

5.	 Calculate the monthly returns on the risky assets:

asset_df = asset_df["Adj Close"].resample("M") \
                                .last() \
                                .pct_change() \
                                .dropna()
asset_df.index = asset_df.index.to_period("m")

6.	 Calculate the portfolio returns:

asset_df["portfolio_returns"] = np.matmul(
    asset_df[ASSETS].values, WEIGHTS
)

7.	 Merge the datasets:

factor_3_df = asset_df.join(factor_3_df).drop(ASSETS, axis=1)
factor_3_df.columns = ["portf_rtn", "mkt", "smb", "hml", "rf"]
factor_3_df["portf_ex_rtn"] = (
    factor_3_df["portf_rtn"] - factor_3_df["rf"]
)
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8.	 Define a function for the rolling n-factor model: 

def rolling_factor_model(input_data, formula, window_size):
    
    coeffs = []
    for start_ind in range(len(input_data) - window_size + 1):        
        end_ind = start_ind + window_size
 
        ff_model = smf.ols(
            formula=formula, 
            data=input_data[start_ind:end_ind]
        ).fit()
   
        coeffs.append(ff_model.params)
    
    coeffs_df = pd.DataFrame(
        coeffs,
        index=input_data.index[window_size - 1:]
    )

    return coeffs_df

9.	 Estimate the rolling three-factor model and plot the results: 

MODEL_FORMULA = "portf_ex_rtn ~ mkt + smb + hml"
results_df = rolling_factor_model(factor_3_df,
                                  MODEL_FORMULA,
                                  window_size=60)
(
    results_df
    .plot(title = "Rolling Fama-French Three-Factor model",
          style=["-", "--", "-.", ":"])
    .legend(loc="center left",bbox_to_anchor=(1.0, 0.5))
)

For a version with a docstring explaining the input/output, please refer to this 
book’s GitHub repository.
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Executing the code results in the following plot: 

Figure 8.6: The coefficients of the rolling three-factor model

By inspecting the preceding plot, we can see the following:

•	 The intercept is almost constant and very close to 0.
•	 There is some variability in the factors, but no sudden reversals or unexpected jumps.

How it works...
In Steps 3 and 4, we downloaded data using pandas_datareader and yfinance. This is very similar to 
what we did in the Estimating the Fama-French three-factor model recipe, so at this point we will not go 
into too much detail about this. 

In Step 6, we calculated the portfolio returns as a weighted average of the returns of the portfolio con-
stituents (calculated in Step 5). This is possible as we are working with simple returns—for more details, 
please refer to the Converting prices to returns recipe in Chapter 2, Data Preprocessing. Bear in mind that 
this simple approach assumes that, at the end of each month, we have exactly the same asset allocation 
(as indicated by the weights). This can be achieved with portfolio rebalancing, that is, adjusting the 
allocation after a specified period of time to always match the intended weights’ distribution.
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Afterward, we merged the two datasets in Step 7. In Step 8, we defined a function for estimating the 
n-factor model using a rolling window. The main idea is to loop over the DataFrame we prepared in 
previous steps and for each month, estimate the Fama-French model using the last 5 years’ worth of 
data (60 months). By appropriately slicing the input DataFrame, we made sure that we only estimate 
the model from the 60th month onward, to make sure we always have a full window of observations.

Finally, we applied the defined function to the prepared DataFrame and plotted the results.

Estimating the four- and five-factor models
In this recipe, we implement two extensions of the Fama-French three-factor model.

First, Carhart’s four-factor model: The underlying assumption of this extension is that, within a short 
period of time, a winner stock will remain a winner, while a loser will remain a loser. An example of a 
criterion for classifying winners and losers could be the last 12-month cumulative total returns. After 
identifying the two groups, we long the winners and short the losers within a certain holding period.

The momentum factor (WML; Winners Minus Losers) measures the excess returns of the winner 
stocks over the loser stocks in the past 12 months (please refer to the See also section of this recipe for 
references on the calculations of the momentum factor).

The four-factor model can be expressed as follows:𝐸𝐸(𝑟𝑟𝑖𝑖) − 𝑟𝑟𝑓𝑓 = 𝛼𝛼 𝛼 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑀𝑀𝑀𝑀 +𝛽𝛽 ℎ𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻 𝑤𝑤𝑚𝑚𝑚𝑚𝑊𝑊𝑊𝑊𝑊𝑊 

The second extension is Fama-French’s five-factor model. Fama and French expanded their three-fac-
tor model by adding two factors:

•	 The profitability factor (RMW; Robust Minus Weak) measures the excess returns of companies 
with high profit margins (robust profitability) over those with lower profits (weak profitability). 

•	 The investment factor (CMA; Conservative Minus Aggressive) measures the excess returns 
of firms with low investment policies (conservative) over those investing more (aggressive).

The five-factor model can be expressed as follows:𝐸𝐸(𝑟𝑟𝑖𝑖) − 𝑟𝑟𝑓𝑓 = 𝛼𝛼 𝛼 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 ℎ𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻 𝑟𝑟𝑟𝑟𝑤𝑤𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 

Like in all factor models, if the exposure to the risk factors captures all possible variations in expected 
returns, the intercept (𝛼𝛼 ) for all the assets/portfolios should be equal to zero.

In this recipe, we explain monthly returns on Amazon from 2016 to 2020 with the four- and five-factor 
models.

Proper software engineering best practices would suggest writing some assertions to make 
sure the types of the inputs are as we intended them to be, or that the input DataFrame 
contains the necessary columns. However, we have not done this here for brevity.
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How to do it...
Follow these steps to implement the four- and five-factor models in Python: 

1.	 Import the libraries:

import pandas as pd
import yfinance as yf
import statsmodels.formula.api as smf
import pandas_datareader.data as web

2.	 Specify the risky asset and the time horizon:

RISKY_ASSET = "AMZN"
START_DATE = "2016-01-01"
END_DATE = "2020-12-31"

3.	 Download the risk factors from Prof. French’s website:

# three factors
factor_3_df = web.DataReader("F-F_Research_Data_Factors",
                             "famafrench",
                             start=START_DATE,
                             end=END_DATE)[0]

# momentum factor
momentum_df = web.DataReader("F-F_Momentum_Factor",
                             "famafrench",
                             start=START_DATE,
                             end=END_DATE)[0]
# five factors
factor_5_df = web.DataReader("F-F_Research_Data_5_Factors_2x3",
                             "famafrench",
                             start=START_DATE,
                             end=END_DATE)[0]

4.	 Download the data of the risky asset from Yahoo Finance:

asset_df = yf.download(RISKY_ASSET,
                       start=START_DATE,
                       end=END_DATE,
                       adjusted=True,
                       progress=False)
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5.	 Calculate the monthly returns:

y = asset_df["Adj Close"].resample("M") \
                         .last() \
                         .pct_change() \
                         .dropna()

y.index = y.index.to_period("m")
y.name = "rtn"

6.	 Merge the datasets for the four-factor model:

# join all datasets on the index
factor_4_df = factor_3_df.join(momentum_df).join(y)

# rename columns
factor_4_df.columns = ["mkt", "smb", "hml", "rf", "mom", "rtn"]

# divide everything (except returns) by 100
factor_4_df.loc[:, factor_4_df.columns != "rtn"] /= 100

# calculate excess returns
factor_4_df["excess_rtn"] = (
    factor_4_df["rtn"] - factor_4_df["rf"]
)

7.	 Merge the datasets for the five-factor model: 

# join all datasets on the index
factor_5_df = factor_5_df.join(y)

# rename columns
factor_5_df.columns = [
    "mkt", "smb", "hml", "rmw", "cma", "rf", "rtn"
]

# divide everything (except returns) by 100
factor_5_df.loc[:, factor_5_df.columns != "rtn"] /= 100

# calculate excess returns
factor_5_df["excess_rtn"] = (
    factor_5_df["rtn"] - factor_5_df["rf"]
)
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8.	 Estimate the four-factor model: 

four_factor_model = smf.ols(
    formula="excess_rtn ~ mkt + smb + hml + mom",
    data=factor_4_df
).fit()

print(four_factor_model.summary())

Figure 8.7 shows the results:

Figure 8.7: The summary of the estimated four-factor model
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9.	 Estimate the five-factor model:

five_factor_model = smf.ols(
    formula="excess_rtn ~ mkt + smb + hml + rmw + cma",
    data=factor_5_df
).fit()

print(five_factor_model.summary())

Figure 8.8 shows the results:

Figure 8.8: The summary of the estimated five-factor model

According to the five-factor model, Amazon’s excess returns are negatively exposed to most of the fac-
tors (all but the market factor). Here, we present an example of the interpretation of the coefficients: 
an increase by 1 percentage point in the market factor results in an increase of 0.015 p.p. In other 
words, for a 1% return by the market factor, we can expect our portfolio (Amazon’s stock) to return 
1.5117 * 1% in excess of the risk-free rate.
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Similar to the three-factor model, if the five-factor model fully explains the excess stock returns, 
the estimated intercept should be statistically indistinguishable from zero (which is the case for the 
considered problem).

How it works...
In Step 2, we defined the parameters—the ticker of the considered stock and timeframes.

In Step 3, we downloaded the necessary datasets using pandas_datareader, which provides us with 
a convenient way of downloading the risk factor-related data without manually downloading the CSV 
files. For more information on this process, please refer to the Estimating the Fama-French three-factor 
model recipe.

In Steps 4 and 5, we downloaded Amazon’s stock prices and calculated the monthly returns using the 
previously explained methodology.

In Steps 6 and 7, we joined all the datasets, renamed the columns, and calculated the excess returns. 
When using the join method without specifying what we want to join on (the on argument), the default 
is the index of the DataFrames.

This way, we prepared all the necessary inputs for the four- and five-factor models. We also had to 
divide all the data we downloaded from Prof. French’s website by 100 to arrive at the correct scale.

In Step 8 and Step 9, we estimated the models using the functional form of OLS regression from the 
statsmodels library. The functional form automatically adds the intercept to the regression equation.

See also
For details on the calculation of the factors, please refer to the following links: 

•	 Momentum factor: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_
Library/det_mom_factor.html 

•	 Five-factor model: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_
Library/f-f_5_factors_2x3.html 

For papers introducing the four- and five-factor models, please refer to the following links: 

•	 Carhart, M. M. (1997), “On Persistence in Mutual Fund Performance,” The Journal of Finance, 52, 
1 (1997): 57-82

•	 Fama, E. F. and French, K. R. 2015. “A five-factor asset pricing model,” Journal of Financial 
Economics, 116(1): 1-22: https://doi.org/10.1016/j.jfineco.2014.10.010

SMB factor in the five-factor dataset is calculated differently compared to how it is in the 
three-factor dataset. For more details, please refer to the link in the See also section of 
this recipe.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_mom_factor.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_mom_factor.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_5_factors_2x3.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_5_factors_2x3.html
https://doi.org/10.1016/j.jfineco.2014.10.010 
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Estimating cross-sectional factor models using the Fama-
MacBeth regression
In the previous recipes, we have covered estimating different factor models using a single asset or 
portfolio as the dependent variable. However, we can estimate the factor models for multiple assets 
at once, using cross-section (panel) data.

Following this approach, we can:

•	 Estimate the portfolios’ exposure to the risk factors and learn how much those factors drive 
the portfolios’ returns

•	 Understand how much taking a given risk is worth by knowing the premium that the market 
pays for the exposure to a certain factor

Knowing the risk premiums, we can then estimate the returns for any portfolio provided we can 
approximate that portfolio’s exposure to the risk factors.

While estimating cross-sectional regression, we can encounter multiple problems due to the fact that 
some assumptions of linear regression might not hold. We might encounter the following:

•	 Heteroskedasticity and serial correlation, leading to the covariation of residuals
•	 Multicollinearity
•	 Measurement errors

To solve those issues, we can use a technique called the Fama-MacBeth regression, which is a two-step 
procedure specifically designed to estimate the premiums rewarded by the market for the exposure 
to certain risk factors.

The steps are as follows:

1.	 Obtain the factor loadings by estimating N (the number of portfolios/assets) time-series re-
gressions of excess returns on the factors:𝑟𝑟𝑖𝑖 =  𝐹𝐹 𝐹 𝐹𝐹𝑖𝑖 + 𝜀𝜀𝑖𝑖 

2.	 Obtain the risk premiums by estimating T (the number of periods) cross-sectional regressions, 
one for each period: 𝑟𝑟𝑡𝑡  = 𝛽̂𝛽 ∗ 𝜆𝜆𝑡𝑡 

In this recipe, we estimate the Fama-MacBeth regression using five risk factors and the returns of 12 
industry portfolios, also available on Prof. French’s website.

How to do it…
Execute the following steps to estimate the Fama-MacBeth regression:
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1.	 Import the libraries:

import pandas as pd
import pandas_datareader.data as web
from linearmodels.asset_pricing import LinearFactorModel

2.	 Specify the time horizon:

START_DATE = "2010"
END_DATE = "2020-12"

3.	 Download and adjust the risk factors from Prof. French’s website:

factor_5_df = (
    web.DataReader("F-F_Research_Data_5_Factors_2x3",
                   "famafrench",
                   start=START_DATE,
                   end=END_DATE)[0]
    .div(100)
)

4.	 Download and adjust the returns of 12 Industry Portfolios from Prof. French’s website:

portfolio_df = (
    web.DataReader("12_Industry_Portfolios",
                   "famafrench",
                   start=START_DATE,
                   end=END_DATE)[0]
    .div(100)
    .sub(factor_5_df["RF"], axis=0)
)

5.	 Drop the risk-free rate from the factor dataset:

factor_5_df = factor_5_df.drop("RF", axis=1)

6.	 Estimate the Fama-MacBeth regression and print the summary:

five_factor_model = LinearFactorModel(
    portfolios=portfolio_df,
    factors=factor_5_df
)
result = five_factor_model.fit()
print(result)
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Running the snippet generates the following summary:

Figure 8.9: The results of the Fama-MacBeth regression

The results in the table are average risk premiums from the T cross-sectional regressions.

We can also print the full summary (containing the risk premiums and each portfolio’s factor loadings). 
To do so, we need to run the following line of code:

print(result.full_summary)

How it works…
In the first two steps, we imported the required libraries and defined the start and end date of our 
exercise. In total, we will be using 11 years of monthly data, resulting in 132 observations of the vari-
ables (denoted as T ). For the end date, we had to specify 2020-12. Using 2020 alone would result in 
the downloaded datasets ending with January 2020.

In Step 3, we downloaded the five-factor data set using pandas_datareader. We adjusted the values to 
express percentages by dividing them by 100. 

In Step 4, we downloaded the returns on 12 Industry Portfolios from Prof. French’s website (please 
see the link in the See also section for more details on the dataset). We have also adjusted the values 
by dividing them by 100 and calculated the excess returns by subtracting the risk-free rate (available 
at the factor dataset) from each column of the portfolio dataset. We could do that easily using the sub 
method as the time periods are an exact match.
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In Step 5, we dropped the risk-free rate, as we will not be using it anymore and it will be easier to esti-
mate the Fama-MacBeth regression model with no redundant columns in the DataFrames.

In the last step, we instantiated an object of the LinearFactorModel class and provided both datasets 
as arguments. Then, we used the fit method to estimate the model. Lastly, we printed the summary.

There’s more…
We have already estimated the Fama-MacBeth regression using the linearmodels library. However, it 
might strengthen our understanding of the procedure to carry out the two steps manually.

Execute the following steps to carry out the two steps of the Fama-MacBeth procedure separately:

1.	 Import the libraries:

from statsmodels.api import OLS, add_constant

2.	 For the first step of the Fama-MacBeth regression, estimate the factor loadings:

factor_loadings = []
for portfolio in portfolio_df:
    reg_1 = OLS(
        endog=portfolio_df.loc[:, portfolio],
        exog=add_constant(factor_5_df)
    ).fit()
    factor_loadings.append(reg_1.params.drop("const"))

3.	 Store the factor loadings in a DataFrame:

factor_load_df = pd.DataFrame(
    factor_loadings, 
    columns=factor_5_df.columns, 
    index=portfolio_df.columns
)
factor_load_df.head()

You might notice a small difference between linearmodels and scikit-learn. In the 
latter, we provide the data while calling the fit method. With linearmodels, we had to 
provide the data while creating an instance of the LinearFactorModel class.

In linearmodels, you can also use the formula notation (as we have done when 
estimating the factor models using statsmodels). To do so, we need to use the  
from_formula method. An example could look as follows:  
LinearFactorModel.from_formula(formula, data), where formula is the string 
containing the formula and data is an object containing both the portfolios/assets and 
the factors.
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Running the code generates the following table containing the factor loadings:

Figure 8.10: First step of the Fama-MacBeth regression—the estimated factor loadings

We can compare those numbers to the output of the full summary from the linearmodels 
library.

4.	 For the second step of the Fama-MacBeth regression, estimate the risk premiums:

risk_premia = []
for period in portfolio_df.index:
    reg_2 = OLS(
        endog=portfolio_df.loc[period, factor_load_df.index], 
        exog=factor_load_df
    ).fit()
    risk_premia.append(reg_2.params)

5.	 Store the risk premiums in a DataFrame:

risk_premia_df = pd.DataFrame(
    risk_premia, 
    index=portfolio_df.index,
    columns=factor_load_df.columns.tolist())
risk_premia_df.head()

Running the code generates the following table containing the risk premiums over time:

Figure 8.11: Second step of the Fama-MacBeth regression—the estimated risk premiums 
over time
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6.	 Calculate the average risk premiums:

risk_premia_df.mean()

Running the snippet returns: 

Mkt-RF    0.012341
SMB      -0.006291
HML      -0.008927
RMW      -0.000908
CMA      -0.002484

The risk premiums calculated above match the ones obtained from the linearmodels library.

See also
•	 Documentation of the linearmodels library can be a good resource for learning about panel 

regression models (and not only that—it also contains utilities for instrumental variables models 
and so on) and their implementation in Python: https://bashtage.github.io/linearmodels/
index.html

•	 Description of the 12 Industry Portfolios dataset: https://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library/det_12_ind_port.html

Further reading about the Fama-MacBeth procedure:

•	 Fama, E. F., and MacBeth, J. D., “Risk, return, and equilibrium: Empirical tests,” Journal of Political 
Economy, 81, 3 (1973): 607-636

•	 Fama, E. F., “Market efficiency, long-term returns, and behavioral finance,” Journal of Financial 
Economics, 49, 3 (1998): 283-306

Summary
In this chapter, we have constructed some of the most popular factor models. We have started with 
the simplest one-factor model (the CAPM) and then explained how to approach more advanced three-, 
four-, and five-factor models. We have also described how we can use the Fama-MacBeth regression 
to estimate the factor models for multiple assets with appropriate cross-section (panel) data.

https://bashtage.github.io/linearmodels/index.html
https://bashtage.github.io/linearmodels/index.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library/det_12_ind_port.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library/det_12_ind_port.html
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Modeling Volatility with GARCH 
Class Models

In Chapter 6, Time Series Analysis and Forecasting, we looked at various approaches to modeling time 
series. However, models such as ARIMA (Autoregressive Integrated Moving Average) cannot account 
for volatility that is not constant over time (heteroskedastic). We have already explained that some 
transformations (such as log or Box-Cox transformations) can be used to adjust for modest changes 
in volatility, but we would like to go a step further and model it.

In this chapter, we focus on conditional heteroskedasticity, which is a phenomenon caused when 
an increase in volatility is correlated with a further increase in volatility. An example might help to 
understand this concept. Imagine the price of an asset going down significantly due to some breaking 
news related to the company. Such a sudden price drop could trigger certain risk management tools 
of investment funds, which start selling the stocks as a result of the previous decrease in price. This 
could result in the price plummeting even further. Conditional heteroskedasticity was also clearly 
visible in the Investigating stylized facts of asset returns recipe, in which we showed that returns exhibit 
volatility clustering.

We would like to briefly explain the motivation for this chapter. Volatility is an incredibly important 
concept in finance. It is synonymous with risk and has many applications in quantitative finance. Firstly, 
it is used in options pricing, as the Black-Scholes model relies on the volatility of the underlying asset. 
Secondly, volatility has a significant impact on risk management, where it is used to calculate metrics 
such as the Value-at-Risk (VaR) of a portfolio, the Sharpe ratio, and many more. Thirdly, volatility is also 
present in trading. Normally, traders make decisions based on predictions of the assets’ prices either 
rising or falling. However, we can also trade based on predicting whether there will be movement in 
any direction, that is, whether there will be volatility. Volatility trading is particularly appealing when 
certain world events (for example, pandemics) are driving markets to move erratically. An example 
of a product interesting to volatility traders might be the Volatility Index (VIX), which is based on the 
movements of the S&P 500 index.
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By the end of the chapter, we will have covered a selection of GARCH (Generalized Autoregressive 
Conditional Heteroskedasticity) models—both univariate and multivariate—which are some of the 
most popular ways of modeling and forecasting volatility. Knowing the basics, it is quite simple to 
implement more advanced models. We have already mentioned the importance of volatility in finance. 
By knowing how to model it, we can use such forecasts to replace the previously used naïve ones in 
many practical use cases in the fields of risk management or derivatives valuation. 

In this chapter, we will cover the following recipes:

•	 Modeling stock returns’ volatility with ARCH models
•	 Modeling stock returns’ volatility with GARCH models
•	 Forecasting volatility using GARCH models
•	 Multivariate volatility forecasting with the CCC-GARCH model
•	 Forecasting the conditional covariance matrix using DCC-GARCH

Modeling stock returns’ volatility with ARCH models 
In this recipe, we approach the problem of modeling the conditional volatility of stock returns with 
the Autoregressive Conditional Heteroskedasticity (ARCH) model.

To put it simply, the ARCH model expresses the variance of the error term as a function of past errors. 
To be a bit more precise, it assumes that the variance of the errors follows an autoregressive model. 
The entire logic of the ARCH method can be represented by the following equations:𝑟𝑟𝑡𝑡 = 𝜇𝜇 𝜇 𝜇𝜇𝑡𝑡 𝜖𝜖𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 𝜔𝜔𝜔𝜔𝑖𝑖𝜖𝜖𝑡𝑡𝑡𝑡2𝑞𝑞
𝑖𝑖𝑖𝑖  

The first equation represents the return series as a combination of the expected return μ and the 
unexpected return 𝜖𝜖𝑡𝑡 . 𝜖𝜖𝑡𝑡  has white noise properties—the conditional mean equal to zero and the 
time-varying conditional variance 𝜎𝜎𝑡𝑡2 . 

Error terms are serially uncorrelated but do not need to be serially independent, as they can exhibit 
conditional heteroskedasticity.

In general, ARCH (and GARCH) models should only be fitted to the residuals of some other model 
applied to the original time series. When estimating volatility models, we can assume different spec-
ifications of the mean process, for example:

 𝜖𝜖𝑡𝑡  is also known as the mean-corrected return, error term, innovations, or—most com-
monly—residuals.
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•	 A zero-mean process—this implies that the returns are only described by the residuals, for 
example, 𝑟𝑟𝑡𝑡 = 𝜖𝜖𝑡𝑡 

•	 A constant mean process (𝑟𝑟𝑡𝑡 = 𝜇𝜇 𝜇 𝜇𝜇 )
•	 Mean estimated using linear models such as AR, ARMA, ARIMA, or the more recent hetero-

geneous autoregressive (HAR) process

In the second equation, we represent the error series in terms of a stochastic component 𝑧𝑧𝑡𝑡 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
and a conditional standard deviation 𝜎𝜎𝑡𝑡 , which governs the typical size of the residuals. The stochastic 
component can also be interpreted as standardized residuals.

The third equation presents the ARCH formula, where ⍵ > 0  and 𝛼𝛼𝑖𝑖 ⩾ 0 . Some important points about 
the ARCH model include:

•	 The ARCH model explicitly recognizes the difference between the unconditional and the 
conditional variance of the time series.

•	 It models the conditional variance as a function of past residuals (errors) from a mean process.
•	 It assumes the unconditional variance to be constant over time.
•	 The ARCH model can be estimated using the ordinary least squares (OLS) method.
•	 We must specify the number of prior residuals (q) in the model—similarly to the AR model. 
•	 The residuals should look like observations of a discrete white noise—zero-mean and stationary 

(no trends or seasonal effects, that is, no evident serial correlation).

The biggest strength of the ARCH model is that the volatility estimates it produces exhibit excess kur-
tosis (fat tails as compared to Normal distribution), which is in line with the empirical observations 
about stock returns. Naturally, there are also weaknesses. The first one is that the model assumes the 
same effects of positive and negative volatility shocks, which is simply not the case. Secondly, it does 
not explain variations in volatility. That is why the model is likely to over-forecast volatility, as it is 
slow to respond to large, isolated shocks in the returns series.

In this recipe, we fit the ARCH(1) model to Google’s daily stock returns from the years 2015 to 2021.

How to do it...
Execute the following steps to fit the ARCH(1) model:

1.	 Import the libraries:

import pandas as pd 
import yfinance as yf 
from arch import arch_model

 In the original ARCH notation, as well as in the arch library in Python, the lag hyperpa-
rameter is denoted with p. However, we use q as the corresponding symbol, in line with 
the GARCH notation introduced in the next recipe.
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2.	 Specify the risky asset and the time horizon: 

RISKY_ASSET = "GOOG"
START_DATE = "2015-01-01"
END_DATE = "2021-12-31"

3.	 Download data from Yahoo Finance: 

df = yf.download(RISKY_ASSET, 
                 start=START_DATE, 
                 end=END_DATE, 
                 adjusted=True)

4.	 Calculate the daily returns: 

returns = 100 * df["Adj Close"].pct_change().dropna()
returns.name = "asset_returns"
returns.plot(
    title=f"{RISKY_ASSET} returns: {START_DATE} - {END_DATE}"
)

Running the code generates the following plot: 

Figure 9.1: Google’s simple returns from the years 2015 to 2021
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In the plot, we can observe a few sudden spikes and clear examples of volatility clustering.

5.	 Specify the ARCH model:

model = arch_model(returns, mean="Zero", vol="ARCH", p=1, q=0)

6.	 Estimate the model and print the summary: 

fitted_model = model.fit(disp="off")
print(fitted_model.summary())

Running the code returns the following summary:

                    Zero Mean - ARCH Model Results                        
===================================================================
Dep. Variable:      asset_returns   R-squared:                 0.000
Mean Model:         Zero Mean       Adj. R-squared:             .001
Vol Model:          ARCH            Log-Likelihood:         -3302.93
Distribution:       Normal          AIC:                     6609.85
Method:             Maximum         BIC:                     6620.80
                    Likelihood
                                    No. Observations:        1762
Date:           Wed, Jun 08 2022    Df Residuals:            1762
Time:                   22:25:16    Df Model:                0
                        Volatility Model
===================================================================
             coef      std err        t      P>|t|  95.0% Conf. Int.
-------------------------------------------------------------------
omega        1.8625    0.166      11.248  2.359e-29 [ 1.538, 2.187]
alpha[1]     0.3788    0.112       3.374  7.421e-04 [ 0.159, 0.599]
===================================================================

7.	 Plot the residuals and the conditional volatility: 

fitted_model.plot(annualize="D")
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Running the code results in the following plots: 

Figure 9.2: Standardized residuals and the annualized conditional volatility of the fitted 
ARCH model

We can observe some standardized residuals that are large (in magnitude) and correspond to highly 
volatile periods.

How it works...
In Steps 2 to 4, we downloaded Google’s daily stock prices and calculated simple returns. When working 
with ARCH/GARCH models, convergence warnings are likely to occur in the case of very small num-
bers. This is caused by instabilities in the underlying optimization algorithms of the scipy library. To 
overcome this issue, we multiplied the returns by 100 to express them as percentages.

In Step 5, we defined the ARCH(1) model. For the mean model, we selected the zero-mean approach, 
which is suitable for many liquid financial assets. Another viable choice here could be a constant 
mean. We can use those approaches as opposed to, for example, ARMA models because the serial 
dependence of the return series might be very limited.

In Step 6, we fitted the model using the fit method. Additionally, we passed disp="off" to the fit 
method to suppress output from the optimization steps. To fit the model using the arch library, we 
had to take similar steps to the familiar scikit-learn approach: we first defined the model and then 
fitted it to the data. One difference would be the fact that with arch, we had to provide the data object 
while creating the instance of the model, instead of passing it to the fit method as we would have 
done in scikit-learn. Then, we printed the model’s summary by using the summary method.
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In Step 7, we also inspected the standardized residuals and the conditional volatility series by plotting 
them. The standardized residuals were computed by dividing the residuals by the conditional volatility. 
We passed annualize="D" to the plot method in order to annualize the conditional volatility series 
from daily data.

There’s more...
A few more noteworthy points about ARCH models:

•	 Selecting the zero-mean process is useful when working on residuals from a separately esti-
mated model.

•	 To detect ARCH effects, we can look at the correlogram of the squared residuals from a certain 
model (such as the ARIMA model). We need to make sure that the mean of these residuals is 
equal to zero. We can use the Partial Autocorrelation Function (PACF) plot to infer the value 
of q, similarly to the approach used in the case of the AR model (please refer to the Modeling 
time series with ARIMA class models recipe for more details).

•	 To test the validity of the model, we can inspect whether the standardized residuals and squared 
standardized residuals exhibit no serial autocorrelation (for example, using the Ljung-Box or 
Box-Pierce test with the acorr_ljungbox function from statsmodels). Alternatively, we can 
employ the Lagrange Multiplier test (the LM test, also known as Engle’s Test for Autoregressive 
Conditional Heteroscedasticity) to make sure that the model captures all ARCH effects. To do 
so, we can use the het_arch function from statsmodels.

In the following snippet, we test the residuals of the ARCH model with the LM test:

from statsmodels.stats.diagnostic import het_arch
het_arch(fitted_model.resid)

Running the code returns the following tuple:

(98.10927835448403,
 1.3015895084238874e-16,
 10.327662606705564,
 4.2124269229123006e-17)

The first two values in the tuple are the LM test statistic and its corresponding p-value. The latter two 
are the f-statistic for the F test (an alternative approach to testing for ARCH effects) and its correspond-
ing p-value. We can see that both p-values are below the customary significance level of 0.05, which 
leads us to reject the null hypothesis stating that the residuals are homoskedastic. This means that 
the ARCH(1) model fails to capture all ARCH effects in the residuals.

 The documentation of the het_arch function suggests that if the residuals are 
coming from a regression model, we should correct for the number of estimat-
ed parameters in that model. For example, if the residuals were coming from an 
ARMA(2, 1) model, we should pass an additional argument to the het_arch function,  
ddof = 3, where ddof stands for the degrees of freedom.
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See also 
Additional resources are available here: 

•	 Engle, R. F. 1982., “Autoregressive conditional heteroscedasticity with estimates of the variance 
of United Kingdom inflation,” Econometrica, 50(4): 987-1007

Modeling stock returns’ volatility with GARCH models 
In this recipe, we present how to work with an extension of the ARCH model, namely the Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) model. GARCH can be considered an ARMA 
model applied to the variance of a time series—the AR component was already expressed in the ARCH 
model, while GARCH additionally adds the moving average part.

The equation of the GARCH model can be presented as:𝑟𝑟𝑡𝑡 = 𝜇𝜇 𝜇 𝜇𝜇𝑡𝑡 𝜖𝜖𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡 
𝜎𝜎𝑡𝑡2 = 𝜔𝜔 𝜔𝜔𝜔𝜔𝑖𝑖𝜖𝜖𝑡𝑡𝑡𝑡2𝑞𝑞

𝑖𝑖𝑖𝑖 +∑𝛽𝛽𝑖𝑖𝜎𝜎𝑡𝑡𝑡𝑡2𝑝𝑝
𝑖𝑖𝑖𝑖  

While the interpretation is very similar to the ARCH model presented in the previous recipe, the 
difference lies in the last equation, where we can observe an additional component. Parameters are 
constrained to meet the following: 𝜔𝜔 𝜔 𝜔𝜔 𝜔𝜔𝑖𝑖 ⩾ 0 , and 𝛽𝛽𝑖𝑖 ⩾ 0 .

The two hyperparameters of the GARCH model can be described as:

•	 p: The number of lag variances
•	 q: The number of lag residual errors from a mean process

One way of inferring the lag orders for ARCH/GARCH models is to use the squared residuals from 
a model used to predict the mean of the original time series. As the residuals are centered around 
zero, their squares correspond to their variance. We can inspect the ACF/PACF plots of the squared 
residuals in order to identify patterns in the autocorrelation of the series’ variance (similarly to what 
we have done to identify the orders of an ARMA/ARIMA model).

 In the GARCH model, there are additional constraints on coefficients. For example, in the 
case of a GARCH(1,1) model, 𝛼𝛼𝑖𝑖  + 𝛽𝛽𝑖𝑖   must be less than 1. Otherwise, the model is unstable.

 A GARCH(0, q) model is equivalent to an ARCH(q) model.
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In general, the GARCH model shares the strengths and weaknesses of the ARCH model, with the 
difference that it better captures the effects of past shocks. Please see the There’s more... section to 
learn about some extensions of the GARCH model that account for the original model’s shortcomings.

In this recipe, we apply the GARCH(1,1) model to the same data as in the previous recipe, in order to 
clearly highlight the difference between the two modeling approaches.

How to do it...
Execute the following steps to estimate the GARCH(1,1) model in Python: 

1.	 Specify the GARCH model:

model = arch_model(returns, mean="Zero", vol="GARCH", p=1, q=1)

2.	 Estimate the model and print the summary:

fitted_model = model.fit(disp="off")
print(fitted_model.summary())

Running the code returns the following summary:

                     Zero Mean - GARCH Model Results                        
====================================================================
Dep. Variable:      asset_returns   R-squared:                 0.000
Mean Model:         Zero Mean       Adj. R-squared:            0.001
Vol Model:          GARCH           Log-Likelihood:         -3246.71
Distribution:       Normal          AIC:                     6499.42
Method:             Maximum         BIC:                     6515.84
                    Likelihood
                                    No. Observations:        1762
Date:           Wed, Jun 08 2022    Df Residuals:            1762
Time:                   22:37:27    Df Model:                0
                          Volatility Model
===================================================================
             coef      std err     t      P>|t|     95.0% Conf. Int.
-------------------------------------------------------------------
omega        0.2864    0.186     1.539   0.124   [-7.844e-02, 0.651]
alpha[1]     0.1697  9.007e-02   1.884 5.962e-02 [-6.879e-03, 0.346]
beta[1]      0.7346    0.128     5.757  8.538e-09    [ 0.485, 0.985]
===================================================================

According to Market Risk Analysis, the usual range of values of the parameters in a stable mar-
ket would be 0.05 < 𝛼𝛼 𝛼𝛼𝛼 01  and 0.85 < 𝛽𝛽 𝛽𝛽𝛽 98 . However, we should keep in mind that while 
these ranges will most likely not strictly apply, they already give us some idea of what kinds 
of values we should be expecting.
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We can see that, compared to the ARCH model, the log-likelihood increased, which means 
that the GARCH model fits the data better. However, we should be cautious when drawing such 
conclusions. The log-likelihood will most likely increase every time we add more predictors (as 
we have done with GARCH). In case the number of predictors changes, we should run a likeli-
hood-ratio test in order to compare the goodness-of-fit criteria of two nested regression models.

3.	 Plot the residuals and the conditional volatility:

fitted_model.plot(annualize="D")

In the plots below, we can observe the effect of including the extra component (lagged condi-
tional volatility) into the model specification: 

Figure 9.3: Standardized residuals and the annualized conditional volatility of the fitted 
GARCH model

When using ARCH, the conditional volatility series exhibits many spikes, and then immediately returns 
to a low level. In the case of GARCH, as the model also includes lagged conditional volatility, it takes 
more time to return to the level observed before the spike.

How it works...
In this recipe, we used the same data as in the previous one to compare the results of the ARCH and 
GARCH models. For more information on downloading data, please refer to Steps 1 to 4 in the Modeling 
stock returns’ volatility with ARCH models recipe.
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Due to the convenience of the arch library, it was very easy to adjust the code used previously to fit 
the ARCH model. To estimate the GARCH model, we had to specify the type of volatility model we 
wanted to use and set an additional argument: q=1.

For comparison’s sake, we left the mean process as a zero-mean process.

There’s more...
In this chapter, we have already used two models to explain and potentially forecast the conditional 
volatility of a time series. However, there are numerous extensions of the GARCH model, as well as 
different configurations with which we can experiment in order to find the best-fitting model.

In the GARCH framework, aside from the hyperparameters (such as p and q, in the case of the vanilla 
GARCH model), we can modify the models described next.

Conditional mean model
As explained before, we apply the GARCH class models to residuals obtained after fitting another 
model to the series. Some popular choices for the mean model are:

•	 Zero-mean
•	 Constant mean
•	 Any variant of the ARIMA model (including potential seasonality adjustment, as well as external 

regressors)—some popular choices in the literature are ARMA or even AR models 
•	 Regression models

Conditional volatility model
There are numerous extensions to the GARCH framework. Some popular models include: 

•	 GJR-GARCH: A variant of the GARCH model that takes into account the asymmetry of the 
returns (negative returns tend to have a stronger impact on volatility than positive ones) 

•	 EGARCH: Exponential GARCH 
•	 TGARCH: Threshold GARCH 
•	 FIGARCH: Fractionally integrated GARCH, used with non-stationary data 

 We should be aware of one thing when modeling the conditional mean. For example, we 
may first fit an ARMA model to our time series and then fit a GARCH model to the residuals 
of the first model. However, this is not the preferred way. That is because, in general, the 
ARMA estimates will be inconsistent (or consistent but inefficient, in the case when there 
are only AR terms and no MA terms), which will also impact the following GARCH estimates. 
The inconsistency arises because the first model (ARMA/ARIMA) assumes conditional 
homoskedasticity, while we are explicitly modeling conditional heteroskedasticity with 
the GARCH model in the second step. That is why the preferred way is to estimate both 
models simultaneously, for example, using the arch library (or the rugarch package for R).
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•	 GARCH-MIDAS: In this class of models, volatility is decomposed into a short-term GARCH 
component and a long-term component driven by an additional explanatory variable 

•	 Multivariate GARCH models, such as CCC-/DCC-GARCH

The first three models use slightly different approaches to introduce asymmetry into the conditional 
volatility specification. This is in line with the belief that negative shocks have a stronger impact on 
volatility than positive shocks.

Distribution of errors 
In the Investigating stylized facts of asset returns recipe, we saw that the distribution of returns is not 
Normal (skewed, with heavy tails). That is why distributions other than Gaussian might be more fitting 
for errors in the GARCH model. 

Some possible choices are: 

•	 Student’s t-distribution 
•	 Skew-t distribution (Hansen, 1994) 
•	 Generalized Error Distribution (GED)
•	 Skewed Generalized Error Distribution (SGED)

See also 
Additional resources are available here:

•	 Alexander, C. 2008. Market Risk Analysis, Practical Financial Econometrics (Vol. 2). John Wiley 
& Sons.

•	 Bollerslev, T., 1986. “Generalized Autoregressive Conditional Heteroskedasticity. Journal of 
Econometrics, 31, (3): 307–327. : https://doi.org/10.1016/0304-4076(86)90063-1

•	 Glosten, L. R., Jagannathan, R., and Runkle, D. E., 1993. “On the relation between the expected 
value and the volatility of the nominal excess return on stocks,” The Journal of Finance, 48 (5): 
1779–1801:  https://doi.org/10.1111/j.1540-6261.1993.tb05128.x

•	 Hansen, B. E., 1994. “Autoregressive conditional density estimation,” International Economic 
Review, 35(3): 705–730: https://doi.org/10.2307/2527081

•	 Documentation of the arch library—https://arch.readthedocs.io/en/latest/index.html

Forecasting volatility using GARCH models
In the previous recipes, we have seen how to fit ARCH/GARCH models to a return series. However, 
the most interesting/relevant case of using ARCH class models would be to forecast the future values 
of the volatility. 

 The arch library not only provides most of the models and distributions mentioned 
above, but it also allows for the use of your own volatility models/distributions of errors 
(as long as they fit into a predefined format). For more information on this, please refer 
to the excellent documentation.

https://doi.org/10.1016/0304-4076(86)90063-1
https://arch.readthedocs.io/en/latest/index.html


Chapter 09 317

There are three approaches to forecasting volatility using GARCH class models:

•	 Analytical — due to the inherent structure of ARCH class models, analytical forecasts are always 
available for the one step-ahead forecast. Multi-step analytical forecasts can be obtained using 
a forward recursion; however, that is only possible for models that are linear in the square of 
the residuals (such as GARCH or Heterogeneous ARCH).

•	 Simulation—simulation-based forecasts use the structure of an ARCH class model to forward 
simulate possible volatility paths using the assumed distribution of residuals. In other words, 
they use random number generators (assuming specific distributions) to draw the standard-
ized residuals. This approach creates x possible volatility paths and then produces the average 
as the final forecast. Simulation-based forecasts are always available for any horizon. As the 
number of simulations increases toward infinity, the simulation-based forecasts will converge 
to the analytical forecasts.

•	 Bootstrap (also known as the Filtered Historical Simulation)—those forecasts are very similar 
to the simulation-based forecasts with the difference that they generate (to be precise, draw 
with replacement) the standardized residuals using the actual input data and the estimated 
parameters. This approach requires a minimal amount of in-sample data to use prior to pro-
ducing the forecasts.

In this recipe, we fit a GARCH(1,1) model with Student’s t distributed residuals to Microsoft’s stock 
returns from the years 2015 to 2020. Then, we create 3-step ahead forecasts for each day of 2021.

How to do it...
Execute the following steps to create 3-step ahead volatility forecasts using a GARCH model:

1.	 Import the libraries:

import pandas as pd
import yfinance as yf
from datetime import datetime
from arch import arch_model

2.	 Download data from Yahoo Finance and calculate simple returns:

df = yf.download("MSFT",
                 start="2015-01-01",
                 end="2021-12-31",
                 adjusted=True)

returns = 100 * df["Adj Close"].pct_change().dropna()
returns.name = "asset_returns"

 Due to the specification of ARCH class models, the first out-of-sample forecast will always 
be fixed, regardless of which approach we use.
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3.	 Specify the GARCH model:

model = arch_model(returns, mean="Zero", vol="GARCH", dist="t",
                   p=1, q=1)

4.	 Define the split date and fit the model:

SPLIT_DATE = datetime(2021, 1, 1)
fitted_model = model.fit(last_obs=SPLIT_DATE, disp="off")

5.	 Create and inspect the analytical forecasts:

forecasts_analytical = fitted_model.forecast(horizon=3,
                                             start=SPLIT_DATE,
                                             reindex=False)
forecasts_analytical.variance.plot(
    title="Analytical forecasts for different horizons"
)

Running the snippet generates the following plot:

Figure 9.4: Analytical forecasts for horizons 1, 2, and 3 
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Using the snippet below, we can inspect the generated forecasts.

forecasts_analytical.variance

Figure 9.5: Table presenting the analytical forecasts for horizons 1, 2, and 3 

Each column contains the h-step ahead forecasts generated on the date indicated by the in-
dex. When the forecasts are created, the date from the Date column corresponds to the last 
data point used to generate the forecasts. For example, the columns with the date 2021-01-08 
contain the forecasts for January 9, 10, and 11. Those forecasts were created using data up to 
and including January 8.

6.	 Create and inspect the simulation forecasts:

forecasts_simulation = fitted_model.forecast(
    horizon=3, 
    start=SPLIT_DATE, 
    method="simulation", 
    reindex=False
) 
 
forecasts_simulation.variance.plot( 
    title="Simulation forecasts for different horizons" 
)
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Running the snippet generates the following plot:

Figure 9.6: Simulation-based forecasts for horizons 1, 2, and 3 

7.	 Create and inspect the bootstrap forecasts:

forecasts_bootstrap = fitted_model.forecast(horizon=3,
                                            start=SPLIT_DATE,
                                            method="bootstrap",
                                            reindex=False)
forecasts_bootstrap.variance.plot(
    title="Bootstrap forecasts for different horizons"
)
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Running the snippet generates the following plot:

Figure 9.7: Bootstrap-based forecasts for horizons 1, 2, and 3 

Inspecting the three plots leads to the conclusion that the shape of the volatility forecasts from the 
three different methods is very similar.

How it works...
In the first two steps, we imported the required libraries and downloaded Microsoft’s stock prices 
from the years 2015 to 2021. We calculated the simple returns and multiplied the values by 100 to avoid 
potential convergence issues during optimization.
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In Step 3, we specified our GARCH model, that is, a zero-mean GARCH(1, 1) with residuals following 
Student’s t distribution.

In Step 4, we defined a date (a datetime object) used for splitting the training and test sets. Then, we 
fitted the model using the fit method. This time, we specified the last_obs argument to indicate 
when the training set ends. We passed in the value of datetime(2021, 1, 1), which means that the 
last observation actually used for training would be the last date of December 2020.

In Step 5, we created the analytical forecasts using the forecast method of a fitted GARCH model. 
We specified the forecast horizon and the start date (which is the same as the last_obs, which we 
provided when fitting the model). Then, we plotted the forecasts for each horizon.

In general, using the forecast method returns an ARCHModelForecast object with 4 main attributes 
that we might find useful:

•	 mean—the forecast of the conditional mean
•	 variance—the forecast of the conditional variance of the process 
•	 residual_variance—the forecast of the residual variance. These values will differ from the 

ones stored in variance (for horizons larger than 1) whenever the model has mean dynamics, 
for example, an AR process. 

•	 simulations—an object containing the individual simulations (only for the simulation and 
bootstrap approaches) used for generating the forecasts.

In Steps 6 and 7, we generated the analogical 3-step ahead forecasts using the simulation and bootstrap 
methods. We only added the optional method argument to the forecast method to indicate which 
forecasting approach we would like to use. By default, those methods use 1,000 simulations to create 
the forecasts, but we can change this number to our liking.

There’s more...
We can quite easily visually compare the differences in the forecasts obtained using various forecasting 
approaches. In this case, we would like to compare the analytical and bootstrap approaches over 2020. 
We chose 2020 as this was the last year used in the training sample. 

Execute the following steps to compare 10-step ahead volatility forecasts over the year 2020:

1.	 Import the libraries:

import numpy as np

2.	 Estimate the 10-step ahead volatility forecasts for 2020 using the analytical and bootstrap 
approaches:

FCST_HORIZON = 10

vol_analytic = (
    fitted_model.forecast(horizon=FCST_HORIZON,
                          start=datetime(2020, 1, 1),
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                          reindex=False)
    .residual_variance["2020"]
    .apply(np.sqrt)
)

vol_bootstrap = (
    fitted_model.forecast(horizon=FCST_HORIZON,
                          start=datetime(2020, 1, 1),
                          method="bootstrap",
                          reindex=False)
    .residual_variance["2020"]
    .apply(np.sqrt)
)

While creating the forecasts, we changed the horizon and the start date. We recovered the 
residual variance from the fitted models, filtered for the forecasts made in 2020, and then took 
the square root to convert the variance into volatility.

3.	 Get the conditional volatility for 2020:

vol = fitted_model.conditional_volatility["2020"]

4.	 Create the hedgehog plot:

ax = vol.plot(
    title="Comparison of analytical vs bootstrap volatility forecasts",
    alpha=0.5
)
ind = vol.index
for i in range(0, 240, 10):
    vol_a = vol_analytic.iloc[i]
    vol_b = vol_bootstrap.iloc[i]
    start_loc = ind.get_loc(vol_a.name)
    new_ind = ind[(start_loc+1):(start_loc+FCST_HORIZON+1)]
    vol_a.index = new_ind
    vol_b.index = new_ind
    ax.plot(vol_a, color="r")
    ax.plot(vol_b, color="g")
 
labels = ["Volatility", "Analytical Forecast", 
          "Bootstrap Forecast"]
legend = ax.legend(labels)
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Running the snippet generates the following plot:

Figure 9.8: Comparison of analytical and bootstrap-based approaches to volatility fore-
casting 

A hedgehog plot is a useful kind of visualization for showing the differences between the two fore-
casting approaches over a longer period of time. In this case, we plotted the 10-step ahead forecasts 
every 10 days.

What is interesting to note is the peak in volatility that occurred in March 2020. We can see that close to 
the peak, the GARCH model is predicting a decrease in volatility over the next few days. To get a better 
understanding of how that forecast was created, we can refer to the underlying data. By inspecting the 
DataFrames containing the observed volatility and the forecasts, we can state that the peak happened 
on March 17, while the plotted forecast was created using data up until March 16.  

When inspecting a single volatility model at a time, it might be easier to use the  
hedgehog_plot method of the fitted arch_model to create a similar plot.
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Multivariate volatility forecasting with the CCC-GARCH 
model
In this chapter, we have already considered multiple univariate conditional volatility models. That is 
why, in this recipe, we move to the multivariate setting. As a starting point, we consider Bollerslev’s 
Constant Conditional Correlation GARCH (CCC-GARCH) model. The idea behind it is quite simple. 
The model consists of N univariate GARCH models, related to each other via a constant conditional 
correlation matrix R. 

Like before, we start with the model’s specification:𝒓𝒓𝒕𝒕 = 𝝁𝝁 𝝁 𝝁𝝁𝒕𝒕 𝝐𝝐𝒕𝒕 ∼ 𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝒕𝒕) 𝚺𝚺𝒕𝒕 = 𝑫𝑫𝒕𝒕𝑹𝑹𝑹𝑹𝒕𝒕 
In the first equation, we represent the return series. The key difference between this representation 
and the one presented in previous recipes is the fact that this time, we are considering multivariate 
returns. That is why rt is actually a vector of returns rt = (r1t, …, rnt). The mean and error terms are 
represented analogically. To highlight this, we use bold font when considering vectors or matrices.

The second equation shows that the error terms come from a Multivariate Normal distribution with 
zero means and a conditional covariance matrix 𝚺𝚺𝒕𝒕  (of size N x N).

The elements of the conditional covariance matrix are defined as:

•	 Diagonal: 𝜎𝜎𝑖𝑖𝑖𝑖,𝑡𝑡2 = 𝜔𝜔𝑖𝑖𝑖𝑖 + ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝑞𝑞𝑖𝑖𝑖𝑖 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝑝𝑝𝑖𝑖𝑖𝑖           for i = 1, . . . , N  

•	 Off-diagonal: 𝜎𝜎𝑖𝑖𝑖𝑖,𝑡𝑡2 = 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖,𝑡𝑡𝜎𝜎𝑗𝑗𝑗𝑗,𝑡𝑡            for i ≠ j 
The third equation presents the decomposition of the conditional covariance matrix. Dt represents a 
matrix containing the conditional standard deviations on the diagonal, and R is a correlation matrix.

The key ideas of the model are as follows: 

•	 The model avoids the problem of guaranteeing positive definiteness of 𝚺𝚺𝒕𝒕  by splitting it into 
variances and correlations.

•	 The conditional correlations between error terms are constant over time.
•	 Individual conditional variances follow a univariate GARCH(1,1) model.

In this recipe, we estimate the CCC-GARCH model on a series of stock returns for three US tech com-
panies. For more details about the estimation of the CCC-GARCH model, please refer to the How it 
works... section.
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How to do it...
Execute the following steps to estimate the CCC-GARCH model in Python: 

1.	 Import the libraries: 

import pandas as pd
import numpy as np
import yfinance as yf
from arch import arch_model 

2.	 Specify the risky assets and the time horizon: 

RISKY_ASSETS = ["GOOG", "MSFT", "AAPL"]
START_DATE = "2015-01-01"
END_DATE = "2021-12-31" 

3.	 Download data from Yahoo Finance: 

df = yf.download(RISKY_ASSETS, 
                 start=START_DATE, 
                 end=END_DATE, 
                 adjusted=True) 

4.	 Calculate the daily returns: 

returns = 100 * df["Adj Close"].pct_change().dropna()
returns.plot(
    subplots=True, 
    title=f"Stock returns: {START_DATE} - {END_DATE}"
)
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Running the snippet generates the following plot: 

Figure 9.9: Simple returns of Apple, Google, and Microsoft 

5.	 Define lists for storing objects: 

coeffs = [] 
cond_vol = [] 
std_resids = [] 
models = [] 
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6.	 Estimate the univariate GARCH models: 

for asset in returns.columns:
    model = arch_model(returns[asset], mean="Constant", 
                       vol="GARCH", p=1, q=1)
    model = model.fit(update_freq=0, disp="off");
    coeffs.append(model.params)
    cond_vol.append(model.conditional_volatility)
    std_resids.append(model.std_resid)
    models.append(model)

7.	 Store the results in DataFrames: 

coeffs_df = pd.DataFrame(coeffs, index=returns.columns)
cond_vol_df = (
    pd.DataFrame(cond_vol)
    .transpose()
    .set_axis(returns.columns,
              axis="columns")
)
std_resids_df = (
    pd.DataFrame(std_resids)
    .transpose()
    .set_axis(returns.columns
              axis="columns")
)

The following table contains the estimated coefficients for each return series:

Figure 9.10: Coefficients of the estimated univariate GARCH models 

8.	 Calculate the constant conditional correlation matrix (R):

R = (
    std_resids_df
    .transpose()
    .dot(std_resids_df)
    .div(len(std_resids_df))
)
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9.	 Calculate the one-step ahead forecast of the conditional covariance matrix: 

# define objects
diag = []
D = np.zeros((len(RISKY_ASSETS), len(RISKY_ASSETS)))
 
# populate the list with conditional variances
for model in models:
    diag.append(model.forecast(horizon=1).variance.iloc[-1, 0])
# take the square root to obtain volatility from variance
diag = np.sqrt(diag)
# fill the diagonal of D with values from diag
np.fill_diagonal(D, diag)
 
# calculate the conditional covariance matrix
H = np.matmul(np.matmul(D, R.values), D)

The calculated one-step ahead forecast looks as follows:

array([[2.39962391, 1.00627878, 1.19839517],
       [1.00627878, 1.51608369, 1.12048865],
       [1.19839517, 1.12048865, 1.87399738]])

We can compare this matrix to the one obtained using a more complex DCC-GARCH model, which 
we cover in the next recipe.

How it works...
In Steps 2 and Step 3, we downloaded the daily stock prices of Google, Microsoft, and Apple. Then, 
we calculated simple returns and multiplied them by 100 to avoid encountering convergence errors. 

In Step 5, we defined empty lists for storing elements required at later stages: GARCH coefficients, 
conditional volatilities, standardized residuals, and the models themselves (used for forecasting).

In Step 6, we iterated over the columns of the DataFrame containing the stock returns and fitted a 
univariate GARCH model to each of the series. We stored the results in the predefined lists. Then, we 
wrangled the data in order to have objects such as residuals in DataFrames, to make working with 
them easier. 

In Step 8, we calculated the constant conditional correlation matrix (R) as the unconditional correla-
tion matrix of zt: 𝑹𝑹 𝑹 1𝑇𝑇∑ 𝒛𝒛𝒕𝒕𝒛𝒛𝒕𝒕′𝑇𝑇𝑡𝑡𝑡𝑡  

Here, zt stands for time t standardized residuals from the univariate GARCH models.
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In the last step, we obtained one-step ahead forecasts of the conditional covariance matrix  
Ht+1. To do so, we did the following:

•	 We created a matrix Dt+1 of zeros, using np.zeros.
•	 We stored the one-step ahead forecasts of conditional variances from univariate GARCH models 

in a list called diag.
•	 Using np.fill_diagonal, we placed the elements of the list called diag on the diagonal of 

the matrix Dt+1

•	 Following equation 3 from the introduction, we obtained the one-step ahead forecast using 
matrix multiplication (np.matmul).

See also
Additional resources are available here:

•	 Bollerslev, T.1990. “Modeling the Coherence in Short-Run Nominal Exchange Rates: A Multi-
variate Generalized ARCH Approach,” Review of Economics and Statistics, 72(3): 498–505: https://
doi.org/10.2307/2109358

Forecasting the conditional covariance matrix using 
DCC-GARCH
In this recipe, we cover an extension of the CCC-GARCH model: Engle’s Dynamic Conditional Cor-
relation GARCH (DCC-GARCH) model. The main difference between the two is that in the latter, the 
conditional correlation matrix is not constant over time—we work with Rt instead of R.

There are some nuances in terms of estimation, but the outline is similar to the CCC-GARCH model:

•	 Estimate the univariate GARCH models for conditional volatility
•	 Estimate the DCC model for conditional correlations

In the second step of estimating the DCC model, we use a new matrix Qt, representing a proxy cor-
relation process. 𝑹𝑹𝒕𝒕 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑸𝑸𝒕𝒕)−1/2𝑸𝑸𝒕𝒕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝒕𝒕)−1/2 𝑸𝑸𝒕𝒕 = (1 − 𝛾𝛾 𝛾 𝛾𝛾)𝑸̅𝑸 + 𝛾𝛾𝛾𝛾𝒕𝒕𝒕𝒕𝒕𝒛𝒛′𝒕𝒕𝒕𝒕𝒕 + 𝛿𝛿𝛿𝛿𝒕𝒕𝒕𝒕𝒕 

𝑸̅𝑸 = 𝟏𝟏𝑻𝑻∑ 𝒛𝒛𝒕𝒕𝒛𝒛′𝒕𝒕𝑇𝑇𝑡𝑡𝑡𝑡  

The first equation describes the relationship between the conditional correlation matrix Rt and the 
proxy process Qt. The second equation represents the dynamics of the proxy process. The last equation 
shows the definition of 𝑸̅𝑸 , which is defined as the unconditional correlation matrix of standardized 
residuals from the univariate GARCH models.
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This representation of the DCC model uses an approach called correlation targeting. It means 
that we are effectively reducing the number of parameters we need to estimate to two: 𝛾𝛾  and  𝛿𝛿 . This is similar to volatility targeting in the case of univariate GARCH models, further described in 
the There’s more... section.

At the time of writing, there is no Python library that we can use to estimate DCC-GARCH models. One 
solution would be to write such a library from scratch. Another, more time-efficient solution would 
be to use a well-established R package for that task. That is why in this recipe, we also introduce how 
to efficiently make Python and R work together in one Jupyter notebook (this can also be done in a 
normal .py script). The rpy2 library is an interface between both languages. It enables us to not only 
run both R and Python in the same notebook but also to transfer objects between the two environments.

In this recipe, we use the same data as in the previous one, in order to highlight the differences in 
the approach and results.

Getting ready
For details on how to easily install R, please refer to the following resources:

•	 https://cran.r-project.org/

•	 https://docs.anaconda.com/anaconda/user-guide/tasks/using-r-language/

If you use conda as your package manager, the process of setting everything up can be greatly sim-
plified. If you just install rpy2 using the conda install rpy2 command, the package manager will 
automatically install the latest version of R and some other required dependencies.

Before executing the following code, please make sure to run the code from the previous recipe to 
have the data available.

How to do it... 
Execute the following steps to estimate a DCC-GARCH model in Python (using R):

1.	 Set up the connection between Python and R using rpy2:

%load_ext rpy2.ipython

2.	 Install the rmgarch R package and load it: 

%%R 
 
install.packages('rmgarch', repos = "http://cran.us.r-project.org") 
library(rmgarch)

We only need to install the rmgarch package once. After doing so, you can safely comment out 
the line starting with install.packages.

https://cran.r-project.org/
https://docs.anaconda.com/anaconda/user-guide/tasks/using-r-language/
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3.	 Import the dataset into R:

%%R -i returns
print(head(returns))

Using the preceding command, we print the first five rows of the R data.frame: 

                            AAPL       GOOG       MSFT
2015-01-02 00:00:00 -0.951253138 -0.3020489  0.6673615
2015-01-05 00:00:00 -2.817148406 -2.0845731 -0.9195739
2015-01-06 00:00:00  0.009416247 -2.3177049 -1.4677364
2015-01-07 00:00:00  1.402220689 -0.1713264  1.2705295
2015-01-08 00:00:00  3.842214047  0.3153082  2.9418228 

4.	 Define the model specification:

%%R
 
# define GARCH(1,1) model
univariate_spec <- ugarchspec(
    mean.model = list(armaOrder = c(0,0)),
    variance.model = list(garchOrder = c(1,1), 
                          model = "sGARCH"),
    distribution.model = "norm"
)
 
# define DCC(1,1) model
n <- dim(returns)[2]
dcc_spec <- dccspec(
    uspec = multispec(replicate(n, univariate_spec)),
    dccOrder = c(1,1),
    distribution = "mvnorm"
)

5.	 Estimate the model: 

%%R 
dcc_fit <- dccfit(dcc_spec, data=returns) 
dcc_fit
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The following table contains the model’s specification summary, estimated coefficients, as well 
as a selection of goodness-of-fit criteria:

*---------------------------------*
*          DCC GARCH Fit          *
*---------------------------------*

Distribution         :  mvnorm
Model                :  DCC(1,1)
No. Parameters       :  17
[VAR GARCH DCC UncQ] : [0+12+2+3]
No. Series           :  3
No. Obs.             :  1762
Log-Likelihood       :  -8818.787
Av.Log-Likelihood    :  -5 

Optimal Parameters
--------------------------------------------------------------------
               Estimate  Std. Error  t value Pr(>|t|)
[AAPL].mu      0.189285    0.037040   5.1102 0.000000
[AAPL].omega   0.176370    0.051204   3.4445 0.000572
[AAPL].alpha1  0.134726    0.026084   5.1651 0.000000
[AAPL].beta1   0.811601    0.029763  27.2691 0.000000
[GOOG].mu      0.125177    0.040152   3.1176 0.001823
[GOOG].omega   0.305000    0.163809   1.8619 0.062614
[GOOG].alpha1  0.183387    0.089046   2.0595 0.039449
[GOOG].beta1   0.715766    0.112531   6.3606 0.000000
[MSFT].mu      0.149371    0.030686   4.8677 0.000001
[MSFT].omega   0.269463    0.086732   3.1068 0.001891
[MSFT].alpha1  0.214566    0.052722   4.0698 0.000047
[MSFT].beta1   0.698830    0.055597  12.5695 0.000000
[Joint]dcca1   0.060145    0.016934   3.5518 0.000383
[Joint]dccb1   0.793072    0.059999  13.2180 0.000000

Information Criteria
---------------------
                   
Akaike       10.029
Bayes        10.082
Shibata      10.029
Hannan-Quinn 10.049 
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6.	 Calculate the five-step ahead forecasts: 

forecasts <- dccforecast(dcc_fit, n.ahead = 5) 

7.	 Access the forecasts: 

%%R 
 
# conditional covariance matrix 
forecasts@mforecast$H 
# conditional correlation matrix 
forecasts@mforecast$R 
# proxy correlation process 
forecasts@mforecast$Q 
# conditional mean forecasts 
forecasts@mforecast$mu 

The following image shows the five-step ahead forecasts of the conditional covariance matrix: 

[[1]]
, , 1
 
         [,1]     [,2]     [,3]
[1,] 2.397337 1.086898 1.337702
[2,] 1.086898 1.515434 1.145010
[3,] 1.337702 1.145010 1.874023
 
, , 2
 
         [,1]     [,2]     [,3]
[1,] 2.445035 1.138809 1.367728
[2,] 1.138809 1.667607 1.231062
[3,] 1.367728 1.231062 1.981190
 
, , 3
 
         [,1]     [,2]     [,3]
[1,] 2.490173 1.184169 1.395189
[2,] 1.184169 1.804434 1.308254
[3,] 1.395189 1.308254 2.079076
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, , 4

         [,1]     [,2]     [,3]
[1,] 2.532888 1.224255 1.420526
[2,] 1.224255 1.927462 1.377669
[3,] 1.420526 1.377669 2.168484
 
, , 5
 
         [,1]     [,2]     [,3]
[1,] 2.573311 1.259997 1.444060
[2,] 1.259997 2.038083 1.440206
[3,] 1.444060 1.440206 2.250150 

We can now compare this forecast (the first step) to the one obtained using a simpler CCC-GARCH 
model. The values of the one-step ahead conditional covariance forecasts are very similar for CCC- 
and DCC-GARCH models.

How it works...
In this recipe, we used the same data as in the previous recipe, in order to compare the results of the 
CCC- and DCC-GARCH models. For more information on downloading the data, please refer to Steps 
1 to 4 in the previous recipe. 

To work with Python and R at the same time, we used the rpy2 library. In this recipe, we presented how 
to use the library in combination with Jupyter Notebook. For more details on how to use the library 
in a .py script, please refer to the official documentation. Also, we do not delve into the details of R 
code in general, as this is outside the scope of this book. 

In Step 1, aside from loading any libraries, we also had to use the following magic command:  
%load_ext rpy2.ipython. It enabled us to run R code by adding %%R to the beginning of a cell in the 
Notebook. For that reason, please assume that any code block in this chapter is a separate Notebook 
cell (see the Jupyter Notebook in the accompanying GitHub repository for more information).

In Step 2, we had to install the required R dependencies. To do so, we used the install.packages 
function, and we specified the repository we wanted to use.

In Step 3, we moved the pandas DataFrame into the R environment. To do so, we passed the extra 
code -i returns, together with the %%R magic command. We could have imported the data in any of 
the ensuing steps.

 When you want to move a Python object to R, do some manipulation/model-
ing, and move the final results back to Python, you can use the following syntax:  
%%R -i input_object -o output_object.
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In Step 4, we defined the DCC-GARCH model’s specification. First, we defined the univariate GARCH 
specification (for conditional volatility estimation) using ugarchspec. This function comes from a 
package called rugarch, which is the framework for univariate GARCH modeling. By not specifying 
the ARMA parameters, we chose a constant mean model. For the volatility, we used a GARCH(1,1) 
model with normally distributed innovations. Secondly, we also specified the DCC model. To do so, we:

•	 Replicated the univariate specification for each returns series – in this case, three
•	 Specified the order of the DCC model—in this case, DCC(1,1)
•	 Specified the multivariate distribution—in this case, Multivariate Normal

We could see the summary of the specification by calling the dcc_spec object. 

In Step 5, we estimated the model by calling the dccfit function with the specification and data as 
arguments. Afterward, we obtained five-step ahead forecasts by using the dccforecast function, which 
returned nested objects such as: 

•	 H: the conditional covariance matrix
•	 R: the conditional correlation matrix
•	 Q: the proxy process for the correlation matrix
•	 mu: the conditional mean

Each one of them contained five-step ahead forecasts, stored in lists.

There’s more...
In this section, we would also like to go over a few more details on estimating GARCH models.

Estimation details
In the first step of estimating the DCC-GARCH model, we can additionally use an approach called 
variance targeting. The idea is to reduce the number of parameters we need to estimate in the GARCH 
model.

To do so, we can slightly modify the GARCH equation. The original equation runs as follows:𝜎𝜎𝑡𝑡2 = 𝜔𝜔 𝜔𝜔 𝜔𝜔𝑖𝑖𝜖𝜖𝑡𝑡𝑡𝑡𝑡2𝑞𝑞𝑖𝑖𝑖𝑖 +∑ 𝛽𝛽𝑖𝑖𝜎𝜎𝑡𝑡𝑡𝑡𝑡2𝑝𝑝𝑖𝑖𝑖𝑖  

Unconditional volatility is defined as: 𝜎𝜎𝜎 𝜎 𝜎𝜎𝜎𝜎𝜎 𝜎 𝜎𝜎 𝜎 𝜎𝜎𝜎 
We can now plug it into the GARCH equation and produce the following: 𝜎𝜎𝑡𝑡2 = 𝜎𝜎𝜎𝜎𝜎 𝜎 𝜎𝜎 𝜎 𝜎𝜎𝜎 𝜎𝜎 𝜎𝜎𝑖𝑖𝜖𝜖𝑡𝑡𝑡𝑡𝑡2 +∑𝛽𝛽 𝑖𝑖𝜎𝜎𝑡𝑡𝑡𝑡𝑡2𝑝𝑝𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖  
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In the last step, we replace the unconditional volatility with the sample variance of the returns:𝜎𝜎𝜎 𝜎 1𝑇𝑇∑ 𝜖𝜖𝑡𝑡2𝑇𝑇𝑡𝑡𝑡𝑡  

By doing so, we have one less parameter to estimate for each GARCH equation. Also, the uncondi-
tional variance implied by the model is guaranteed to be equal to the unconditional sample variance. 
To use variance targeting in practice, we add an extra argument to the ugarchspec function call: 
ugarchspec(..., variance.targeting = TRUE).

Univariate and multivariate GARCH models
It is also worth mentioning that rugarch and rmgarch work nicely together, as they were both devel-
oped by the same author and created as a single go-to framework for estimating GARCH models in R. 
We have already gained some experience with this when we used the ugarchspec function in the first 
step of estimating the DCC-GARCH model. There is much more to discover in terms of that package.

Parallelizing the estimation of multivariate GARCH models
Lastly, the estimation process of the DCC-GARCH model can be easily parallelized, with the help of 
the parallel R package.

To potentially speed up computations with parallelization, we reused the majority of the code from 
this recipe and added a few extra lines. First, we had to set up a cluster by using makePSOCKcluster 
from the parallel package and indicated that we would like to use three cores. Then, we defined the 
parallelizable specification using multifit. Lastly, we fitted the DCC-GARCH model. The difference 
here, compared to the previously used code, is that we additionally passed the fit and cluster argu-
ments to the function call. When we are done with the estimation, we stop the cluster. You can find 
the entire snippet below:

%%R

# parallelized DCC-GARCH(1,1)
library("parallel")

# set up the cluster
cl <- makePSOCKcluster(3)

# define parallelizable specification
parallel_fit <- multifit(multispec(replicate(n, univariate_spec)),
                         returns,
                         cluster = cl)
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# fit the DCC-GARCH model
dcc_fit <- dccfit(dcc_spec,
                  data = returns,
                  fit.control = list(eval.se = TRUE),
                  fit = parallel_fit,
                  cluster = cl)

# stop the cluster
stopCluster(cl)

Using the preceding code, we can significantly speed up the estimation of the DCC-GARCH model. 
The improvement in performance is mostly visible when dealing with large volumes of data. Also, the 
approach of using the parallel package together with multifit can be used to speed up the calcula-
tions of various GARCH and ARIMA models from the rugarch and rmgarch packages.

See also
Additional resources:

•	 Engle, R.F., 2002. “Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized 
Autoregressive Conditional Heteroskedasticity Models,” Journal of Business and Economic 
Statistics, 20(3): 339–350: https://doi.org/10.1198/073500102288618487 

•	 Ghalanos, A. (2019). The rmgarch models: Background and properties. (Version 1.3–0): https://
cran.r-project.org/web/packages/rmgarch/vignettes/The_rmgarch_models.pdf 

•	 rpy2's documentation: https://rpy2.github.io/

Summary
Volatility modeling and forecasting have attracted significant attention in recent years, largely due to 
their importance in financial markets. In this chapter, we have covered the practical application of 
GARCH models (both univariate and multivariate) to volatility forecasting. By knowing how to model 
volatility using GARCH class models, we can use more accurate volatility forecasts to replace the 
naïve estimates in many practical use cases, for example, risk management, volatility trading, and 
derivatives valuation.

We have focused on GARCH models due to their ability to capture volatility clustering. However, there 
are other approaches to volatility modeling. For example, regime-switching models assume that there 
are certain repeating patterns (regimes) in data. Therefore, we should be able to predict future states 
by using parameter estimates based on past observations.

https://doi.org/10.1198/073500102288618487
https://cran.r-project.org/web/packages/rmgarch/vignettes/The_rmgarch_models.pdf
https://cran.r-project.org/web/packages/rmgarch/vignettes/The_rmgarch_models.pdf
https://rpy2.github.io/
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Monte Carlo Simulations in 
Finance

Monte Carlo simulations are a class of computational algorithms that use repeated random sampling 
to solve any problems that have a probabilistic interpretation. In finance, one of the reasons they 
gained popularity is that they can be used to accurately estimate integrals. The main idea of Monte 
Carlo simulations is to produce a multitude of sample paths (possible scenarios/outcomes), often over 
a given period of time. The horizon is then split into a specified number of time steps and the process 
of doing so is called discretization. Its goal is to approximate the continuous time in which the pricing 
of financial instruments happens.

The results from all of these simulated sample paths can be used to calculate metrics such as the 
percentage of times an event occurred, the average value of an instrument at the last step, and so on. 
Historically, the main problem with the Monte Carlo approach was that it required heavy computa-
tional power to calculate all of the considered scenarios. Nowadays, this is becoming less of a problem 
as we can run fairly advanced simulations on a desktop computer or a laptop, and if we run out of 
computing power, we can use cloud computing and its more powerful processors.

By the end of this chapter, we will have seen how we can use Monte Carlo methods in various scenarios 
and tasks. In some of them, we will create the simulations from scratch, while in others, we will use 
modern Python libraries to make the process even easier. Due to the method’s flexibility, Monte Carlo 
is one of the most important techniques in computational finance. It can be adapted to various prob-
lems, such as pricing derivatives with no closed-form solution (American/exotic options), valuation of 
bonds (for example, a zero-coupon bond), estimating the uncertainty of a portfolio (for example, by 
calculating Value-at-Risk and Expected Shortfall), and carrying out stress tests in risk management. 
We will show you how to solve some of these problems in this chapter.
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In this chapter, we cover the following recipes:

•	 Simulating stock price dynamics using a geometric Brownian motion
•	 Pricing European options using simulations
•	 Pricing American options with Least Squares Monte Carlo
•	 Pricing American options using QuantLib
•	 Pricing barrier options
•	 Estimating Value-at-Risk using Monte Carlo

Simulating stock price dynamics using a geometric 
Brownian motion
Simulating stock prices plays a crucial role in the valuation of many derivatives, most notably options. 
Due to the randomness in the price movement, these simulations rely on stochastic differential 
equations (SDEs). A stochastic process is said to follow a geometric Brownian motion (GBM) when 
it satisfies the following SDE: 𝑑𝑑𝑑𝑑𝑡𝑡  =  𝜇𝜇𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑 +  𝜎𝜎𝜎𝜎𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡 

Here, we have the following:

•	 St—Stock price
•	 𝜇𝜇 —The drift coefficient, that is, the average return over a given period or the instantaneous 

expected return
•	 𝜎𝜎 —The diffusion coefficient, that is, how much volatility is in the drift
•	 Wt —The Brownian motion
•	 d—This symbolizes the change in the variable over the considered time increment, while dt 

is the change in time

We will not investigate the properties of the Brownian motion in too much depth, as it is outside the 
scope of this book. Suffice to say, Brownian increments are calculated as a product of a Standard 
Normal random variable (𝑟𝑟𝑟𝑟 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  and the square root of the time increment. 

Another way to say this is that the Brownian increment comes from 𝑟𝑟𝑟𝑟 ∼ 𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝑁 , where t is the time 
increment. We obtain the Brownian path by taking the cumulative sum of the Brownian increments.

The SDE mentioned above is one of the few that has a closed-form solution:𝑆𝑆(𝑡𝑡) =  𝑆𝑆0𝑒𝑒(𝜇𝜇𝜇12𝜎𝜎2)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
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Where S0 = S(0) is the initial value of the process, which in this case is the initial price of a stock. The 
preceding equation presents the relationship between the stock price at time t and the initial stock price.

For simulations, we can use the following recursive formula:𝑆𝑆(𝑡𝑡𝑖𝑖𝑖𝑖) = 𝑆𝑆(𝑡𝑡𝑖𝑖) exp ((𝜇𝜇 𝜇 12 𝜎𝜎2)(𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖) + 𝜎𝜎√𝑡𝑡𝑖𝑖𝑖𝑖− 𝑡𝑡𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖) 

Where Zi is a Standard Normal random variable and i = 0, 1, …, T-1  is the time index. This specification 
is possible because the increments of W are independent and normally distributed. Please refer to 
Euler’s discretization for a better understanding of the formula’s origin.

In this recipe, we use Monte Carlo methods and a GBM to simulate IBM’s stock prices one month 
ahead—using data from 2021, we will simulate the possible paths over January 2022.

How to do it...
Execute the following steps to simulate IBM’s stock prices one month ahead:

1.	 Import the libraries:

import numpy as np
import pandas as pd
import yfinance as yf

2.	 Download IBM’s stock prices from Yahoo Finance:

df = yf.download("IBM",
                 start="2021-01-01",
                 end="2022-01-31",
                 adjusted=True)

3.	 Calculate and plot the daily returns:

returns = df["Adj Close"].pct_change().dropna()
returns.plot(title="IBM's returns")

 A GBM is a process that does not account for mean-reversion and time-dependent vola-
tility. That is why it is often used for stocks and not for bond prices, which tend to display 
long-term reversion to the face value.
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Running the snippet produces the following plot: 

Figure 10.1: IBM’s simple returns

4.	 Split the data into training and test sets:

train = returns["2021"]
test = returns["2022"]

5.	 Specify the parameters of the simulation: 

T = len(test)
N = len(test)
S_0 = df.loc[train.index[-1], "Adj Close"]
N_SIM = 100
mu = train.mean()
sigma = train.std()
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6.	 Define the function used for the simulations:

 def simulate_gbm(s_0, mu, sigma, n_sims, T, N, 
                  random_seed=42):
    np.random.seed(random_seed)
    
    dt = T/N
    dW = np.random.normal(scale=np.sqrt(dt), size=(n_sims, N))
    W = np.cumsum(dW, axis=1)
    
    time_step = np.linspace(dt, T, N)
    time_steps = np.broadcast_to(time_step, (n_sims, N))
    
    S_t = (
        s_0 * np.exp((mu - 0.5 * sigma**2) * time_steps + sigma * W)
    )
    S_t = np.insert(S_t, 0, s_0, axis=1)
    
    return S_t

7.	 Run the simulations and store the results in a DataFrame:

gbm_simulations = simulate_gbm(S_0, mu, sigma, N_SIM, T, N)
sim_df = pd.DataFrame(np.transpose(gbm_simulations),
                      index=train.index[-1:].union(test.index))

8.	 Create a DataFrame with the average value for each time step and the corresponding actual 
stock price:

res_df = sim_df.mean(axis=1).to_frame()
res_df = res_df.join(df["Adj Close"])
res_df.columns = ["simulation_average", "adj_close_price"]

9.	 Plot the results of the simulation:

ax = sim_df.plot(
    alpha=0.3, legend=False, title="Simulation's results"
)
res_df.plot(ax=ax, color = ["red", "blue"])
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In Figure 10.2, we observe that the predicted stock prices (the averages of the simulations for 
each time step) exhibit a slightly positive trend. That could be attributed to the positive drift 
term 𝜇𝜇  = 0.07%. However, we should take that conclusion with a pinch of salt given the very 
small number of simulations.

 

Figure 10.2: The simulated paths together with their average

Bear in mind that such a visualization is only feasible for a reasonable number of sample paths. In 
real-life cases, we want to use significantly more sample paths than 100. The general approach to 
Monte Carlo simulations is that having more sample paths leads to more accurate/reliable results.

How it works... 
In Steps 2 and 3, we downloaded IBM’s stock prices and calculated simple returns. In the next step, we 
divided the data into the training and test sets. While there is no explicit training of any model here, 
we used the training set to calculate the average and standard deviation of the returns. We then used 
those values as the drift (mu) and diffusion (sigma) coefficients for our simulations. Additionally, in 
Step 5, we defined the following parameters:

•	 T: Forecasting horizon; in this case, the number of days in the test set. 
•	 N: Number of time increments in the forecasting horizon. For our simulation, we keep N = T.
•	 S_0: Initial price. For this simulation, we use the last observation from the training set.
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•	 N_SIM: Number of simulated paths.

In Step 6, we defined the function for running the simulations. It is good practice to define a function/
class for such a problem, as it will also come in handy in the following recipes. The function executes 
the following steps:

1.	 Defines the time increment (dt) and the Brownian increments (dW). In the matrix of Brownian 
increments (size: N_SIM × N), each row describes one sample path.

2.	 Calculates the Brownian paths (W) by running a cumulative sum (np.cumsum) over the rows. 
3.	 Creates a matrix containing the time steps (time_steps). To do so, we created an array of 

evenly spaced values within an interval (the horizon of the simulation). For that, we used 
the np.linspace function. Afterward, we broadcasted the array to the intended shape using 
np.broadcast_to. 

4.	 Calculates the stock price at each point in time using the closed-form formula.
5.	 Inserts the initial value into the first position of each row.

In the function’s definition, we can recognize the drift as (mu - 0.5 * sigma ** 2) * time_steps 
and the diffusion as sigma * W. Additionally, while defining this function, we followed the vectorized 
approach. By doing so, we avoided writing any for loops, which would be inefficient in the case of 
large simulations.

In Step 7, we ran the simulations and stored the outcome (sample paths) in a DataFrame. While doing so, 
we transposed the data so that we had one path per column, which simplifies using the plot method of 
the pandas DataFrame. To have the appropriate index, we used the union method of a DatetimeIndex 
to join the index of the last observation from the training set and the indices from the test set.

 Monte Carlo simulations use a process called discretization. The idea is to approximate 
the continuous pricing of financial assets by splitting the considered time horizon into 
a large number of discrete intervals. That is why, except for considering the forecasting 
horizon, we also need to indicate the number of time increments to fit into the horizon.

 There was no explicit need to broadcast the vector containing time steps. It would have 
been done automatically to match the required dimensions (the dimension of W). By doing 
it manually, we get more control over what we are doing, which makes the code easier 
to debug. We should also be aware that in languages such as R, there is no automatic 
broadcasting.

 For reproducible results, use np.random.seed before simulating the paths.
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In Step 8, we calculated the predicted stock price as the average value of all the simulations for each 
point of time and stored those results in a DataFrame. Then, we also joined the actual stock prices 
for each date.

In the last step, we visualized the simulated sample paths. While visualizing the simulated paths, we 
chose alpha=0.3 to make the lines transparent. By doing so, it is easier to see the two lines representing 
the predicted (average) path and the actual one.

There’s more...
There are some statistical methods that make working with Monte Carlo simulations easier (higher 
accuracy, faster computations). One of them is a variance reduction method called antithetic variates. 
In this approach, we try to reduce the variance of the estimator by introducing negative dependence 
between pairs of random draws. This translates into the following: when creating sample paths, for 
each [𝜖𝜖1, … , 𝜖𝜖𝑡𝑡] , we also take the antithetic values, that is, [−𝜖𝜖1,… ,−𝜖𝜖𝑡𝑡] .
The advantages of this approach are:

•	 Reduction (by half) of the number of Standard Normal samples to be drawn in order to gen-
erate N paths

•	 Reduction of the sample path variance, while at the same time improving the accuracy

We implemented this approach in the improved simulate_gbm function. Additionally, we made the 
function shorter by putting the majority of the calculations into one line.

Before we implemented these changes, we timed the initial version of the function:

%timeit gbm_simulations = simulate_gbm(S_0, mu, sigma, N_SIM, T, N)

The score was:

71 µs ± 126 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

The new function is defined as follows:

def simulate_gbm(s_0, mu, sigma, n_sims, T, N, random_seed=42, 
                 antithetic_var=False):
    np.random.seed(random_seed)
    
    # time increment
    dt = T/N
    
    # Brownian
    if antithetic_var:
        dW_ant = np.random.normal(scale = np.sqrt(dt),
                                  size=(int(n_sims/2), N + 1))
        dW = np.concatenate((dW_ant, -dW_ant), axis=0)
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    else:
        dW = np.random.normal(scale = np.sqrt(dt),
                              size=(n_sims, N + 1))
 
    # simulate the evolution of the process
    S_t = s_0 * np.exp(np.cumsum((mu - 0.5*sigma**2)*dt + sigma*dW,
                                 axis=1))
    S_t[:, 0] = s_0
    
    return S_t

First, we run the simulations without antithetic variables:

%timeit gbm_simulations = simulate_gbm(S_0, mu, sigma, N_SIM, T, N)

Which scores:

50.3 µs ± 275 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Then, we run the simulations with antithetic variables:

%timeit gbm_simulations = simulate_gbm(S_0, mu, sigma, N_SIM, T, N, antithetic_
var=True)

Which scores:

38.2 µs ± 623 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

We succeeded in making the function faster. If you are interested in pure performance, these simu-
lations can be further expedited using Numba, Cython, or multiprocessing.

See also
In this recipe, we have shown how to simulate stock prices using a geometric Brownian motion. How-
ever, there are other stochastic processes that could be used as well, some of which are:

•	 Jump-diffusion model: Merton, R. “Option Pricing When the Underlying Stock Returns Are 
Discontinuous,” Journal of Financial Economics, 3, 3 (1976): 125–144

•	 Square-root diffusion model: Cox, John, Jonathan Ingersoll, and Stephen Ross , “A theory of 
the term structure of interest rates,” Econometrica, 53, 2 (1985): 385–407

•	 Stochastic volatility model: Heston, S. L., “A closed-form solution for options with stochastic 
volatility with applications to bond and currency options,” The Review of Financial Studies, 6(2): 
327-343.

Other possible variance reduction techniques include control variates and common ran-
dom numbers.
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Pricing European options using simulations
Options are a type of derivative instrument because their price is linked to the price of the underlying 
security, such as stock. Buying an options contract grants the right, but not the obligation, to buy or 
sell an underlying asset at a set price (known as a strike) on/before a certain date. The main reason 
for the popularity of options is because they hedge away exposure to an asset’s price moving in an 
undesirable way.

In this recipe we will focus on one type of option, that is, European options. A European call/put 
option gives us the right (but again, no obligation) to buy/sell a certain asset on a certain expiry date 
(commonly denoted as T).

There are many possible ways of option valuation, for example, using:

•	 Analytical formulas (only some kinds of options have those)
•	 Binomial tree approach
•	 Finite differences
•	 Monte Carlo simulations

European options are an exception in the sense that there exists an analytical formula for their valu-
ation, which is not the case for more advanced derivatives, such as American or exotic options.

To price options using Monte Carlo simulations, we use risk-neutral valuation, under which the fair 
value of a derivative is the expected value of its future payoff(s). In other words, we assume that the 
option premium grows at the same rate as the risk-free rate, which we use for discounting to the 
present value. For each of the simulated paths, we calculate the option’s payoff at maturity, take the 
average of all the paths, and discount it to the present value.

In this recipe, we show how to code the closed-form solution of the Black-Scholes model and then use 
the Monte Carlo simulation approach. For simplicity, we use fictitious input data, but real-life data 
could be used analogically.

How to do it...
Execute the following steps to price European options using the analytical formula and Monte Carlo 
simulations:

1.	 Import the libraries:

import numpy as np
from scipy.stats import norm
from chapter_10_utils import simulate_gbm

In this recipe, we use the simulate_gbm function we have defined in the previous recipe. For 
our convenience, we store it in a separate .py script, from which we can import it.
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2.	 Define the option’s parameters for the valuation:

S_0 = 100
K = 100
r = 0.05
sigma = 0.50
T = 1 
N = 252 
dt = T / N 
N_SIMS = 1_000_000 
discount_factor = np.exp(-r * T)

3.	 Prepare the valuation function using the analytical solution: 

 def black_scholes_analytical(S_0, K, T, r, sigma, type="call"):
    d1 = (
        np.log(S_0 / K) + (r + 0.5*sigma**2) * T) / (sigma*np.sqrt(T)
    )
    d2 = d1 - sigma * np.sqrt(T)
    if type == "call":
        N_d1 = norm.cdf(d1, 0, 1)
        N_d2 = norm.cdf(d2, 0, 1)
        val = S_0 * N_d1 - K * np.exp(-r * T) * N_d2
    elif type == "put":
        N_d1 = norm.cdf(-d1, 0, 1)
        N_d2 = norm.cdf(-d2, 0, 1)
        val = K * np.exp(-r * T) * N_d2 - S_0 * N_d1
    else:
        raise ValueError("Wrong input for type!")
 
    return val

4.	 Valuate a call option using the specified parameters: 

black_scholes_analytical(S_0=S_0, K=K, T=T, 
                         r=r, sigma=sigma, 
                         type="call")

The price of a European call option with the specified parameters is 21.7926.

5.	 Simulate the stock path using the simulate_gbm function:

gbm_sims = simulate_gbm(s_0=S_0, mu=r, sigma=sigma,
                        n_sims=N_SIMS, T=T, N=N)
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6.	 Calculate the option’s premium:

premium = (
    discount_factor * np.mean(np.maximum(0, gbm_sims[:, -1] - K))
)
premium

The calculated option premium is 21.7562. Please bear in mind that we are using a fixed ran-
dom seed in the simulate_gbm function to obtain reproducible results. In general, whenever 
we are dealing with simulations, we can expect some degree of randomness in the results.

Here, we can see that the option premium that we calculated using Monte Carlo simulations is close 
to the one from a closed-form solution of the Black-Scholes model. To increase the accuracy of the 
simulation, we could increase the number of simulated paths (using the N_SIMS parameter).

How it works...
In Step 2, we defined the parameters that we used for this recipe: 

•	 S_0: Initial stock price 
•	 K: Strike price, that is, the one we can buy/sell for at maturity 
•	 r: Annual risk-free rate 
•	 sigma: Underlying stock volatility (annualized) 
•	 T: Time until maturity in years 
•	 N: Number of time increments for simulations 
•	 N_SIMS: Number of simulated sample paths 
•	 discount_factor: Discount factor, which is used to calculate the present value of the future 

payoff 

In Step 3, we defined a function for calculating the option premium using the closed-form solution to 
the Black-Scholes model (for non-dividend-paying stocks). We used it in Step 4 to calculate the bench-
mark for the Monte Carlo simulations. 

The analytical solutions to the call and put options are defined as follows:𝐶𝐶(𝑆𝑆𝑡𝑡, 𝑡𝑡) = 𝑁𝑁(𝑑𝑑1)𝑆𝑆𝑡𝑡 − 𝑁𝑁(𝑑𝑑2)𝐾𝐾𝐾𝐾−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃(𝑆𝑆𝑡𝑡, 𝑡𝑡) = 𝑁𝑁(−𝑑𝑑2)𝐾𝐾𝐾𝐾−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑁𝑁(−𝑑𝑑1)𝑆𝑆𝑡𝑡  𝑑𝑑1 = 1𝜎𝜎√𝑇𝑇 𝑇 𝑇𝑇 [ln (𝑆𝑆𝑡𝑡𝐾𝐾) + (𝑟𝑟 𝑟 𝜎𝜎22 )(𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇 𝑇 𝑇𝑇 
Where N() stands for the cumulative distribution function (CDF) of the Standard Normal distribution 
and T - t is the time to maturity expressed in years. Equation 1 represents the formula for the price of 
a European call option, while equation 2 represents the price of the European put option. Informally, 
the two terms in equation 1 can be thought of as:
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•	 The current price of the stock, weighted by the probability of exercising the option to buy the 
stock (N(d1))—in other words, what we could receive

•	 The discounted price of exercising the option (strike), weighted by the probability of exercising 
the option (N(d2))—in other words, what we are going to pay

In Step 5, we used the GBM simulation function from the previous recipe to obtain 1,000,000 possible 
paths of the underlying asset. To calculate the option premium, we only looked at the terminal values, 
and for each path, calculated the payoff as follows:

•	 max(ST - K, 0) for the call option
•	 max(K - ST, 0) for the put option

In Step 6, we took the average of the payoffs and discounted it to present the value by using the dis-
count factor.

There’s more...
Improving the valuation function using Monte Carlo simulations
In the previous steps, we showed how to reuse the GBM simulation to calculate the European call option 
premium. However, we can make the calculations faster, as in the case of European options we are only 
interested in the terminal stock price. The intermediate steps do not matter. That is why we only need 
to simulate the price at time T and use these values to calculate the expected payoff. We show how to do 
this by using an example of a European put option with the same parameters as we used before.

We start by calculating the option premium using the analytical formula:

black_scholes_analytical(S_0=S_0, K=K, T=T, r=r, sigma=sigma, type="put")

The calculated option premium is 16.9155.

Then, we define the modified simulation function, which only looks at the terminal values of the 
simulation paths:

def european_option_simulation(S_0, K, T, r, sigma, n_sims,
                               type="call", random_seed=42):
    np.random.seed(random_seed)
    rv = np.random.normal(0, 1, size=n_sims)
    S_T = S_0 * np.exp((r - 0.5 * sigma**2) * T + sigma * np.sqrt(T) * rv)

    if type == "call":
        payoff = np.maximum(0, S_T - K)
    elif type == "put":
        payoff = np.maximum(0, K - S_T)
    else:
        raise ValueError("Wrong input for type!")
        
    premium = np.mean(payoff) * np.exp(-r * T)
    return premium



Monte Carlo Simulations in Finance352

Then, we run the simulations: 

european_option_simulation(S_0, K, T, r, sigma, N_SIMS, type="put")

The resulting value is 16.9482, which is close to the previous value. Further increasing the number of 
simulated paths should increase the accuracy of the valuation.

Measuring price sensitivity with the Greeks
While talking about the valuation of options, it is also worthwhile to mention the famous Greeks—
quantities representing the sensitivity of the price of financial derivatives to a change in one of the 
underlying parameters. The name comes from the fact that those sensitivities are most commonly 
denoted using the letters of the Greek alphabet. The following are the five most popular sensitivities:

•	 Delta (Δ ): The sensitivity of the theoretical option value with respect to the changes in the 
underlying asset’s price

•	 Vega (ν ): The sensitivity of the theoretical option value with respect to the volatility of the 
underlying asset

•	 Theta (Θ ): The sensitivity of the theoretical option value with respect to the option’s time to 
maturity

•	 Rho (ρ ): The sensitivity of the theoretical option value with respect to the interest rates
•	 Gamma (Γ ): This is an example of a second-order Greek as it represents the sensitivity of the 

option’s delta (Δ ) with respect to the changes in the underlying asset’s price

The following table shows how the Greeks of European call and put options are expressed in terms of 
the values we have already used for calculating the option’s premium using the analytical formulas:

What Calls Puts

delta
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝑁𝑁𝑁𝑁𝑁1) −𝑁𝑁(−𝑑𝑑1) = 𝑁𝑁(𝑑𝑑1) − 1 

gamma
𝜕𝜕2𝐶𝐶𝜕𝜕𝜕𝜕2 𝑁𝑁𝑁𝑁𝑁𝑁1)𝑆𝑆𝑆𝑆√𝑇𝑇 𝑇 𝑇𝑇 

vega
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝑆𝑆𝑆𝑆′(𝑑𝑑1)√𝑇𝑇 𝑇 𝑇𝑇 

theta
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  −𝑆𝑆𝑆𝑆′(𝑑𝑑1)𝜎𝜎2√𝑇𝑇 𝑇 𝑇𝑇 − 𝑟𝑟𝑟𝑟𝑒𝑒−𝑟𝑟(𝑇𝑇𝑇𝑇𝑇)𝑁𝑁𝑁𝑁𝑁2) −𝑆𝑆𝑆𝑆′(𝑑𝑑1)𝜎𝜎2√𝑇𝑇 𝑇 𝑇𝑇 + 𝑟𝑟𝑟𝑟𝑒𝑒−𝑟𝑟(𝑇𝑇𝑇𝑇𝑇)𝑁𝑁𝑁𝑁𝑁𝑁2) 

rho
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝐾𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾𝐾−𝑟𝑟(𝑇𝑇𝑇𝑇𝑇)𝑁𝑁𝑁𝑁𝑁2) −𝐾𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾𝐾−𝑟𝑟(𝑇𝑇𝑇𝑇𝑇)𝑁𝑁𝑁𝑁𝑁𝑁2) 

The N’() symbol represents the probability density function (PDF) of the Standard Normal distribution. 
As you can see, the Greeks are actually partial derivatives of some model price (in this case, European 
call or put options) with respect to one of the model’s parameters. We should also keep in mind that 
the Greeks differ by model.
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Pricing American options with Least Squares Monte 
Carlo
In this recipe, we learn how to valuate American options. The key difference between European and 
American options is that the latter can be exercised at any time before and including the maturity 
date—basically, whenever the underlying asset’s price moves favorably for the option holder.

This behavior introduces additional complexity to the valuation and there is no closed-form solution 
to this problem. When using Monte Carlo simulations, we cannot only look at the terminal value 
on each sample path, as the option’s exercise can happen anywhere along the path. That is why we 
need to employ a more sophisticated approach called Least Squares Monte Carlo (LSMC), which was 
introduced by Longstaff and Schwartz (2001).

First of all, the time axis spanning [0, T] is discretized into a finite number of equally spaced intervals 
and the early exercise can happen only at those particular time steps. Effectively, the American option 
is approximated by a Bermudan one. For any time step t, the early exercise is performed in case the 
payoff from the immediate exercise is larger than the continuation value.

This is expressed by the following formula:𝑉𝑉𝑡𝑡(𝑠𝑠) = max⁡(ℎ𝑡𝑡(𝑠𝑠), 𝐶𝐶𝑡𝑡(𝑠𝑠𝑠𝑠 

Here, ht(s) stands for the option’s payoff (also called the option’s inner value, calculated as in the case 
of European options) and Ct(s) is the continuation value of the option, which is defined as:𝐶𝐶𝑡𝑡(𝑠𝑠) = 𝐸𝐸𝑡𝑡𝑄𝑄[𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑉𝑉𝑡𝑡𝑡𝑑𝑑𝑑𝑑(𝑆𝑆𝑡𝑡𝑡𝑑𝑑𝑑𝑑)|𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠 
Here, r is the risk-free rate, dt is the time increment, and 𝐸𝐸𝑡𝑡𝑄𝑄(. . . |𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠  is the risk-neutral expec-
tation given the underlying price. The continuation value is basically the expected payoff from not 
exercising the option at a given time.

When using Monte Carlo simulations, we can define the continuation value e-rdtVt+dt,i   for each path 
i and time t. Using this value directly is not possible as this would imply perfect foresight. That is 
why the LSMC algorithm uses linear regression to estimate the expected continuation value. In the 
algorithm, we regress the discounted future values (obtained from keeping the option) onto a set of 
basis functions of the spot price (time t price). The simplest way to approach this is to use an x-degree 
polynomial regression. Other options for the basis functions include Legendre, Hermite, Chebyshev, 
Gegenbauer, or Jacobi polynomials.

We iterate this algorithm backward (from time T-1 to 0) and at the last step take the average discounted 
value as the option premium. The premium of a European option represents the lower bound to the 
American option’s premium. The difference is usually called the early exercise premium.
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How to do it...
Execute the following steps to price American options using the Least Squares Monte Carlo method:

1.	 Import the libraries:

import numpy as np
from chapter_10_utils import (simulate_gbm,
                              black_scholes_analytical,
                              lsmc_american_option)

2.	 Define the option’s parameters:

S_0 = 36
K = 40
r = 0.06
sigma = 0.2
T = 1 # 1 year
N = 50
dt = T / N
N_SIMS = 10 ** 5
discount_factor = np.exp(-r * dt)
OPTION_TYPE = "put"
POLY_DEGREE = 5

3.	 Simulate the stock prices using a GBM:

gbm_sims = simulate_gbm(s_0=S_0, mu=r, sigma=sigma, 
                        n_sims=N_SIMS, T=T, N=N)

4.	 Calculate the payoff matrix:

payoff_matrix = np.maximum(K - gbm_sims, np.zeros_like(gbm_sims))

5.	 Define the value matrix and fill in the last column (time T):

value_matrix = np.zeros_like(payoff_matrix)
value_matrix[:, -1] = payoff_matrix[:, -1]

6.	 Iteratively calculate the continuation value and the value vector in the given time:

for t in range(N - 1, 0 , -1):
    regression = np.polyfit(
        gbm_sims[:, t], 
        value_matrix[:, t + 1] * discount_factor, 
        POLY_DEGREE
    )
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    continuation_value = np.polyval(regression, gbm_sims[:, t])
    value_matrix[:, t] = np.where(
        payoff_matrix[:, t] > continuation_value,
        payoff_matrix[:, t],
        value_matrix[:, t + 1] * discount_factor
    )

7.	 Calculate the option’s premium: 

option_premium = np.mean(value_matrix[:, 1] * discount_factor)
option_premium

The premium on the specified American put option is 4.465.

8.	 Calculate the premium of a European put with the same parameters:

black_scholes_analytical(S_0=S_0, K=K, T=T, r=r, sigma=sigma,
                         type="put")

The price of the European put option with the same parameters is 3.84.

9.	 As an extra check, calculate the prices of the American and European call options: 

european_call_price = black_scholes_analytical(
    S_0=S_0, K=K, T=T, r=r, sigma=sigma
)
american_call_price = lsmc_american_option(
    S_0=S_0, K=K, T=T, N=N, r=r, 
    sigma=sigma, n_sims=N_SIMS, 
    option_type="call", 
    poly_degree=POLY_DEGREE
)
print(f"European call's price: {european_call_price:.3f}")
print(f"American call's price: {american_call_price:.3f}")

The price of the European call is 2.17, while the American call’s price (using 100,000 simulations) is 2.10.

How it works...
In Step 2, we once again defined the parameters of the considered American option. For comparison’s 
sake, we took the same values that Longstaff and Schwartz (2001) did. In Step 3, we simulated the 
stock’s evolution using the simulate_gbm function from the previous recipe. Afterward, we calculated 
the payoff matrix of the put option using the same formula that we used for the European options.

In Step 5, we prepared the matrix of option values over time, which we defined as a matrix of zeros of 
the same size as the payoff matrix. We filled the last column of the value matrix with the last column 
of the payoff matrix, as at the last step there are no further computations to carry out—the payoff is 
equal to the European option.
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In Step 6, we ran the backward part of the algorithm from time T-1 to 0. At each of these steps, we esti-
mated the expected continuation value as a cross-sectional linear regression. We fitted the 5th-degree 
polynomial to the data using np.polyfit. 

Then, we evaluated the polynomial at specific values (using np.polyval), which is the same as getting 
the fitted values from a linear regression. We compared the expected continuation value to the payoff 
to see if the option should be exercised. If the payoff was higher than the expected value from con-
tinuation, we set the value to the payoff. Otherwise, we set it to the discounted one-step-ahead value. 
We used np.where for this selection.

In Step 7 of the algorithm, we obtained the option premium by taking the average value of the dis-
counted t = 1 value vector.

In the last two steps, we carried out some sanity checks. First, we calculated the premium of a European 
put with the same parameters. Second, we repeated all the steps to get the premiums of American and 
European call options with the same parameters. To make this easier, we put the entire algorithm for 
LSMC into one function, which is available in this book’s GitHub repository.

For the call option, the premium on the American and European options should be equal, as it is never 
optimal to exercise the option when there are no dividends. Our results are very close, but we can 
obtain a more accurate price by increasing the number of simulated sample paths.

In principle, the Longstaff-Schwartz algorithm should underprice American options because the 
approximation of the continuation value by the basis functions is just that, an approximation. As a 
consequence, the algorithm will not always make the correct decision about exercising the option. 
This, in turn, means that the option’s value will be lower than in the case of the optimal exercise.

See also
Additional resources are available here:

•	 Longstaff, F. A., & Schwartz, E. S. 2001. “Valuing American options by simulation: a simple 
least-squares approach,” The Review of Financial Studies, 14(1): 113-147

•	 Broadie, M., Glasserman, P., & Jain, G. 1997. “An alternative approach to the valuation of Amer-
ican options using the stochastic tree method. Enhanced Monte Carlo estimates for American 
option prices,” Journal of Derivatives, 5: 25-44.

 It is also possible to use scikit-learn for the polynomial fit. To do so, you need to com-
bine LinearRegression with PolynomialFeatures.
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Pricing American options using QuantLib 
In the previous recipe, we showed how to manually code the Longstaff-Schwartz algorithm. However, 
we can also use already existing frameworks for the valuation of derivatives. One of the most popular 
ones is QuantLib. It is an open-source C++ library that provides tools for the valuation of financial in-
struments. By using Simplified Wrapper and Interface Generator (SWIG), it is possible to use QuantLib 
from Python (and some other programming languages, such as R or Julia). In this recipe, we show 
how to price the same American put option that we priced in the previous recipe, but the library itself 
has many more interesting features to explore.

Getting ready
Execute Step 2 from the previous recipe to have the parameters of the American put option that we 
will valuate using QuantLib.

How to do it...
Execute the following steps to price American options using QuantLib:

1.	 Import the library:

import QuantLib as ql

2.	 Specify the calendar and the day-counting convention:

calendar = ql.UnitedStates()
day_counter = ql.ActualActual()

3.	 Specify the valuation date and the expiry date of the option: 

valuation_date = ql.Date(1, 1, 2020)
expiry_date =  ql.Date(1, 1, 2021)
ql.Settings.instance().evaluationDate = valuation_date

4.	 Define the option type (call/put), type of exercise (American), and payoff: 

if OPTION_TYPE == "call":
    option_type_ql = ql.Option.Call
elif OPTION_TYPE == "put":
    option_type_ql = ql.Option.Put
        
exercise = ql.AmericanExercise(valuation_date, expiry_date)
payoff = ql.PlainVanillaPayoff(option_type_ql, K)

5.	 Prepare the market-related data:

u = ql.SimpleQuote(S_0)
r = ql.SimpleQuote(r)
sigma = ql.SimpleQuote(sigma)
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6.	 Specify the market-related curves:

underlying = ql.QuoteHandle(u)
volatility = ql.BlackConstantVol(0, ql.TARGET(),
                                 ql.QuoteHandle(sigma),
                                 day_counter)
risk_free_rate = ql.FlatForward(0, ql.TARGET(),
                                ql.QuoteHandle(r),
                                day_counter)

7.	 Plug the market-related data into the Black-Scholes process:

bs_process = ql.BlackScholesProcess(
    underlying,
    ql.YieldTermStructureHandle(risk_free_rate),
    ql.BlackVolTermStructureHandle(volatility),
)

8.	 Instantiate the Monte Carlo engine for the American options:

engine = ql.MCAmericanEngine(
    bs_process, "PseudoRandom", timeSteps=N, 
    polynomOrder=POLY_DEGREE, 
    seedCalibration=42, 
    requiredSamples=N_SIMS
)

9.	 Instantiate the option object and set its pricing engine:

option = ql.VanillaOption(payoff, exercise)
option.setPricingEngine(engine)

10.	 Calculate the option’s premium:

option_premium_ql = option.NPV()
option_premium_ql

The value of the American put option is 4.457.

How it works...
Since we wanted to compare the results we obtained with those in the previous recipes, we used the 
same problem setup as we did there. For brevity, we will not look at all the code here, but we should 
run Step 2 from the previous recipe.
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In Step 2, we specified the calendar and the day-counting convention. The day-counting convention 
determines the way interest accrues over time for various financial instruments, such as bonds. The 
actual/actual convention means that we use the actual number of elapsed days and the actual 
number of days in a year, that is, 365 or 366. There are many other conventions such as actual/365 
(fixed), actual/360, and so on.

In Step 3, we selected two dates—valuation and expiry—as we are interested in pricing an option that 
expires in a year. It is important to set ql.Settings.instance().evaluationDate to the considered 
evaluation date to make sure the calculations are performed correctly. In this case, the dates only 
determine the passage of time, meaning that the option expires within a year. We would get the same 
results (with some margin of error due to the random component of the simulations) using different 
dates with the same interval between them.

We can check the time to expiry (in years) by running the following code:

T = day_counter.yearFraction(valuation_date, expiry_date) 
print(f'Time to expiry in years: {T}') 

Executing the snippet returns the following:

Time to expiry in years: 1.0 

Next, we defined the option type (call/put), the type of exercise (European, American, or Bermudan), 
and the payoff (vanilla). In Step 5, we prepared the market data. We wrapped the values in quotes  
(ql.SimpleQuote) so that the values can be changed and those changes are properly registered in the 
instrument. This is an important step for calculating the Greeks in the There’s more… section.

In Step 6, we defined the relevant curves. Simply put, TARGET is a calendar that contains information 
on which days are holidays.

In this step, we specified the three important components of the Black-Scholes (BS) process, which are:

•	 The price of the underlying instrument
•	 Volatility, which is constant as per our assumptions
•	 The risk-free rate, which is also constant over time

We passed all these objects to the Black-Scholes process (ql.BlackScholesProcess), which we defined 
in Step 7. Then, we passed the process object into the special engine used for pricing American options 
using Monte Carlo simulations (there are many predefined engines for different types of options and 
pricing methods). At this point, we provided the desired number of simulations, the number of time 
steps for discretization, and the degree/order of the polynomial in the LSMC algorithm. Additionally, 
we provided the random seed (seedCalibration) to make the results reproducible.

In Step 9, we created an instance of ql.VanillaOption by providing previously defined types of payoff 
and exercise. We also set the pricing engine to the one defined in Step 8 using the setPricingEngine 
method.

Finally, we obtained the price of the option using the NPV method.
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We can see that the option premium we obtained using QuantLib is very similar to the one we calculated 
previously, which further validates our results. The important thing to note here is that the workflow 
is similar for the valuation of a wide array of different derivatives, so it is good to be familiar with it. 
We could just as well price a European option using Monte Carlo simulations by substituting a few 
classes with their European option counterparts.

There’s more...
Now that we have completed the preceding steps, we can calculate the Greeks. As we have mentioned 
in the previous recipe, the Greeks represent the sensitivity of the price of derivatives to a change in 
one of the underlying parameters (such as the price of the underlying asset, time to expiry, and so on).

When there is an analytical formula available for the Greeks (when the underlying QuantLib 
engine is using analytical formulas), we could just access it by running, for example,  
option.delta(). However, in cases such as valuations using binomial trees or simulations, there is 
no analytical formula, and we would receive an error (RuntimeError: delta not provided). This 
does not mean that it is impossible to calculate it, but we need to employ numerical differentiation 
and calculate it ourselves.

In this example, we will only extract the delta. Therefore, the relevant two-sided formula is:∆ =  𝑃𝑃(𝑆𝑆0 + ℎ) − 𝑃𝑃𝑃𝑃𝑃0 − ℎ)2ℎ  

Here, P(S) is the price of the instrument given the underlying asset’s price S; h is a very small increment.

Run the following block of code to calculate the delta:

u_0 = u.value() # original value
h = 0.01

u.setValue(u_0 + h)
P_plus_h = option.NPV()

u.setValue(u_0 - h)
P_minus_h = option.NPV()

u.setValue(u_0) # set back to the original value

delta = (P_plus_h - P_minus_h) / (2 * h)

 QuantLib also allows us to use variance reduction techniques such as antithetic values 
or control variates.
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The simplest interpretation of the delta is that the option’s delta equal to -1.36 indicates that, if the 
underlying stock increases in price by $1 per share, the option on it will decrease by $1.36 per share; 
otherwise, everything will be equal.

Pricing barrier options
A barrier option is a type of option that falls under the umbrella of exotic options. That is because they 
are more complex than plain European or American options. Barrier options are a type of path-depen-
dent option because their payoff, and thus also their value, is based on the underlying asset’s price path.

To be more precise, the payoff depends on whether or not the underlying asset has reached/exceeded 
a predetermined price threshold. Barrier options are typically classified as one of the following:

•	 A knock-out option, that is, the option becomes worthless if the underlying asset’s price ex-
ceeds a certain threshold

•	 A knock-in option, that is, the option has no value until the underlying asset’s price reaches 
a certain threshold

Considering the classes of the barrier options mentioned above, we can deal with the following cat-
egories:

•	 Up-and-Out: The option starts active and becomes worthless (knocked out) when the underlying 
asset’s price moves up to the barrier level

•	 Up-and-In: The option starts inactive and becomes active (knocked in) when the underlying 
asset’s price moves up to the barrier level

•	 Down-and-Out: The option starts active and becomes knocked out when the underlying asset’s 
price moves down to the barrier level

•	 Down-and-In: The option starts inactive and becomes active when the underlying asset’s price 
moves down to the barrier level

Other than the behavior described above, barrier options behave like standard call and put options.

In this recipe, we use Monte Carlo simulations to price an Up-and-In European call option with the 
underlying trading at $55, a strike price of $60, and a barrier level of $65. The time to maturity will 
be 1 year.

How to do it…
Execute the following steps to price an Up-and-In European call option:

1.	 Import the libraries:

import numpy as np
from chapter_10_utils import simulate_gbm
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2.	 Define the parameters for the valuation:

S_0 = 55
K = 60
BARRIER = 65
r = 0.06
sigma = 0.2
T = 1
N = 252
dt = T / N
N_SIMS = 10 ** 5
OPTION_TYPE = "call"
discount_factor = np.exp(-r * T)

3.	 Simulate the stock path using the simulate_gbm function:

gbm_sims = simulate_gbm(s_0=S_0, mu=r, sigma=sigma,
                        n_sims=N_SIMS, T=T, N=N)

4.	 Calculate the maximum value per path:

max_value_per_path = np.max(gbm_sims, axis=1)

5.	 Calculate the payoff:

payoff = np.where(max_value_per_path > BARRIER,
                  np.maximum(0, gbm_sims[:, -1] - K),
                  0)

6.	 Calculate the option’s premium:

premium = discount_factor * np.mean(payoff)
premium

The premium of the considered Up-and-In European call option is 3.6267.

How it works…
In the first two steps, we imported the libraries (including the helper function, simulate_gbm, which 
we have already used throughout this chapter) and defined the parameters of the valuation.

In Step 3, we simulated 100,000 possible paths using a geometric Brownian motion. Then, we calculated 
the maximum price of the underlying asset for each path. Because we are working with an Up-and-In 
option, we just need to know if the maximum price of the asset reached the barrier level. If so, then 
the option’s payoff at maturity will be equal to that of a vanilla European call. If the barrier level was 
not reached, the payoff from that path will be zero. We encoded that payoff condition in Step 5.

Lastly, we proceeded just as we have done with the European call option before—we took the average 
payoff and discounted it using the discount factor.
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In this recipe, we have manually priced an Up-and-In European call option. However, we can also use 
the QuantLib library for the task. Due to the fact that there would be a lot of code repetition with the 
previous recipe, we do not show that in the book.

But you are highly encouraged to check out the solution using QuantLib in the accompanying notebook 
available on GitHub. We just mention that the solution using QuantLib returns the option premium of 
3.6457, which is very close to the one we obtained manually. The difference can be attributed to the 
random component of the simulations.

There’s more…
The valuation of barrier options is complex given those instruments are path-dependent. We have 
already mentioned how to use Monte Carlo simulations to price such options; however, there are 
several alternative approaches:

•	 Use a static replicating portfolio of vanilla options to mimic the value of the barrier at expiry 
and at a few discrete points in time along the barrier. Then, those options can be valued using 
the Black-Scholes model. By following this approach, we can obtain closed-form prices and 
replication strategies for all kinds of barrier options.

•	 Use the binomial tree approach to option pricing.
•	 Use the partial differential equation (PDE) and potentially combine it with the finite difference 

method.

Estimating Value-at-Risk using Monte Carlo
Value-at-Risk (VaR) is a very important financial metric that measures the risk associated with a posi-
tion, portfolio, etc. It is commonly abbreviated to VaR, not to be confused with vector autoregression 
(which is abbreviated to VAR). VaR reports the worst expected loss—at a given level of confidence—over 
a certain horizon under normal market conditions. The easiest way to understand it is by looking at 
an example. Let’s say that the 1-day 95% VaR of our portfolio is $100. This means that 95% of the time 
(under normal market conditions), we will not lose more than $100 by holding our portfolio over one day.

 We can build some intuition about the prices of barrier options. For example, the price 
of an Up-and-Out barrier option should be lower than that of a vanilla equivalent. That is 
due to the fact that the payoffs of the two instruments would be identical except for the 
added risk that the Up-and-Out barrier option could be knocked-out before expiring. That 
added risk should be reflected in the lower price of such a barrier option as compared to 
its vanilla counterpart.

 It is common to present the loss given by VaR as a positive (absolute) value. That is why in 
this example, a VaR of $100 means losing no more than $100. However, a negative VaR is 
possible and it would indicate a high probability of making a profit. For example, a 1-day 
95% VaR of $-100 would imply that our portfolio has a 95% chance of making more than 
$100 over the next day.
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There are several ways to calculate VaR, including:

•	 Parametric approach (variance-covariance)
•	 Historical simulation approach
•	 Monte Carlo simulations

In this recipe, we only consider the last method. We assume that we are holding a portfolio consisting 
of two assets (stocks of Intel and AMD) and that we want to calculate a 1-day Value-at-Risk.

How to do it...
Execute the following steps to estimate the Value-at-Risk using Monte Carlo simulations:

1.	 Import the libraries:

import numpy as np
import pandas as pd
import yfinance as yf
import seaborn as sns

2.	 Define the parameters that will be used for this recipe:

RISKY_ASSETS = ["AMD", "INTC"]
SHARES = [5, 5]
START_DATE = "2020-01-01"
END_DATE = "2020-12-31"
T = 1
N_SIMS = 10 ** 5

3.	 Download the price data from Yahoo Finance:

df = yf.download(RISKY_ASSETS, start=START_DATE,
                 end=END_DATE, adjusted=True)

4.	 Calculate the daily returns: 

returns = df["Adj Close"].pct_change().dropna()
returns.plot(title="Intel's and AMD's daily stock returns in 2020")
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Running the snippet results in the following figure. 

Figure 10.3: Simple returns of Intel and AMD in 2020

Additionally, we calculated the Pearson’s correlation between the two series (using the corr 
method), which is equal to 0.5.

5.	 Calculate the covariance matrix:

cov_mat = returns.cov()

6.	 Perform the Cholesky decomposition of the covariance matrix:

chol_mat = np.linalg.cholesky(cov_mat)

7.	 Draw the correlated random numbers from the Standard Normal distribution:

rv = np.random.normal(size=(N_SIMS, len(RISKY_ASSETS)))
correlated_rv = np.transpose(
    np.matmul(chol_mat, np.transpose(rv))
)
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8.	 Define the metrics that will be used for simulations:

r = np.mean(returns, axis=0).values
sigma = np.std(returns, axis=0).values
S_0 = df["Adj Close"].values[-1, :]
P_0 = np.sum(SHARES * S_0)

9.	 Calculate the terminal price of the considered stocks:

S_T = S_0 * np.exp((r - 0.5 * sigma ** 2) * T +
                   sigma * np.sqrt(T) * correlated_rv)

10.	 Calculate the terminal portfolio value and the portfolio returns:

P_T = np.sum(SHARES * S_T, axis=1)
P_diff = P_T - P_0

11.	 Calculate the VaR for the selected confidence levels:

P_diff_sorted = np.sort(P_diff)
percentiles = [0.01, 0.1, 1.]
var = np.percentile(P_diff_sorted, percentiles)

for x, y in zip(percentiles, var):
    print(f'1-day VaR with {100-x}% confidence: ${-y:.2f}')

Running the snippet results in the following output:

1-day VaR with 99.99% confidence: $2.04
1-day VaR with 99.9% confidence: $1.48
1-day VaR with 99.0% confidence: $0.86
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12.	 Present the results on a graph:

ax = sns.distplot(P_diff, kde=False)
ax.set_title("""Distribution of possible 1-day changes
              in portfolio value 1-day 99% VaR""", 
              fontsize=16)
ax.axvline(var[2], 0, 10000)

Running the snippet results in the following figure:

Figure 10.4: Distribution of the possible 1-day changes in portfolio value and the 1-day 
99% VaR

Figure 10.4 shows the distribution of possible 1-day-ahead portfolio values. We present the 99% Value-
at-Risk with the vertical line.
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How it works...
In Steps 2 to 4, we downloaded the daily stock prices of Intel and AMD from the year 2020, extracted 
the adjusted close prices, and converted them into simple returns. We also defined a few parameters, 
such as the number of simulations and the number of shares we have in our portfolio.

There are two ways to approach VaR calculations:

•	 Calculate VaR from prices: Using the number of shares and the asset prices, we can calculate 
the worth of the portfolio now and its possible value X days ahead.

•	 Calculate VaR from returns: Using the percentage weights of each asset in the portfolio and the 
assets’ expected returns, we can calculate the expected portfolio return X days ahead. Then, 
we can express VaR as the dollar amount based on that return and the current portfolio value.

The Monte Carlo approach to determining the price of an asset employs random variables drawn 
from the Standard Normal distribution. For the case of calculating portfolio VaR, we need to account 
for the fact that the assets in our portfolio may be correlated. To do so, in Steps 5 to 7, we generated 
correlated random variables. To do so, we first calculated the historical covariance matrix. Then, we 
used the Cholesky decomposition on it and multiplied the resulting matrix by the matrix containing 
the random variables.

In Step 8, we calculated metrics such as the historical averages of the asset return, the accompanying 
standard deviations, the last known stock prices, and the initial portfolio value. In Step 9, we applied 
the analytical solution to the geometric Brownian motion SDE and calculated possible 1-day-ahead 
stock prices for both assets.

To calculate the portfolio VaR, we calculated the possible 1-day-ahead portfolio values and the ac-
companying differences (PT - P0). Then, we sorted them in ascending order. The X% VaR is simply the 
(1-X)-th percentile of the sorted portfolio differences.

There’s more...
As we have mentioned, there are multiple ways of calculating the Value-at-Risk. And each of those 
comes with a set of potential drawbacks, some of which are:

•	 Assuming a parametric distribution (variance-covariance approach)

 Another possible approach to making random variables correlated is to use the Singular 
Value Decomposition (SVD) instead of the Cholesky decomposition. The function we can 
use for this is np.linalg.svd.

 Banks frequently calculate the 1-day and 10-day VaR. To arrive at the latter, they can 
simulate the value of their assets over a 10-day interval using 1-day steps (discretization). 
However, they can also calculate the 1-day VaR and multiply it by the square root of 10. 
This might be beneficial for the bank if it leads to lower capital requirements.
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•	 Assuming that daily gains/losses are IID (independently and identically distributed)
•	 Not capturing enough tail risk
•	 Not considering the so-called Black Swan events (unless they are already in the historical 

sample)
•	 Historical VaR can be slow to adapt to new market conditions
•	 The historical simulation approach assumes that past returns are sufficient to evaluate future 

risk (connects to the previous points)

Another general drawback of VaR is that it does not contain information about the size of the poten-
tial loss when it exceeds the threshold given by VaR. This is when expected shortfall (also known as 
conditional VaR or expected tail loss) comes into play. It simply states what the expected loss is in the 
worst X% of scenarios.

There are many ways to calculate the Expected Shortfall, but we present the one that is easily connected 
to the VaR and can be estimated using Monte Carlo simulations.

Following on from the example of a two-asset portfolio, we would like to know the following: if the 
loss exceeds the VaR, how big will it be? To obtain that number, we need to filter out all losses that are 
higher than the value given by VaR and calculate their expected value by taking the average.

We can do this using the following snippet:

var = np.percentile(P_diff_sorted, 5)
expected_shortfall = P_diff_sorted[P_diff_sorted<=var].mean()

Please bear in mind that for Expected Shortfall we only use a small fraction of all the simulations 
that were used to obtain the VaR. In Figure 10.4, we would only consider the observations to the left 
of the VaR line. That is why, in order to have reasonable results for the Expected Shortfall, the overall 
sample must be large enough.

The 1-day 95% VaR is $0.29, while the accompanying Expected Shortfall is $0.64. We can interpret 
these results as follows: if the loss exceeds the 95% VaR, we can expect to lose $0.64 by holding our 
portfolio for 1 day.

Summary
In this chapter, we have covered Monte Carlo simulations, which are a very versatile tool useful in 
many financial tasks. We demonstrated how to utilize them for simulating stock prices using a geo-
metric Brownian motion, pricing various types of options (European, American, and Barrier), and 
calculating the Value-at-Risk.

There are some interesting recent developments in using deep learning techniques, for 
example, generative adversarial networks for Value-at-Risk estimation.
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However, in this chapter we have barely scratched the surface of all the possible applications of Mon-
te Carlo simulations. In the following chapter, we also show how to use them to obtain the efficient 
frontier used for asset allocation.

Join us on Discord!
To join the Discord community for this book – where you can share feedback, ask questions to the 
author, and learn about new releases – follow the QR code below:

https://packt.link/ips2H

https://packt.link/ips2H


11
Asset Allocation

Asset allocation is the most important decision that any investor needs to face, and there is no one-
size-fits-all solution that can work for each and every investor. By asset allocation, we mean spreading 
the investor’s total investment amount over certain assets (be it stocks, options, bonds, or any other 
financial instruments). When considering the allocation, the investor wants to balance the risk and the 
potential reward. At the same time, the allocation is dependent on factors such as the individual goals 
(expected return), risk tolerance (how much risk the investor is willing to accept), or the investment 
horizon (short-or long-term investment).

The key framework in asset allocation is the modern portfolio theory (MPT, also known as mean-vari-
ance analysis). It was introduced by the Nobel recipient Harry Markowitz and describes how risk-
averse investors can construct portfolios to maximize their expected returns (profits) for a given level 
of risk. The main insight from MPT is that investors should not evaluate an asset’s performance alone 
(by metrics such as expected return or volatility), but instead, investigate how it would impact the 
performance of their portfolio of assets.

MPT is closely related to the concept of diversification, which simply means that owning different 
kinds of assets reduces risk, as the loss or gain of a particular security has less impact on the overall 
portfolio’s performance. Another key concept to be aware of is that while the portfolio return is the 
weighted average of the individual asset returns, this is not true for the risk (volatility). That is be-
cause the volatility is also dependent on the correlations between the assets. What is interesting is 
that thanks to optimized asset allocation, it is possible to have a portfolio with lower volatility than 
the lowest individual volatility of the assets in the portfolio. In principle, the lower the correlation 
between the assets we hold, the better it is for diversification. With a perfect negative correlation, we 
could diversify all the risk.
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The main assumptions of modern portfolio theory are:

•	 Investors are rational and aim to maximize their returns while avoiding risks whenever possible. 
•	 Investors share the goal to maximize their expected returns. 
•	 All investors have the same level of information about potential investments. 
•	 Commissions, taxes, and transaction costs are not taken into account.
•	 Investors can borrow and lend money (without limits) at a risk-free rate. 

In this chapter, we start with the most basic asset allocation strategy, and on its basis, learn how to 
evaluate the performance of portfolios (also applicable to individual assets). Later on, we show three 
different approaches to obtaining the efficient frontier, while also relaxing some of the assumptions 
of MPT. One of the main benefits of learning how to approach optimization problems is that they 
can be easily refactored, for example, by optimizing a different objective function or adding specific 
constraints on the weights. This requires only slight modifications to the code, while the majority of 
the framework stays the same. At the very end, we explore a novel approach to asset allocation based 
on the combination of graph theory and machine learning—Hierarchical Risk Parity.

We cover the following recipes in this chapter:

•	 Evaluating an equally-weighted portfolio’s performance
•	 Finding the efficient frontier using Monte Carlo simulations
•	 Finding the efficient frontier using optimization with SciPy
•	 Finding the efficient frontier using convex optimization with CVXPY
•	 Finding the optimal portfolio with Hierarchical Risk Parity

Evaluating an equally-weighted portfolio’s performance
We begin with inspecting the most basic asset allocation strategy: the equally-weighted (1/n) portfo-
lio. The idea is to assign equal weights to all the considered assets, thus diversifying the portfolio. As 
simple as that might sound, DeMiguel, Garlappi, and Uppal (2007) show that it can be difficult to beat 
the performance of the 1/n portfolio by using more advanced asset allocation strategies.

The goal of the recipe is to show how to create a 1/n portfolio of the FAANG companies (Facebook/
Meta, Amazon, Apple, Netflix, and Google/Alphabet), calculate its returns, and then use the quantstats 
library to quickly obtain all relevant portfolio evaluation metrics in the form of a tear sheet. Histor-
ically, a tear sheet is a concise (usually one-page) document summarizing important information 
about public companies.
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How to do it...
Execute the following steps to create and evaluate the 1/n portfolio:

1.	 Import the libraries: 

import yfinance as yf
import numpy as np
import pandas as pd
import quantstats as qs

2.	 Define the considered assets and download their prices from Yahoo Finance:

ASSETS = ["META", "AMZN", "AAPL", "NFLX", "GOOG"]
n_assets = len(ASSETS)

prices_df = yf.download(ASSETS,
                        start="2020-01-01",
                        end="2021-12-31",
                        adjusted=True)

3.	 Calculate individual asset returns: 

returns = prices_df["Adj Close"].pct_change().dropna()

4.	 Define the weights: 

portfolio_weights = n_assets * [1 / n_assets]

5.	 Calculate the portfolio returns: 

portfolio_returns = pd.Series(
    np.dot(portfolio_weights, returns.T), 
    index=returns.index
)

6.	 Generate basic performance evaluation plots:

qs.plots.snapshot(portfolio_returns,
                  title="1/n portfolio's performance",
                  grayscale=True)
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Executing the snippet generates the following figure:

Figure 11.1: Selected evaluation metrics of the 1/n portfolio

The created snapshot consists of cumulative portfolio returns, the underwater plot depicting 
the drawdown periods (we will explain it in the How it works… section), and daily returns.

7.	 Calculate the basic portfolio evaluation metrics:

qs.reports.metrics(portfolio_returns,
                   benchmark="SPY",
                   mode="basic",
                   prepare_returns=False)
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Executing the snippet returns the following metrics for our portfolio and the benchmark:

Figure 11.2: Performance evaluation metrics of the 1/n portfolio and the S&P 500 benchmark

We describe some of the metrics presented in Figure 11.2 in the following section.

How it works...
In Steps 1 to 3, we followed the already established approach—imported the libraries, set up the param-
eters, downloaded stock prices of the FAANG companies from the years 2020 to 2021, and calculated 
simple returns using the adjusted close prices. 
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In Step 4, we created a list of weights, each one equal to 1/n_assets, where n_assets is the number 
of assets we want to have in our portfolio. Next, we calculated the portfolio returns as a matrix mul-
tiplication (also known as the dot product) of the portfolio weights and a transposed matrix of asset 
returns. To transpose the matrix, we used the T method of a pandas DataFrame. Then, we stored the 
portfolio returns as a pandas Series object, because that is the input for the ensuing step.

In Step 6, we generated a figure containing basic portfolio evaluation plots using the quantstats li-
brary. While we are already familiar with the plot depicting the daily returns, the other two are new:

•	 Cumulative returns plot: It presents the evolution of the portfolio’s worth over time.
•	 Underwater plot: This plot presents the investment from a pessimistic point of view, as it 

focuses on losses. It plots all the drawdown periods and how long they lasted, that is, until 
the value rebounded to a new high. One of the insights we can draw from this is how long the 
periods of losses lasted.

Lastly, we generated portfolio evaluation metrics. While doing so, we also provided a benchmark. 
We chose the SPY, which is an exchange-traded fund (ETF) designed to follow the S&P 500 index. We 
could provide the benchmark as either the ticker or a pandas DataFrame/Series containing the prices/
returns. The library can handle both options and we can indicate if we want to calculate the returns 
from prices using the prepare_returns argument.

The most important metrics that we saw in Figure 11.2 are:

•	 Sharpe ratio: One of the most popular performance evaluation metrics, it measures the excess 
return (over the risk-free rate) per unit of standard deviation. When no risk-free rate is pro-
vided, the default assumption is that it is equal to 0%. The greater the Sharpe ratio, the better 
the portfolio’s risk-adjusted performance.

•	 Sortino ratio: A modified version of the Sharpe ratio, where the standard deviation in the 
denominator is replaced with downside deviation.

•	 Omega ratio: The probability-weighted ratio of gains over losses for a determined return 
target threshold (default set to 0). Its main advantage over the Sharpe ratio is that the Omega 
ratio—by construction—considers all moments of the returns distribution, while the former 
only considers the first two (mean and variance).

•	 Max drawdown: A metric of the downside risk of a portfolio, it measures the largest peak-
to-valley loss (expressed as a percentage) during the course of the investment. The lower the 
maximum drawdown, the better.

 In the first edition of the book, we explored the performance of the 1/n portfolio using the 
pyfolio library. However, since that time, the company that was responsible for the library 
(Quantopian) was closed, and the library is not actively maintained anymore. The library 
can still be used, as we show in the additional notebook available in the book’s GitHub 
repository. Alternatively, you can use pyfolio-reloaded, which is a fork of the original 
library maintained by Stefan Jansen, the author of Machine Learning for Algorithmic Trading.
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•	 Tail ratio: The ratio (absolute) between the 95th and 5th percentile of the daily returns. A tail 
ratio of ~0.8 means that losses are ~1.25 times as bad as profits.

There’s more...
So far, we have mostly generated only the basic selection of plots and metrics available in the quantstats 
library. However, the library has much more to offer.

Full tear sheets
quantstats allows us to generate a complete HTML report containing all of the available plots and 
metrics (including a comparison to the benchmark). We can create such a report using the following 
command:

qs.reports.html(portfolio_returns, 
                benchmark="SPY", 
                title="1/n portfolio",
                download_filename="EW portfolio evaluation.html")

Executing it generates an HTML file containing the exhaustive tear sheet of our equally-weighted 
portfolio, compared to the SPY. Please refer to the EW portfolio evaluation.html file on GitHub.

First, let’s explain some of the new, yet relevant metrics visible in the generated report:

•	 Calmar ratio: The ratio is defined as the average annual compounded rate of return divided by 
the maximum drawdown for that same time period. The higher the ratio, the better.

•	 Skew: Skewness measures the degree of asymmetry, that is, how much is the given distribution 
(here, of portfolio returns) more skewed than the Normal distribution. Negative skewness 
(left-skewed distributions) means  that large negative returns occur more frequently than large 
positive ones.

•	 Kurtosis: It measures extreme values in either of the tails. Distributions with large kurtosis 
exhibit tail data exceeding the tails of the Gaussian distribution, meaning that large and small 
returns occur more frequently.

•	 Alpha: It describes a strategy’s ability to beat the market. In other words, it is the portfolio 
excess returns above the benchmark return.

•	 Beta: It measures the overall systematic risk of a portfolio of investments. In other words, it 
is a measure of portfolio volatility compared to the systematic risk of the entire market. A 
portfolio’s beta is equal to the weighted average of the beta coefficients of all the individual 
assets in a portfolio.

 Downside deviation is similar to standard deviation; however, it only considers negative 
returns—it discards all positive changes from the series. It also allows us to define different 
levels of minimum acceptable returns (dependent on the investor) and returns below that 
threshold are used to calculate the downside deviation.
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The metrics also include the 10 worst drawdowns. That is, they show how bad each of the drawdowns 
was, the recovery date, and the drawdowns’ duration. This information complements the analysis of 
the underwater plot we mentioned before.

Figure 11.3: The 10 worst drawdowns during the evaluation period

Then, the report also contains some new plots, which we explain below:

•	 Rolling Sharpe ratio: Instead of reporting one number over time, it is also interesting to see 
how stable the Sharpe ratio was. That is why the following plot presents this metric calculated 
on a rolling basis, using 6 months’ worth of data.

Figure 11.4: Rolling (6 months) Sharpe ratio

•	 The five worst drawdown periods are also visualized on a separate plot. For exact dates when 
the drawdowns started and ended, please refer to Figure 11.3. One thing worth mentioning 
is that the drawdown periods are superimposed on the cumulative returns plot. This way, we 
can clearly confirm the definition of the drawdown, that is, how much our portfolio is down 
from the peak before it recovers back to the peak level.
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Figure 11.5: Five worst drawdown periods during the evaluation period

•	 A histogram depicting the distribution of the monthly returns, including a kernel density es-
timate (KDE) and the average value. It’s helpful in analyzing the distribution of the returns. In 
the plot, we can see that the average monthly returns over the evaluation period were positive.

Figure 11.6: Distribution of the monthly returns (histogram + KDE)
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•	 A heatmap serving as a summary of what the returns were over certain months/years.

Figure 11.7: A heatmap presenting the monthly returns over the years

•	 A quantile plot showing the distribution of the returns aggregated to different frequencies.

 

Figure 11.8: Quantile plot aggregating the returns to different frequencies

Before creating the comprehensive HTML report, we generated the basic plots and metrics using the 
qs.reports.plots and qs.reports.metrics functions. We can also use those functions to get the very 
same metrics/plots as we have obtained in the report by appropriately specifying the mode argument. 
To get all the metrics, we should pass "full" instead of "basic" (which is also the default value).

Enriching the pandas DataFrames/Series with new methods
Another interesting feature of the quantstats library is that it can enrich the pandas DataFrame or 
Series with new methods, used for calculating all the metrics available in the library. To do so, we first 
need to execute the following command:
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qs.extend_pandas()

Then, we can access the methods straight from the DataFrame containing the return series. For ex-
ample, we can quickly calculate the Sharpe and Sortino ratios using the following snippet:

print(f"Sharpe ratio: {portfolio_returns.sharpe():.2f}")
print(f"Sortino ratio: {portfolio_returns.sortino():.2f}")

Which returns:

Sharpe ratio: 1.36
Sortino ratio: 1.96

The values are a match to what we calculated earlier using the qs.reports.metrics function. For a 
complete list of the available methods, you can run the following snippet:

[method for method in dir(qs.stats) if method[0] != "_"]

See also
Additional resources are available here: 

•	 DeMiguel, V., Garlappi, L., & Uppal, R. 2007, “Optimal versus naive diversification: how ineffi-
cient is the 1/N portfolio strategy?” The Review of Financial Studies, 22(5): 1915-1953: https://
doi.org/10.1093/rfs/hhm075

Finding the efficient frontier using Monte Carlo 
simulations
According to the Modern Portfolio Theory, the efficient frontier is a set of optimal portfolios in the 
risk-return spectrum. This means that the portfolios on the frontier:

•	 Offer the highest expected return for a given level of risk
•	 Offer the lowest level of risk for a given level of expected returns

All portfolios located under the efficient frontier curve are considered sub-optimal, so it is always 
better to choose the ones on the frontier instead.

In this recipe, we show how to find the efficient frontier using Monte Carlo simulations. Before show-
ing more elegant approaches based on optimization, we employ a brute force approach in which we 
build thousands of portfolios using randomly assigned weights. Then, we can calculate the portfolios’ 
performance (expected returns/volatility) and use those values to determine the efficient frontier. For 
this exercise, we use the returns of four US tech companies from 2021.

https://doi.org/10.1093/rfs/hhm075
https://doi.org/10.1093/rfs/hhm075
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How to do it...
Execute the following steps to find the efficient frontier using Monte Carlo simulations:

1.	 Import the libraries:

import yfinance as yf
import numpy as np
import pandas as pd

2.	 Set up the parameters:

N_PORTFOLIOS = 10 ** 5
N_DAYS = 252
ASSETS = ["META", "TSLA", "TWTR", "MSFT"]
ASSETS.sort()

n_assets = len(ASSETS)

3.	 Download the stock prices from Yahoo Finance:

prices_df = yf.download(ASSETS,
                        start="2021-01-01",
                        end="2021-12-31",
                        adjusted=True)

4.	 Calculate the annualized average returns and the corresponding standard deviation:

returns_df = prices_df["Adj Close"].pct_change().dropna()
avg_returns = returns_df.mean() * N_DAYS
cov_mat = returns_df.cov() * N_DAYS

5.	 Simulate random portfolio weights:

np.random.seed(42)
weights = np.random.random(size=(N_PORTFOLIOS, n_assets))
weights /=  np.sum(weights, axis=1)[:, np.newaxis]

6.	 Calculate the portfolio metrics:

portf_rtns = np.dot(weights, avg_returns)

portf_vol = []
for i in range(0, len(weights)):
    vol = np.sqrt(
        np.dot(weights[i].T, np.dot(cov_mat, weights[i]))
    )
    portf_vol.append(vol)
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portf_vol = np.array(portf_vol)  

portf_sharpe_ratio = portf_rtns / portf_vol

7.	 Create a DataFrame containing all the data:

portf_results_df = pd.DataFrame(
    {"returns": portf_rtns,
     "volatility": portf_vol,
     "sharpe_ratio": portf_sharpe_ratio}
)

The DataFrame looks as follows:

Figure 11.9: Selected metrics of each of the generated portfolios

8.	 Locate the points creating the efficient frontier:

N_POINTS = 100

ef_rtn_list = []
ef_vol_list = []

possible_ef_rtns = np.linspace(portf_results_df["returns"].min(),
                               portf_results_df["returns"].max(),
                               N_POINTS)
possible_ef_rtns = np.round(possible_ef_rtns, 2)    
portf_rtns = np.round(portf_rtns, 2)
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for rtn in possible_ef_rtns:
    if rtn in portf_rtns:
        ef_rtn_list.append(rtn)
        matched_ind = np.where(portf_rtns == rtn)
        ef_vol_list.append(np.min(portf_vol[matched_ind]))

9.	 Plot the efficient frontier:

MARKERS = ["o", "X", "d", "*"]

fig, ax = plt.subplots()
portf_results_df.plot(kind="scatter", x="volatility",
                      y="returns", c="sharpe_ratio",
                      cmap="RdYlGn", edgecolors="black",
                      ax=ax)
ax.set(xlabel="Volatility",
       ylabel="Expected Returns",
       title="Efficient Frontier")
ax.plot(ef_vol_list, ef_rtn_list, "b--")
for asset_index in range(n_assets):
    ax.scatter(x=np.sqrt(cov_mat.iloc[asset_index, asset_index]),
               y=avg_returns[asset_index],
               marker=MARKERS[asset_index],
               s=150, color="black",
               label=ASSETS[asset_index])
ax.legend()
plt.show()
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Executing the snippet generates the plot with all the randomly created portfolios, four points 
indicating the individual assets, and the efficient frontier.

Figure 11.10: The efficient frontier identified using Monte Carlo simulations

In Figure 11.10, we see the typical, bullet-like shape of the efficient frontier.

Some insights we could draw from analyzing the efficient frontier:

•	 Anything to the left of the efficient frontier’s line is not achievable, as we cannot get that level 
of expected return for such a level of volatility.

•	 The performance of a portfolio consisting only of Microsoft’s stock lies very close to the effi-
cient frontier.

Ideally, we should search for a portfolio offering exceptional returns but with a combined standard 
deviation that is lower than the standard deviations of the individual assets. For example, we should 
not consider a portfolio consisting only of Meta’s stock (it is not efficient), but the one that lies on the 
frontier directly above. That is because the latter offers a much better expected return for the same 
level of expected volatility.
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How it works...
In Step 2, we defined the parameters used for this recipe, such as the considered timeframe, the assets 
we wanted to use for building the portfolio, and the number of simulations. An important thing to 
note here is that we also ran ASSETS.sort() to sort the list alphabetically. This matters when inter-
preting the results, as when downloading data from Yahoo Finance using the yfinance library, the 
obtained prices are ordered alphabetically, not as specified in the provided list. Having downloaded 
the stock prices, we calculated simple returns using the pct_change method, and dropped the first 
row containing NaNs.

For evaluating the potential portfolios, we needed the average (expected) annual return and the corre-
sponding covariance matrix. We obtained them by using the mean and cov methods of the DataFrame. 
We also annualized both metrics by multiplying them by 252 (the average number of trading days in 
a year).

In Step 5, we calculated the random portfolio weights. Following the assumptions of the modern port-
folio theory (refer to the chapter introduction for reference), the weights needed to be positive and 
sum up to 1. To achieve this, we first generated a matrix of random numbers (between 0 and 1) using 
np.random.random. The matrix was of size N_SIMULATIONS by n_assets. To make sure the weights 
summed up to 1, we divided each row of the matrix by its sum.

In Step 6, we calculated the portfolio metrics—returns, standard deviation, and the Sharpe ratio. To calculate 
the expected annual portfolio returns, we had to multiply the weights by the previously calculated annual 
averages. For the standard deviations, we had to use the following formula: 𝜔𝜔𝑇𝑇𝛴𝛴𝛴𝛴 , where 𝜔𝜔  is the vector 
of weights and 𝛴𝛴  is the historical covariance matrix. We iterated over all the simulated portfolios using 
a for loop.

For this example, we assumed that the risk-free rate was 0%, so the Sharpe ratio of the portfolio could 
be calculated as portfolio returns divided by the portfolio’s volatility. Another possible approach would 
be to calculate the average annual risk-free rate over 2021 and to use the portfolio excess returns for 
calculating the ratio.

 We needed the covariance matrix, as for calculating the portfolio volatility, we also needed 
to account for the correlation between the assets. To benefit from significant diversification, 
the assets should have low positive or negative correlations.

 In this case, the for loop implementation is actually faster than the vectorized matrix equivalent:  
np.diag(np.sqrt(np.dot(weights, np.dot(cov_mat, weights.T)))). The reason 
for that is the quickly increasing number of off-diagonal elements to be calculated, which 
does not matter for the metrics of interest. This approach is faster than the for loop for 
only a relatively small number of simulations (~100).
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The last three steps led to visualizing the results. First, we put all the relevant metrics into a pandas 
DataFrame. Second, we identified the points of the efficient frontier. To do so, we created an array of 
expected returns from the sample. We used np.linspace, with the min and max values coming from 
the calculated portfolio returns. We rounded the numbers to two decimals to make the calculations 
smoother. For each expected return, we found the minimum observed volatility. In cases where there 
was no match, as can happen with equally spread points on the linear space, we skipped that point.

In the very last step, we plotted the simulated portfolios, the individual assets, and the approximated 
efficient frontier in one plot. The shape of the frontier was a bit jagged, which can be expected when 
using only simulated values that are not that frequent in some extreme areas. Additionally, we colored 
the dots representing the simulated portfolios by the value of the Sharpe ratio. Following the ratio’s 
definition, the upper-left part of the plot shows a sweet spot with the highest expected returns per 
expected volatility.

There’s more...
Having simulated 100,000 random portfolios, we can also investigate which one has the highest Sharpe 
ratio (maximum expected return per unit of risk, also known as the tangency portfolio) or minimum 
volatility. To locate these portfolios among the simulated ones, we use the np.argmin and np.argmax 
functions, which return the index of the minimum/maximum value in the array.

The code is as follows:

max_sharpe_ind = np.argmax(portf_results_df["sharpe_ratio"])
max_sharpe_portf = portf_results_df.loc[max_sharpe_ind]

min_vol_ind = np.argmin(portf_results_df["volatility"])
min_vol_portf = portf_results_df.loc[min_vol_ind]

 One thing to keep in mind while finding the optimal asset allocation and evaluating its 
performance is that we are optimizing historically. We use the past performance to select 
the allocation that should work best, provided the market conditions do not change. As 
we know very well, that is rarely the case, thus past performance is not always indicative 
of future performance.

 You can find the available colormaps in matplotlib documentation. Depending on the 
problem at hand, a different colormap might be more suitable (sequential, diverging, 
qualitative, and so on).
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We can also investigate the constituents of these portfolios, together with the expected performance. 
Here, we only focus on the results, but the code used for generating the summaries is available in the 
book’s GitHub repository.

The maximum Sharpe ratio portfolio allocates the majority of the resources (~95%) to Microsoft and 
virtually nothing to Twitter. That is because Twitter’s annualized average returns for 2021 were negative:

Maximum Sharpe Ratio portfolio ----
Performance
returns: 45.14% volatility: 20.95% sharpe_ratio: 215.46%
Weights
META: 2.60% MSFT: 95.17% TSLA: 2.04% TWTR: 0.19%

The minimum volatility portfolio assigns ~78% of the weight to Microsoft, as it is the stock with the 
lowest volatility (this can be inspected by viewing the covariance matrix):

Minimum Volatility portfolio ----
Performance
returns: 40.05% volatility: 20.46% sharpe_ratio: 195.76%
Weights
META: 17.35% MSFT: 78.16% TSLA: 0.23% TWTR: 4.26%

Lastly, we mark these two portfolios on the efficient frontier plot. To do so, we add two extra scatterplots, 
each with one point corresponding to the selected portfolio. We then define the marker shape with 
the marker argument and the marker size with the s argument. We increase the size of the markers 
to make the portfolios more visible among all other points.

The code is as follows:

fig, ax = plt.subplots()
portf_results_df.plot(kind="scatter", x="volatility",
                      y="returns", c="sharpe_ratio",
                      cmap="RdYlGn", edgecolors="black",
                      ax=ax)
ax.scatter(x=max_sharpe_portf["volatility"],
           y=max_sharpe_portf["returns"],
           c="black", marker="*",
           s=200, label="Max Sharpe Ratio")
ax.scatter(x=min_vol_portf["volatility"],
           y=min_vol_portf["returns"],
           c="black", marker="P",
           s=200, label="Minimum Volatility")
ax.set(xlabel="Volatility", ylabel="Expected Returns",
       title="Efficient Frontier")
ax.legend()
plt.show()
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Executing the snippet generates the following figure:

Figure 11.11:  Efficient frontier with the Global Minimum Volatility and Max Sharpe Ratio portfolios

We did not plot the individual assets and the efficient frontier’s line to avoid the plot becoming too 
cluttered. The plot aligns with the intuition we have built while analyzing Figure 11.10. First, the 
Minimum Volatility portfolio lies on the leftmost part of the frontier, which corresponds to the lowest 
expected volatility. Second, the Max Sharpe Ratio portfolio lies in the upper-left part of the plot, where 
the ratio of the expected returns to volatility is the highest.

Finding the efficient frontier using optimization with 
SciPy 
In the previous recipe, Finding the efficient frontier using Monte Carlo simulations, we used a brute force 
approach based on Monte Carlo simulations to visualize the efficient frontier. In this recipe, we use 
a more refined method to find the frontier.

From its definition, the efficient frontier is formed by a set of portfolios offering the highest expected 
portfolio return for certain volatility, or offering the lowest risk (volatility) for a certain level of expected 
returns. We can leverage this fact, and use it in numerical optimization.
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The goal of optimization is to find the best (optimal) value of the objective function by adjusting the 
target variables and taking into account some boundaries and constraints (which have an impact on 
the target variables). In this case, the objective function is a function returning portfolio volatility, and 
the target variables are portfolio weights.

Mathematically, the problem can be expressed as:min𝜔𝜔𝑇𝑇Σ𝜔𝜔 𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝟏𝟏 𝟏 𝟏 𝜔𝜔 𝜔 𝜔 𝜔𝜔𝑇𝑇𝜇𝜇 𝜇 𝜇𝜇𝑝𝑝 

Here, 𝜔𝜔  is a vector of weights, 𝛴𝛴  is the covariance matrix, 𝜇𝜇  is a vector of returns, and 𝜇𝜇𝑝𝑝  is the ex-
pected portfolio return.

To find the efficient frontier, we iterate the optimization routine used for finding the optimal portfolio 
weights over a range of expected portfolio returns.

In this recipe, we work with the same dataset as in the previous one in order to show that the results 
obtained by both approaches are similar.

Getting ready 
This recipe requires running all the code from the Finding the efficient frontier using Monte Carlo sim-
ulations recipe.

How to do it...
Execute the following steps to find the efficient frontier using optimization with SciPy:

1.	 Import the libraries:

import numpy as np
import scipy.optimize as sco
from chapter_11_utils import print_portfolio_summary

2.	 Define functions for calculating portfolio returns and volatility:

def get_portf_rtn(w, avg_rtns):
    return np.sum(avg_rtns * w)

def get_portf_vol(w, avg_rtns, cov_mat):
    return np.sqrt(np.dot(w.T, np.dot(cov_mat, w)))
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3.	 Define the function calculating the efficient frontier:

def get_efficient_frontier(avg_rtns, cov_mat, rtns_range):
    
    efficient_portfolios = []
    
    n_assets = len(avg_returns)
    args = (avg_returns, cov_mat)
    bounds = tuple((0,1) for asset in range(n_assets))
    initial_guess = n_assets * [1. / n_assets, ]
    
    for ret in rtns_range:
        constr = (
            {"type": "eq",
             "fun": lambda x: get_portf_rtn(x, avg_rtns) - ret},
            {"type": "eq", 
             "fun": lambda x: np.sum(x) - 1}
        )
        ef_portf = sco.minimize(get_portf_vol, 
                                initial_guess, 
                                args=args, method="SLSQP", 
                                constraints=constr,
                                bounds=bounds)
        efficient_portfolios.append(ef_portf)
    
    return efficient_portfolios

4.	 Define the considered range of expected portfolio returns:

rtns_range = np.linspace(-0.1, 0.55, 200)

5.	 Calculate the efficient frontier:

efficient_portfolios = get_efficient_frontier(avg_returns,
                                              cov_mat,
                                              rtns_range)

6.	 Extract the volatilities of the efficient portfolios:

vols_range = [x["fun"] for x in efficient_portfolios]
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7.	 Plot the calculated efficient frontier, together with the simulated portfolios:

fig, ax = plt.subplots()
portf_results_df.plot(kind="scatter", x="volatility",
                      y="returns", c="sharpe_ratio",
                      cmap="RdYlGn", edgecolors="black",
                      ax=ax)
ax.plot(vols_range, rtns_range, "b--", linewidth=3)
ax.set(xlabel="Volatility",
       ylabel="Expected Returns",
       title="Efficient Frontier")

plt.show()

The following figure presents a graph of the efficient frontier, calculated using numerical 
optimization:

Figure 11.12: Efficient frontier identified using numerical optimization together with the 
previously generated random portfolios

We see that the efficient frontier has a very similar shape to the one obtained using Monte 
Carlo simulations. The only difference is that the line is smoother.
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8.	 Identify the minimum volatility portfolio:

min_vol_ind = np.argmin(vols_range)
min_vol_portf_rtn = rtns_range[min_vol_ind]
min_vol_portf_vol = efficient_portfolios[min_vol_ind]["fun"]

min_vol_portf = {
    "Return": min_vol_portf_rtn,
    "Volatility": min_vol_portf_vol,
    "Sharpe Ratio": (min_vol_portf_rtn / min_vol_portf_vol)
}

9.	 Print the performance summary:

print_portfolio_summary(min_vol_portf,
                        efficient_portfolios[min_vol_ind]["x"],
                        ASSETS,
                        name="Minimum Volatility")

Running the snippet results in the following summary:

Minimum Volatility portfolio ----
Performance
Return: 40.30% Volatility: 20.45% Sharpe Ratio: 197.10%
Weights
META: 15.98% MSFT: 79.82% TSLA: 0.00% TWTR: 4.20%

The minimum volatility portfolio is achieved by investing mostly in Microsoft and Meta, while not 
investing in Tesla at all.

How it works...
As mentioned in the introduction, we continued the example from the previous recipe. That is why 
we had to run Steps 1 to 4 from there (not shown here for brevity), to have all the required data. As an 
extra prerequisite, we had to import the optimization module from SciPy.

In Step 2, we defined two functions, which return the expected portfolio return and volatility, given 
historical data and the portfolio weights. We had to define these functions instead of calculating these 
metrics directly as we use them later on in the optimization procedure. The algorithm iteratively tries 
different weights and needs to be able to use the current values of the target variables (weights) to 
arrive at the metric it tries to optimize.
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In Step 3, we defined a function called get_efficient_frontier. Its goal is to return a list containing 
the efficient portfolios, given historical metrics and the considered range of expected portfolio returns. 
This was the most important step of the recipe and contained a lot of nuances. We describe the logic 
of the function sequentially:

1.	 The outline of the function is that it runs the optimization procedure for each expected portfolio 
return in the considered range, and stores the resulting optimal portfolio in a list.

2.	 Outside of the for loop, we defined a couple of objects that we pass into the optimizer:

•	 The arguments that are passed to the objective function. In this case, these are the his-
torical average returns and the covariance matrix. The function that we optimize must 
accept the arguments as inputs. That is why we pass the returns to the get_portf_vol 
function (defined in Step 2), even though they are not necessary for calculations and 
are not used within the function.

•	 bounds (a nested tuple)—for each target variable (weight), we provide a tuple containing 
the boundary values, that is, the minimum and maximum allowable values. In this case, 
the values span the range from 0 to 1 (no negative weights, as per the MPT).

•	 initial_guess, which is the initial guess of the target variables. The goal of using the 
initial guess is to make the optimization run faster and more efficiently. In this case, 
the guess is the equally-weighted allocation.

3.	 Inside the for loop, we defined the last element used for the optimization—the constraints. 
We defined two constraints:

•	 The expected portfolio return must be equal to the provided value.
•	 The sum of the weights must be equal to 1.

The first constraint is the reason why the constraint’s tuple is defined within the loop. That is 
because the loop passes over the considered range of expected portfolio returns, and for each 
value, we find the optimal risk level.

4.	 We run the optimizer with the Sequential Least-Squares Programming (SLSQP) algorithm, 
which is frequently used for generic minimization problems. For the function to be minimized, 
we pass the previously defined get_portfolio_vol function.

In Steps 4 and 5, we defined the range of expected portfolio returns (based on the range we empirically 
observed in the previous recipe) and ran the optimization function.

In Step 6, we iterated over the list of efficient portfolios and extracted the optimal volatilities. We ex-
tracted the volatility from the scipy.optimize.OptimizeResult object by accessing the fun element. 
This stands for the optimized objective function which is, in this case, the portfolio volatility.

 The optimizer sets the equality (eq) constraint to 0. That is why the intended constraint, 
np.sum(weights) == 1, is expressed as np.sum(weights) - 1 == 0.
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In Step 7, we added the calculated efficient frontier on top of the plot from the previous recipe, Find-
ing the efficient frontier using Monte Carlo simulations. All the simulated portfolios lie on or below the 
efficient frontier, which is what we expected to happen.

In Steps 8 and 9, we identified the minimum volatility portfolio, printed the performance metrics, and 
showed the portfolio’s weights (extracted from the efficient frontier).

We can now compare the two minimum volatility portfolios: the one obtained using Monte Carlo 
simulations, and the one we received from optimization. The prevailing pattern in the allocation is 
the same—allocate the majority of the available resources to Meta and Microsoft. We can also see that 
the volatility of the optimized strategy is slightly lower. This means that among the 100,000 portfolios, 
we have not simulated the actual minimum volatility portfolio (for the considered range of expected 
portfolio returns).

There’s more...
We can also use the optimization approach to find the weights that generate a portfolio with the highest 
expected Sharpe ratio, that is, the tangency portfolio. To do so, we first need to redefine the objective 
function, which now will be the negative of the Sharpe ratio. The reason why we use the negative is 
that optimization algorithms run minimization problems. We can easily approach  maximization 
problems by changing the sign of the objective function:

1.	 Define the new objective function (negative Sharpe ratio):

def neg_sharpe_ratio(w, avg_rtns, cov_mat, rf_rate):
    portf_returns = np.sum(avg_rtns * w)
    portf_volatility = np.sqrt(np.dot(w.T, np.dot(cov_mat, w)))
    portf_sharpe_ratio = (
        (portf_returns - rf_rate) / portf_volatility
    )
    return -portf_sharpe_ratio

The second step is very similar to what we have already done with the efficient frontier, this 
time without the for loop, as we are only searching for one set of weights. We include the 
risk-free rate in the arguments (though we assume it is 0%, for simplicity) and only use one 
constraint—the sum of the target variables must be equal to 1.

2.	 Find the optimized portfolio:

n_assets = len(avg_returns)
RF_RATE = 0

args = (avg_returns, cov_mat, RF_RATE)
constraints = ({"type": "eq",
                "fun": lambda x: np.sum(x) - 1})
bounds = tuple((0,1) for asset in range(n_assets))
initial_guess = n_assets * [1. / n_assets]
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max_sharpe_portf = sco.minimize(neg_sharpe_ratio,
                                x0=initial_guess,
                                args=args,
                                method="SLSQP",
                                bounds=bounds,
                                constraints=constraints)

3.	 Extract information about the maximum Sharpe ratio portfolio:

max_sharpe_portf_w = max_sharpe_portf["x"]
max_sharpe_portf = {
    "Return": get_portf_rtn(max_sharpe_portf_w, avg_returns),
    "Volatility": get_portf_vol(max_sharpe_portf_w, 
                                avg_returns,
                                cov_mat),
    "Sharpe Ratio": -max_sharpe_portf["fun"]
}

4.	 Print the performance summary:

print_portfolio_summary(max_sharpe_portf,
                        max_sharpe_portf_w,
                        ASSETS,
                        name="Maximum Sharpe Ratio")

Running the snippet prints the following summary of the portfolio maximizing the Sharpe ratio:

Maximum Sharpe Ratio portfolio ----
Performance
Return: 45.90% Volatility: 21.17% Sharpe Ratio: 216.80%
Weights
META: 0.00% MSFT: 96.27% TSLA: 3.73% TWTR: 0.00%

To achieve the maximum Sharpe ratio, the investor should invest mostly in Microsoft (>96% allocation), 
with a 0% allocation to Meta and Twitter.

See also
•	 Markowitz, H., 1952. “Portfolio Selection,” The Journal of Finance, 7(1): 77–91
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Finding the efficient frontier using convex optimization 
with CVXPY 
In the previous recipe, Finding the efficient frontier using optimization with SciPy, we found the efficient 
frontier using numerical optimization with the SciPy library. We used portfolio volatility as the metric 
we wanted to minimize. However, it is also possible to state the same problem a bit differently and 
use convex optimization to find the efficient frontier.

We can reframe the mean-variance optimization problem into a risk-aversion framework, in which 
the investor wants to maximize the risk-adjusted return:max    𝜔𝜔𝑇𝑇𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇𝑇𝑇Σ𝜔𝜔 𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝟏𝟏 𝟏 𝟏 𝜔𝜔 𝜔 𝜔 

Here, 𝛾𝛾 𝛾 𝛾𝛾𝛾𝛾𝛾  is the risk-aversion parameter, and the constraints specify that the weights must sum 
up to 1, and short-selling is not allowed. The higher the value of 𝛾𝛾 , the more risk-averse the investor is.

Getting ready
This recipe requires running all the code from the previous recipes:

•	 Finding the efficient frontier using Monte Carlo simulations
•	 Finding the efficient frontier using optimization with SciPy

How to do it...
Execute the following steps to find the efficient frontier using convex optimization:

1.	 Import the library:

import cvxpy as cp

2.	 Convert the annualized average returns and the covariance matrix to numpy arrays:

avg_returns = avg_returns.values
cov_mat = cov_mat.values

 Short-selling assumes borrowing an asset and selling it on the open market. Then, we 
purchase the asset later at a lower price. Our gain is the difference after repaying the 
initial loan. In this recipe, we use the same data as in the previous two recipes, to make 
sure the results are comparable.
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3.	 Set up the optimization problem:

weights = cp.Variable(n_assets)
gamma_par = cp.Parameter(nonneg=True)
portf_rtn_cvx = avg_returns @ weights
portf_vol_cvx = cp.quad_form(weights, cov_mat)
objective_function = cp.Maximize(
    portf_rtn_cvx - gamma_par.*.portf_vol_cvx
)
problem = cp.Problem(
    objective_function,
    [cp.sum(weights) == 1, weights >= 0]
)

4.	 Calculate the efficient frontier:

N_POINTS = 25
portf_rtn_cvx_ef = []
portf_vol_cvx_ef = []
weights_ef = []
gamma_range = np.logspace(-3, 3, num=N_POINTS)

for gamma in gamma_range:
    gamma_par.value = gamma
    problem.solve()
    portf_vol_cvx_ef.append(cp.sqrt(portf_vol_cvx).value)
    portf_rtn_cvx_ef.append(portf_rtn_cvx.value)
    weights_ef.append(weights.value)

5.	 Plot the allocation for different values of the risk-aversion parameter:

weights_df = pd.DataFrame(weights_ef,
                          columns=ASSETS,
                          index=np.round(gamma_range, 3))
ax = weights_df.plot(kind="bar", stacked=True)
ax.set(title="Weights allocation per risk-aversion level",
       xlabel=r"$\gamma$",
       ylabel="weight")
ax.legend(bbox_to_anchor=(1,1))

In Figure 11.13, we can see the asset allocation for the considered range of risk-aversion pa-
rameters (𝛾𝛾 ):
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Figure 11.13: Asset allocation per various levels of risk-aversion

In Figure 11.13, we can see that for very small values of 𝛾𝛾 , the investor would allocate 100% of 
their resources to Tesla. As we increased the risk aversion, the allocation to Tesla grew small-
er, and more weight was allocated to Microsoft and the other assets. At the other end of the 
considered values for the parameter, the investor would allocate 0% to Tesla.

6.	 Plot the efficient frontier, together with the individual assets:

fig, ax = plt.subplots()
ax.plot(portf_vol_cvx_ef, portf_rtn_cvx_ef, "g-")
for asset_index in range(n_assets):
     plt.scatter(x=np.sqrt(cov_mat[asset_index, asset_index]),
                 y=avg_returns[asset_index],
                 marker=MARKERS[asset_index],
                 label=ASSETS[asset_index],
                 s=150)
ax.set(title="Efficient Frontier",
       xlabel="Volatility",
       ylabel="Expected Returns")
ax.legend()
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Figure 11.14 presents the efficient frontier, generated by solving the convex optimization 
problem.

Figure 11.14: Efficient frontier identified by solving the convex optimization problem

The generated frontier is similar to the one in Figure 11.10 (generated using Monte Carlo simulations). 
Back then, we established that a portfolio consisting of only Microsoft’s stocks lies very close to the 
efficient frontier. Now we can say the same about the portfolio comprised entirely of Tesla’s stocks. 
When using Monte Carlo simulations, we did not have enough observations generated in that part 
of the returns/volatility plane to draw the efficient frontier line around that portfolio. In the There’s 
more... section, we also compare this frontier to the one obtained in the previous recipe, in which we 
used the SciPy library.

How it works...
As mentioned in the introduction, we continued the example from the previous two recipes. That is 
why we had to run Steps 1 to 4 from the Finding the efficient frontier using Monte Carlo simulations rec-
ipe (not shown here for brevity) to have all the required data. As an extra step, we had to import the 
cvxpy convex optimization library. We additionally converted the historical average returns and the 
covariance matrix into numpy arrays.

In Step 3, we set up the optimization problem. We started by defining the target variables (weights), 
the risk-aversion parameter (gamma_par, where “par” is added to highlight that it is a parameter of the 
optimization routine), the portfolio returns and volatility (both using the previously defined weights 
object), and lastly, the objective function—the risk-adjusted returns we want to maximize. Then, we 
created the cp.Problem object and passed the objective function and a list of constraints as arguments.
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In Step 4, we found the efficient frontier by solving the convex optimization problem for multiple values 
of the risk-aversion parameter. To define the considered values, we used the np.logspace function 
to get 25 values of 𝛾𝛾 . For each value of the parameter, we found the optimal solution by running  
problem.solve(). We stored the values of interest in dedicated lists.

In Step 5, we plotted the asset allocation per various levels of risk aversion. Lastly, we plotted the 
efficient frontier, together with the individual assets.

There’s more...
Comparing the results from two formulations of the asset allocation 
problem
We can also plot the two efficient frontiers for comparison—the one calculated by minimizing the 
volatility per expected level of return, and the other one using convex optimization and maximizing 
the risk-adjusted return:

x_lim = [0.2, 0.6]
y_lim = [0.4, 0.6]

fig, ax = plt.subplots(1, 2)
ax[0].plot(vols_range, rtns_range, "g-", linewidth=3)
ax[0].set(title="Efficient Frontier - Minimized Volatility",
          xlabel="Volatility",
          ylabel="Expected Returns",
          xlim=x_lim,
          ylim=y_lim)

ax[1].plot(portf_vol_cvx_ef, portf_rtn_cvx_ef, "g-", linewidth=3)
ax[1].set(title="Efficient Frontier - Maximized Risk-Adjusted Return",
          xlabel="Volatility",
          ylabel="Expected Returns",
          xlim=x_lim,
          ylim=y_lim)

 We used cp.quad_form(x, y) to express the following multiplication: xTyx.

 np.logspace is similar to np.linspace; the difference is that the former finds numbers 
evenly spread on a log scale instead of a linear scale.
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Executing the snippet generates the following plots:

Figure 11.15: Comparison of efficient frontiers generated by minimizing volatility per expected level 
of return (left) and by maximizing the risk-adjusted return (right)

As we can see, the generated efficient frontiers are very similar, with some minor differences. First, 
the one obtained using minimization is smoother, as we used more points to calculate the frontier. 
Second, the right one is defined for a slightly larger range of possible volatility/returns pairs.

Allowing for leverage
Another interesting concept we can incorporate into the analysis is the maximum allowable leverage. 
We replace the non-negativity constraints on the weights with a max leverage constraint, using the 
norm of a vector.

In the following snippet, we only show what was added on top of the things we defined in Step 3:

max_leverage = cp.Parameter()
prob_with_leverage = cp.Problem(objective_function, 
                                [cp.sum(weights) == 1, 
                                cp.norm(weights, 1) <= max_leverage])
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In the next snippet, we modify the code, this time to include two loops—one over potential values of the 
risk-aversion parameter, and the other one indicating the maximum allowable leverage. Max leverage 
equal to 1 (meaning no leverage) results in a case similar to the previous optimization problem (only 
this time, there is no non-negativity constraint).

We also redefine the placeholder objects (used for storing the results) to be either 2D matrices  
(np.ndarrays) or including the third dimension, in the case of weights.

LEVERAGE_RANGE = [1, 2, 5]
len_leverage = len(LEVERAGE_RANGE)
N_POINTS = 25
 
portf_vol_l = np.zeros((N_POINTS, len_leverage))
portf_rtn_l = np.zeros(( N_POINTS, len_leverage))
weights_ef = np.zeros((len_leverage, N_POINTS, n_assets))
 
for lev_ind, leverage in enumerate(LEVERAGE_RANGE):
    for gamma_ind in range(N_POINTS):
        max_leverage.value = leverage
        gamma_par.value = gamma_range[gamma_ind]
        prob_with_leverage.solve()
        portf_vol_l[gamma_ind, lev_ind] = cp.sqrt(portf_vol_cvx).value
        portf_rtn_l[gamma_ind, lev_ind] = portf_rtn_cvx.value
        weights_ef[lev_ind, gamma_ind, :] = weights.value      

In the following snippet, we plot the efficient frontiers for different maximum leverages. We can 
clearly see that higher leverage increases returns and, at the same time, allows for greater volatility.

fig, ax = plt.subplots()

for leverage_index, leverage in enumerate(LEVERAGE_RANGE):
    plt.plot(portf_vol_l[:, leverage_index], 
             portf_rtn_l[:, leverage_index], 
             label=f"{leverage}")

ax.set(title="Efficient Frontier for different max leverage",
       xlabel="Volatility",
       ylabel="Expected Returns")
ax.legend(title="Max leverage")
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Executing the code generates the following figure.

Figure 11.16: Efficient frontier for different values of maximum leverage

Lastly, we also recreate the plot showing weight allocation per varying risk-aversion levels. With a 
maximum leverage of 1, there is no short selling.

fig, ax = plt.subplots(len_leverage, 1, sharex=True)

for ax_index in range(len_leverage):
    weights_df = pd.DataFrame(weights_ef[ax_index], 
                              columns=ASSETS, 
                              index=np.round(gamma_range, 3))
    weights_df.plot(kind="bar", 
                    stacked=True, 
                    ax=ax[ax_index], 
                    legend=None) 
    ax[ax_index].set(
        ylabel=(f"max_leverage = {LEVERAGE_RANGE[ax_index]}"
                "\n weight")
    )
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ax[len_leverage - 1].set(xlabel=r"$\gamma$")
ax[0].legend(bbox_to_anchor=(1,1))
ax[0].set_title("Weights allocation per risk aversion level",
                fontsize=16)

Executing the snippet generates the following figure.

Figure 11.17: Asset allocation per different levels of risk aversion and maximum leverage

We can spot a clear pattern: with an increase in risk aversion, investors stop using leverage altogether 
and converge to a similar allocation for all levels of the maximum permitted leverage.

Finding the optimal portfolio with Hierarchical Risk 
Parity
De Prado (2018) explains that quadratic optimizers tend to deliver unreliable solutions, due to their 
instability, concentration, and underperformance. The main reason for all those troubles is the need 
to invert the covariance matrix, which is prone to cause large errors when the matrix is numerically 
ill-conditioned. He also refers to Markowitz’s curse, which implies that the more correlated the in-
vestments are, the greater the need for diversification, which in turn leads to bigger estimation errors 
in the portfolio weights.
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A potential solution is to introduce a hierarchical structure, which means that small estimation errors 
will no longer lead to entirely different allocations. That is possible because the quadratic optimizers 
have complete freedom to fully reshuffle the weights to their liking (unless some explicit constraints 
are enforced).

Hierarchical Risk Parity (HRP) is a novel portfolio optimization method that combines graph theory 
and machine learning techniques in order to build a diversified portfolio based on the information 
available in the covariance matrix. At a very high level, the algorithm works as follows:

1.	 Calculate a distance matrix based on the correlation of the assets (covariance matrix).
2.	 Cluster the assets into a tree structure with hierarchical clustering (based on the distance 

matrix).
3.	 Calculate the minimum variance portfolio within each branch of the tree.
4.	 Iterate over the levels of the tree and combine the portfolios at each node.

For a more detailed description of the algorithm, please refer to De Prado (2018).

We also mention some of the advantages of the HRP approach:

•	 It fully utilizes the information from the covariance matrix and does not require inverting it.
•	 It treats clustered assets as complements, rather than substitutes.
•	 The weights produced by the algorithm are more stable and robust.
•	 The solution can be intuitively understood with the help of visualizations.
•	 We can include additional constraints.
•	 Literature suggests that the method outperforms the classical mean-variance approaches 

out-of-sample.

In this recipe, we apply the Hierarchical Risk Parity algorithm to form a portfolio from the stocks of 
the 10 biggest US tech companies.

How to do it…
Execute the following steps to find the optimal asset allocation using the HRP:

1.	 Import the libraries:

import yfinance as yf
import pandas as pd
from pypfopt.expected_returns import returns_from_prices
from pypfopt.hierarchical_portfolio import HRPOpt
from pypfopt.discrete_allocation import (DiscreteAllocation, 
                                         get_latest_prices)
from pypfopt import plotting
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2.	 Download the stock prices of the 10 biggest US tech companies:

ASSETS = ["AAPL", "MSFT", "AMZN", "GOOG", "META",
          "V", "NVDA", "MA", "PYPL", "NFLX"]

prices_df = yf.download(ASSETS,
                        start="2021-01-01",
                        end="2021-12-31",
                        adjusted=True)
prices_df = prices_df["Adj Close"]

3.	 Calculate the returns from prices:

rtn_df = returns_from_prices(prices_df)

4.	 Find the optimal allocation using Hierarchical Risk Parity:

hrp = HRPOpt(returns=rtn_df)
hrp.optimize()

5.	 Display the (cleaned) weights:

weights = hrp.clean_weights()
print(weights)

This returns the following portfolio weights:

OrderedDict([('AAPL', 0.12992), ('AMZN', 0.156), ('META', 0.08134), 
('GOOG', 0.08532), ('MA', 0.10028), ('MSFT', 0.1083), ('NFLX', 0.10164), 
('NVDA', 0.04466), ('PYPL', 0.05326), ('V', 0.13928)])

6.	 Calculate the portfolio performance:

hrp.portfolio_performance(verbose=True, risk_free_rate=0);

which returns the following evaluation metrics:

Expected annual return: 23.3%
Annual volatility: 19.2%
Sharpe Ratio: 1.21

7.	 Visualize the hierarchical clustering used for finding the portfolio weights:

fig, ax = plt.subplots()
plotting.plot_dendrogram(hrp, ax=ax)
ax.set_title("Dendogram of cluster formation")
plt.show()
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Running the snippet generates the following plot:

Figure 11.18: Dendrogram visualizing the process of cluster formation

In Figure 11.18, we can see that companies such as Visa and MasterCard were clustered together. 
In the plot, the y-axis represents the distance between the two leaves that are to be merged. 

This makes sense, as if we wanted to invest in a publicly traded US credit card company like 
Visa, we might consider adding or reducing the allocation to another very similar company, 
such as MasterCard. Similarly in the case of Google and Microsoft, although the difference 
between those two companies is larger. This is the very idea of applying the hierarchy structure 
to the correlation between the assets. 

8.	 Find the number of stocks to buy using 50,000 USD:

latest_prices = get_latest_prices(prices_df)
allocation_finder = DiscreteAllocation(weights,
                                       latest_prices,
                                       total_portfolio_value=50000)
allocation, leftover = allocation_finder.lp_portfolio()
print(allocation)
print(leftover)
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Running the snippet prints the following dictionary of the suggested number of stocks to purchase 
and the leftover cash:

{'AAPL': 36, 'AMZN': 2, 'META': 12, 'GOOG': 2, 'MA': 14, 'MSFT': 16, 'NFLX': 8, 
'NVDA': 7, 'PYPL': 14, 'V': 31}
12.54937744140625

How it works…
After importing the libraries, we downloaded the stock prices of the 10 largest US tech companies 
for the year 2021. In Step 3, we created a DataFrame containing the daily stock returns using the 
returns_from_prices function.

In Step 4, we instantiated the HRPOpt object and passed in the stock returns as input. Then, we used 
the optimize method to find the optimal weights. An inquisitive reader might notice that when de-
scribing the algorithm, we mentioned that it is based on the covariance matrix, while we used the 
return series as input. Under the hood, when we pass in the returns argument, the class computes 
the covariance matrix for us. Alternatively, we can pass in the covariance matrix directly using the 
cov_matrix argument. 

Then, we displayed the cleaned weights using the clean_weights method. It is a helper method that 
rounds the weights to 5 decimals (can be adjusted) and cuts off any weights below a certain threshold 
to 0. In Step 6, we calculated the portfolio’s expected performance using the portfolio_performance 
method. While doing so, we changed the default risk-free rate to 0%.

In Step 7, we plotted the results of the hierarchical clustering using the plot_dendogram function. The 
figure produced by this function is very useful for getting an understanding of how the algorithm 
works and which assets were clustered together.

In Step 8, we performed a discrete allocation based on the calculated weights. We assumed we had 
50,000 USD and wanted to allocate as much as possible using the HRP weights. First, we recovered 
the latest prices from the downloaded prices, so the ones from 2021-12-30. Then, we instantiated an 
object of the DiscreteAllocation class by providing the weights, latest prices, and our budget. Lastly, 
we used the lp_portfolio method to use linear programming to find the number of stocks we should 
buy, while keeping in mind our budget. We obtained two objects as the output: a dictionary containing 
the pairs of assets and the corresponding number of stocks, and the remaining money.

 When passing the covariance matrix directly, we can benefit from using alternative for-
mulations of the covariance matrix, rather than the sample covariance. For example, we 
could use the Ledoit-Wolf shrinkage or the oracle approximating shrinkage (OAS). You 
can find references for those methods in the See also section.

An alternative approach to linear programming would be to employ the greedy iterative 
search, available under the greedy_portfolios method.
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There’s more...
PyPortfolioOpt has much more to offer than we have covered. For example, it greatly simplifies 
obtaining the efficient frontier. We can calculate it using the following steps:

1.	 Import the libraries:

from pypfopt.expected_returns import mean_historical_return
from pypfopt.risk_models import CovarianceShrinkage
from pypfopt.efficient_frontier import EfficientFrontier
from pypfopt.plotting import plot_efficient_frontier

2.	 Get the expected returns and the covariance matrix:

mu = mean_historical_return(prices_df)
S = CovarianceShrinkage(prices_df).ledoit_wolf()

As we have already established multiple times in this chapter, mean-variance optimization 
requires two components: the expected returns of the assets and their covariance matrix. 
PyPortfolioOpt offers multiple possibilities for calculating both of them. While we have already 
mentioned alternatives to the covariance matrix, you can use the following for the expected 
returns: historical mean return, exponentially weighted mean historical return, and CAPM 
estimate of returns. Here, we calculated the historical mean and the Ledoit-Wolf shrinkage 
estimate of the covariance matrix.

3.	 Find and plot the efficient frontier:

ef = EfficientFrontier(mu, S)

fig, ax = plt.subplots()
plot_efficient_frontier(ef, ax=ax, show_assets=True)
ax.set_title("Efficient Frontier")
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Running the snippet generates the following figure:

Figure 11.19: Efficient frontier obtained using the Ledoit-Wolf shrinkage estimate of the 
covariance matrix

4.	 Identify the tangency portfolio:

ef = EfficientFrontier(mu, S)
weights = ef.max_sharpe(risk_free_rate=0)
print(ef.clean_weights())

This returns the following portfolio weights:

OrderedDict([('AAPL', 0.0), ('AMZN', 0.0), ('META', 0.0), ('GOOG', 
0.55146), ('MA', 0.0), ('MSFT', 0.11808), ('NFLX', 0.0), ('NVDA', 
0.33046), ('PYPL', 0.0), ('V', 0.0)])
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The EfficientFrontier class allows for identifying more than just the tangency portfolio. We can 
also use the following methods:

•	 min_volatility: Finds the portfolio with minimum volatility.
•	 max_quadratic_utility: Finds the portfolio that maximizes the quadratic utility, given a level 

of risk aversion. This is the same approach as the one we have covered in the previous recipe.
•	 efficient_risk: Finds a portfolio that maximizes the return for a given target risk.
•	 efficient_return: Finds a portfolio that minimizes the risk for a given target return.

For the last two options, we can generate market neutral portfolios, that is, portfolios with weights 
summing up to zero.

As we have mentioned before, the functionalities we showed are just the proverbial tip of the iceberg. 
Using the library, we can also explore the following:

•	 Incorporate sector constraints: Let’s assume you want to have a portfolio of stocks from various 
sectors, while keeping some conditions, for example, having at least 20% in tech.

•	 Optimize for transaction costs: In a case when we already have a portfolio and want to rebalance, 
it might be quite expensive to completely rebalance the portfolio (and as we have discussed 
before, the instability of the portfolio weights can be a big disadvantage of the mean-variance 
optimization). In such a case, we can add an additional objective to rebalance the portfolio 
while keeping the transaction costs as low as possible.

•	 Use the L2 regularization while optimizing the portfolio: By using the regularization we counter 
the behavior of many weights dropping to zero. We can experiment with different values of the 
gamma parameter to find the allocation that works best for us. You might already be familiar 
with the L2 regularization thanks to the famous Ridge Regression algorithm.

•	 Use the Black-Litterman model to get a more stable model of the expected returns than just 
by using the historical mean returns. It is a Bayesian approach to asset allocation, which com-
bines a prior estimate of returns with views on certain assets to arrive at a posterior estimate 
of expected returns. 

In the notebook on GitHub, you can also find short examples of finding the efficient frontier while 
allowing for short-selling or using L2 regularization.

See also
Additional resources concerning the approaches mentioned in the recipe: 

•	 Black, F; & Litterman, R. 1991. “ Combining investor views with market equilibrium,” The 
Journal of Fixed Income, 1, (2): 7-18: https://doi.org/10.3905/jfi.1991.408013

You can also experiment with not using the expected returns. Literature suggests that due 
to the difficulties in getting an accurate estimate of expected returns, minimum variance 
portfolios consistently outperform the maximum Sharpe ratio portfolios out-of-sample.
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•	 Black, F., & Litterman, R. 1992. “Global portfolio optimization,” Financial Analysts Journal, 
48(5): 28-43

•	 Chen, Y., Wiesel, A., Eldar, Y. C., & Hero, A. O. 2010. “Shrinkage Algorithms for MMSE 
Covariance Estimation,” IEEE Transactions on Signal Processing, 58(10): 5016-5029:  
https://doi.org/10.1109/TSP.2010.2053029

•	 De Prado, M. L. 2016. “Building diversified portfolios that outperform out of sample,” The Journal 
of Portfolio Management, 42(4): 59-69: https://doi.org/10.3905/jpm.2016.42.4.059.

•	 De Prado, M. L. 2018. Advances in Financial Machine Learning. John Wiley & Sons
•	 Ledoit, O., & Wolf, M. 2003 “Improved estimation of the covariance matrix of stock returns 

with an application to portfolio selection,” Journal of Empirical Finance, 10(5): 603-621
•	 Ledoit, O., & Wolf, M. 2004. “Honey, I shrunk the sample covariance matrix,” The Journal of 

Portfolio Management, 30(4): 110-119: https://doi.org/10.3905/jpm.2004.110

Summary
In this chapter, we have learned about asset allocation. We started with the simplest equally-weighted 
portfolio, which was proven to be quite difficult to outperform, even with advanced optimization tech-
niques. Then, we explored various approaches to calculating the efficient frontier using mean-variance 
optimization. Lastly, we also touched upon some of the recent developments in asset allocation, that 
is, the Hierarchical Risk Parity algorithm.

You might find the following references interesting for learning more about approaching asset allo-
cation with Python:

•	 Riskfolio-Lib (https://github.com/dcajasn/Riskfolio-Lib): Another popular portfolio 
optimization library containing a wide selection of algorithms and evaluation metrics.

•	 deepdow (https://github.com/jankrepl/deepdow): A Python library connecting portfolio 
optimization and deep learning.

In the next chapter, we cover various methods of backtesting trading and asset allocation strategies.

https://doi.org/10.1109/TSP.2010.2053029
https://github.com/dcajasn/Riskfolio-Lib
https://github.com/jankrepl/deepdow
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Backtesting Trading Strategies

In the previous chapters, we gained the knowledge necessary to create trading strategies. On the one 
hand, we could use technical analysis to identify trading opportunities. On the other, we could use 
some of the other techniques we have already covered in the book. We could try to use knowledge 
about factor models or volatility forecasting. Or, we could use portfolio optimization techniques to 
determine the optimal quantity of assets for our investment. One crucial thing that is still missing is 
evaluating how such a strategy would have performed if we had implemented it in the past. That is 
the goal of backtesting, which we explore in this chapter.

Backtesting can be described as a realistic simulation of our trading strategy, which assesses its 
performance using historical data. The underlying idea is that the backtest performance should be 
indicative of future performance when the strategy is actually used on the market. Naturally, this will 
not always be the case and we should keep that in mind when experimenting.

There are multiple ways of approaching backtesting, however, we should always remember that a 
backtest should faithfully represent how markets operate, how trades are executed, what orders 
are available, and so on. For example, forgetting to account for transaction costs can quickly turn a 

“profitable” strategy into a failed experiment.

We have already mentioned the generic uncertainty around predictions in the ever-changing financial 
markets. However, there are also some implementation aspects that can bias the results of backtests 
and increase the risk of confusing in-sample performance with generalizable patterns that will also 
hold out of sample. We briefly mention some of those below:

•	 Look-ahead bias: This potential flaw emerges when we develop a trading strategy using histori-
cal data before it was actually known/available. Some examples include corrections of reported 
financial statements after their publication, stock splits, or reverse splits.

•	 Survivorship bias: This bias arises when we backtest only using data about securities that are 
currently active/tradeable. By doing so, we omit the assets that have disappeared over time 
(due to bankruptcy, delisting, acquisition, and so on). Most of the time, those assets did not 
perform well and our strategies can be skewed by failing to include those, as those assets could 
have been picked up in the past when they were still available in the markets.
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•	 Outlier detection and treatment: The main challenge is to discern the outliers that are not 
representative of the analyzed period as opposed to the ones that are an integral part of the 
market behavior.

•	 Representative sample period: As the goal of the backtest is to provide an indication of future 
performance, the sample data should reflect the current, and potentially also future, market 
behavior. By not spending enough time on this part, we can miss some crucial market regime 
aspects such as volatility (too few/many extreme events) or volume (too few data points).

•	 Meeting investment objectives and constraints over time: It can happen that a strategy leads 
to good performance at the very end of the evaluation period. However, in some periods when 
it was active, it resulted in unacceptably high losses or volatility. We could potentially track 
those by using rolling performance/risk metrics, for example, the value-at-risk or the Sharpe/
Sortino ratio.

•	 Realistic trading environment: We have already mentioned that failing to include transaction 
costs can greatly impact the end result of a backtest. What is more, real-life trading involves 
further complications. For example, it might not be possible to execute all trades at all times 
or at the target price. Some of the things to consider are slippage (the difference between 
the expected price of a trade and the price at which the trade is executed), the availability 
of a counterparty for short positions, broker fees, and so on. The realistic environment also 
accounts for the fact that we might make a trading decision based on the close prices of one 
day, but the trade will be (potentially) executed based on the open prices of the next trading 
day. It can happen that the order we prepare will not be executed due to large price differences.

•	 Multiple testing: When running multiple backtests, we might discover spurious results or a 
strategy that overfits the test sample and produces suspiciously positive results that are un-
likely to hold for out-of-sample data encountered during live trading. Also, we might leak prior 
knowledge of what works and what does not into the design of strategies, which can lead to 
further overfitting. Some things that we can consider are: reporting the number of trials, cal-
culating the minimum backtest length, using some sort of optimal stopping rule, or calculating 
metrics that account for the effect of multiple testing (for example, the deflated Sharpe ratio).

In this chapter, we show how to run backtests of various trading strategies using two approaches: 
vectorized and event-driven. We will go into the details of each of the approaches later on, but now 
we can state that the first one works well for a quick test to see if there is any potential in the strategy. 
On the other hand, the latter is more suited for thorough and rigorous testing, as it tries to account 
for many of the potential issues mentioned above.

The key learning of this chapter is how to set up a backtest using popular Python libraries. We will be 
showing a few examples of strategies built on the basis of popular technical indicators or a strategy 
using mean-variance portfolio optimization. With that knowledge, you can backtest any strategy you 
can come up with.
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We present the following recipes in this chapter:

•	 Vectorized backtesting with pandas 
•	 Event-driven backtesting with backtrader
•	 Backtesting a long/short strategy based on the RSI
•	 Backtesting a buy/sell strategy based on Bollinger bands
•	 Backtesting a moving average crossover strategy using crypto data
•	 Backtesting a mean-variance portfolio optimization

Vectorized backtesting with pandas
As we mentioned in the introduction to this chapter, there are two approaches to carrying out backtests. 
The simpler one is called vectorized backtesting. In this approach, we multiply a signal vector/matrix 
(containing an indicator of whether we are entering or closing a position) by the vector of returns. By 
doing so, we calculate the performance over a certain period of time.

Due to its simplicity, this approach cannot deal with many of the issues we described in the introduc-
tion, for example:

•	 We need to manually align the timestamps to avoid look-ahead bias.
•	 There is no explicit position sizing.
•	 All performance measurements are calculated manually at the very end of the backtest.
•	 Risk-management rules like stop-loss are not easy to incorporate.

That is why we should use vectorized backtesting mostly if we are dealing with simple trading strate-
gies and want to explore their initial potential in a few lines of code.

In this recipe, we backtest a very simple strategy with the following set of rules:

•	 We enter a long position if the close price is above the 20-day Simple Moving Average (SMA)
•	 We close the position when the close price goes below the 20-day SMA
•	 Short selling is not allowed
•	 The strategy is unit agnostic (we can enter a position of 1 share or 1000 shares) because we 

only care about the percentage change in the prices

We backtest this strategy using Apple’s stock and its historical prices from the years 2016 to 2021.

How to do it…
Execute the following steps to backtest a simple strategy using the vectorized approach:

1.	 Import the libraries:

import pandas as pd
import yfinance as yf
import numpy as np
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2.	 Download Apple’s stock prices from the years 2016 to 2021 and keep only the adjusted close 
price:

df = yf.download("AAPL",
                 start="2016-01-01",
                 end="2021-12-31",
                 progress=False)
df = df[["Adj Close"]]

3.	 Calculate the log returns and the 20-day SMA of the close prices:

df["log_rtn"] = df["Adj Close"].apply(np.log).diff(1)
df["sma_20"] = df["Adj Close"].rolling(window=20).mean()

4.	 Create a position indicator:

df["position"] = (df["Adj Close"] > df["sma_20"]).astype(int)

Using the following snippet, we count how many times we entered a long position:

sum((df["position"] == 1) & (df["position"].shift(1) == 0))

The answer is 56.

5.	 Visualize the strategy over 2021:

fig, ax = plt.subplots(2, sharex=True)
df.loc["2021", ["Adj Close", "sma_20"]].plot(ax=ax[0])
df.loc["2021", "position"].plot(ax=ax[1])
ax[0].set_title("Preview of our strategy in 2021")
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Executing the snippet generates the following figure:

Figure 12.1: The preview of our trading strategy based on the simple moving average

In Figure 12.1, we can clearly see how our strategy works—in the periods when the close price 
is above the 20-day SMA, we do have an open position. This is indicated by the value of 1 in 
the column containing the position information.

6.	 Calculate the strategy’s daily and cumulative returns:

df["strategy_rtn"] = df["position"].shift(1) * df["log_rtn"]
df["strategy_rtn_cum"] = (
    df["strategy_rtn"].cumsum().apply(np.exp)
)
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7.	 Add the buy-and-hold strategy for comparison:

df["bh_rtn_cum"] = df["log_rtn"].cumsum().apply(np.exp)

8.	 Plot the strategies’ cumulative returns:

(
    df[["bh_rtn_cum", "strategy_rtn_cum"]]
    .plot(title="Cumulative returns")
)

Executing the snippet generates the following figure:

Figure 12.2: The cumulative returns of our strategy and the buy-and-hold benchmark

In Figure 12.2, we can see the cumulative returns of both strategies. The initial conclusion could be 
that the simple strategy outperformed the buy-and-hold strategy over the considered time period. 
However, this form of a simplified backtest does not consider quite a lot of crucial aspects (for exam-
ple, trading using the close price, it assumes lack of slippage and transaction costs, and so on) that 
can dramatically change the final outcome. In the There’s more... section, we will see how quickly the 
results change when we account for transaction costs alone.

How it works…
At the very beginning, we imported the libraries and downloaded Apple’s stock prices from the years 
2016 to 2021. We only kept the adjusted close price for the backtest.
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In Step 3, we calculated the log returns and the 20-day SMA. To calculate the technical indicator, we 
used the rolling method of a pandas DataFrame. However, we could have just as well used the already 
explored TA-Lib library.

In Step 4, we created a column with information on whether we have an open position (long only) 
or not. As we have decided, we enter the position when the close price is above the 20-day SMA. We 
exit the position when the close price goes below the SMA. We have also encoded this column in the 
DataFrame as an integer. In Step 5, we plotted the close price, the 20-day SMA, and the column with 
the position flag. To make the plot more readable, we only plotted the data from 2021.

Step 6 is the most important one in the vectorized backtest. There, we calculated the strategy’s daily 
and cumulative returns. To calculate the daily return, we multiplied the log return of that day with the 
shifted position flag. The position vector is shifted by 1 to avoid the look-ahead bias. In other words, 
the flag is generated using all the information up to and including time t. We can only use that infor-
mation to open a position on the next trading day, that is, at time t+1.

An inquisitive reader might already spot another bias that is occurring with our backtest. We are cor-
rectly assuming that we can only buy on the next trading day, however, the log return is calculated 
as we have bought on day t+1 using the close price of time t, which can be very untrue depending on 
the market conditions. We will see how to overcome this issue with event-driven backtesting in the 
next recipes. 

Then, we used the cumsum method to calculate the cumulative sum of the log returns, which corre-
sponds to the cumulative return. Lastly, we applied the exponent function using the apply method.

In Step 7, we calculated the cumulative returns of a buy-and-hold strategy. For this one, we simply 
used the log returns for the calculations, skipping the step in which we multiplied the returns with 
the position flag.

In the last step, we plotted the cumulative returns of both strategies.

There’s more...
From the initial backtest, it seems that the simple strategy is outperforming the buy-and-hold strategy. 
But we have also seen that over the 6 years, we have entered a long position 56 times. The total number 
of trades doubles, as we also exited those positions. Depending on the broker, this can result in quite 
significant transaction costs. 

Given that transaction costs are frequently quoted in fixed percentages, we can simply calculate by 
how much the portfolio has changed between successive time steps, calculate the transaction costs 
on that basis, and then subtract them directly from our strategy’s returns.

 We calculated the log returns, as they have a convenient property of summing up over 
time. If we held the position for 10 days and are interested in the final return of the position, 
we can simply sum up the log returns from those 10 days. For more information, please 
refer to Chapter 2, Data Preprocessing.
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In the steps below, we show how to account for the transaction costs in a vectorized backtest. For 
simplicity, we assume that the transaction costs are 1%.

Execute the following steps to account for transaction costs in the vectorized backtest:

1.	 Calculate daily transaction costs:

TRANSACTION_COST = 0.01
df["tc"] = df["position"].diff(1).abs() * TRANSACTION_COST

In this snippet, we calculated if there is a change in our portfolio (absolute value, as we can 
enter or exit a position) and then multiplied that value by the transaction costs expressed as 
a percentage.

2.	 Calculate the strategy’s performance accounting for transaction costs:

df["strategy_rtn_cum_tc"] = (
    (df["strategy_rtn"] - df["tc"]).cumsum().apply(np.exp)
)

3.	 Plot the cumulative returns of all the strategies:

STRATEGY_COLS = ["bh_rtn_cum", "strategy_rtn_cum", 
                 "strategy_rtn_cum_tc"]
(
    df
    .loc[:, STRATEGY_COLS]
    .plot(title="Cumulative returns")
)
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Executing the snippet generates the following figure:

Figure 12.3: Cumulative returns of all strategies, including the one with transaction costs

After accounting for transaction costs, the performance decreased significantly and is worse than 
that of the buy-and-hold. And to be entirely fair, we should also account for the initial and terminal 
transaction costs in the buy-and-hold strategy, as we had to buy and sell the asset once.
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Event-driven backtesting with backtrader
The second approach to backtesting is called event-driven backtesting. In this approach, a backtesting 
engine simulates the time dimension of the trading environment (you can think about it as a for loop 
going through the time and executing all the actions sequentially). This imposes more structure on 
the backtest, including the use of historical calendars to define when trades can actually be executed, 
when prices are available, and so on.

Event-driven backtesting aims to simulate all the actions and constraints encountered when executing 
a certain strategy while allowing for much more flexibility than the vectorized approach. For example, 
this approach allows for simulating potential delays in orders’ execution, slippage costs, and so on. 
In an ideal scenario, a strategy encoded for an event-driven backtest could be easily converted into 
one working with live trading engines.

Nowadays, there are quite a few event-driven backtesting libraries available for Python. In this chapter, 
we introduce one of the most popular ones—backtrader. Key features of this framework include:

•	 A vast amount of available technical indicators (backtrader also provides a wrapper around 
the popular TA-Lib library) and performance measures.

•	 Ease of building and applying new indicators.
•	 Multiple data sources are available (including Yahoo Finance and Nasdaq Data Link), with the 

possibility to load external files.
•	 Simulating many aspects of real brokers, such as different types of orders (market, limit, and 

stop), slippage, commission, going long/short, and so on.
•	 Comprehensive and interactive visualization of the prices, TA indicators, trading signals, per-

formance, and so on.
•	 Live trading with selected brokers.

For this recipe, we consider a basic strategy based on the simple moving average. As a matter of fact, 
it is almost identical to the one we backtested in the previous recipe using the vectorized approach. 
The logic of the strategy is as follows:

•	 When the close price becomes higher than the 20-day SMA, buy one share.
•	 When the close price becomes lower than the 20-day SMA and we have a share, sell it.
•	 We can only have a maximum of one share at any given time.
•	 No short selling is allowed.

We run the backtesting of this strategy using Apple’s stock prices from the year 2021.

Getting ready
In this recipe (and in the rest of the chapter), we will be using two helper functions used for print-
ing logs—get_action_log_string and get_result_log_string. Additionally, we will use a custom 
MyBuySell observer to display the position markers in different colors. You can find the definitions 
of those helpers in the strategy_utils.py file available on GitHub.
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At the time of writing, the version of backtrader available at PyPI (the Python Package Index) is not 
the latest. Installing with a simple pip install backtrader command will install a version contain-
ing quite a few issues, for example, with loading the data from Yahoo Finance. To overcome this, you 
should install the latest version from GitHub. You can do so using the following snippet:

pip install git+https://github.com/mementum/backtrader.git#egg=backtrader

How to do it...
Execute the following steps to backtest a simple strategy using the event-driven approach:

1.	 Import the libraries:

from datetime import datetime
import backtrader as bt
from backtrader_strategies.strategy_utils import *

2.	 Download data from Yahoo Finance:

data = bt.feeds.YahooFinanceData(dataname="AAPL",
                                 fromdate=datetime(2021, 1, 1),
                                 todate=datetime(2021, 12, 31))

To make the code more readable, we first present the general outline of the class defining the 
trading strategy and then introduce the separate methods in the following substeps.

3.	 The template of the strategy is presented below:

class SmaStrategy(bt.Strategy):
    params = (("ma_period", 20), )

    def __init__(self):
        # some code
        
    def log(self, txt):
        # some code

    def notify_order(self, order):
        # some code

    def notify_trade(self, trade):
        # some code

    def next(self):
        # some code
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    def start(self):
        # some code

    def stop(self):
        # some code

a.	 The __init__ method is defined as:

def __init__(self):
    # keep track of close price in the series
    self.data_close = self.datas[0].close

    # keep track of pending orders
    self.order = None

    # add a simple moving average indicator
    self.sma = bt.ind.SMA(self.datas[0],
                          period=self.params.ma_period)

b.	 The log method is defined as:

def log(self, txt):
    dt = self.datas[0].datetime.date(0).isoformat()
    print(f"{dt}: {txt}")

c.	 The notify_order method is defined as: 

def notify_order(self, order):
    if order.status in [order.Submitted, order.Accepted]:
        # order already submitted/accepted
        # no action required
        return

    # report executed order
    if order.status in [order.Completed]:

        direction = "b" if order.isbuy() else "s"
        log_str = get_action_log_string(
            dir=direction,
            action="e",
            price=order.executed.price,
            size=order.executed.size,
            cost=order.executed.value,
            commission=order.executed.comm
        )
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        self.log(log_str)

    # report failed order
    elif order.status in [order.Canceled, order.Margin,
                          order.Rejected]:
        self.log("Order Failed")

    # reset order -> no pending order
    self.order = None

d.	 The notify_trade method is defined as: 

def notify_trade(self, trade): 
    if not trade.isclosed: 
        return 
 
    self.log( 
        get_result_log_string(
            gross=trade.pnl, net=trade.pnlcomm
        ) 
    )

e.	 The next method is defined as: 

def next(self):
    # do nothing if an order is pending
    if self.order:
        return
 
    # check if there is already a position
    if not self.position:
        # buy condition
        if self.data_close[0] > self.sma[0]:
            self.log(
                get_action_log_string(
                    "b", "c", self.data_close[0], 1
                )
            )
            self.order = self.buy()
    else:
        # sell condition
        if self.data_close[0] < self.sma[0]:
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            self.log(
                get_action_log_string(
                    "s", "c", self.data_close[0], 1
                )
            )      
            self.order = self.sell()

f.	 The start and stop methods are defined as follows:

def start(self):
    print(f"Initial Portfolio Value: {self.broker.get_
value():.2f}")

def stop(self):
    print(f"Final Portfolio Value: {self.broker.get_value():.2f}")

4.	 Set up the backtest:

cerebro = bt.Cerebro(stdstats=False)

cerebro.adddata(data)
cerebro.broker.setcash(1000.0)
cerebro.addstrategy(SmaStrategy)
cerebro.addobserver(MyBuySell)
cerebro.addobserver(bt.observers.Value)

5.	 Run the backtest:

cerebro.run()

Running the snippet generates the following (abbreviated) log:

Initial Portfolio Value: 1000.00
2021-02-01: BUY CREATED - Price: 133.15, Size: 1.00
2021-02-02: BUY EXECUTED - Price: 134.73, Size: 1.00, Cost: 134.73, 
Commission: 0.00
2021-02-11: SELL CREATED - Price: 134.33, Size: 1.00
2021-02-12: SELL EXECUTED - Price: 133.56, Size: -1.00, Cost: 134.73, 
Commission: 0.00
2021-02-12: OPERATION RESULT - Gross: -1.17, Net: -1.17
2021-03-16: BUY CREATED - Price: 124.83, Size: 1.00
2021-03-17: BUY EXECUTED - Price: 123.32, Size: 1.00, Cost: 123.32, 
Commission: 0.00
...
2021-11-11: OPERATION RESULT - Gross: 5.39, Net: 5.39
2021-11-12: BUY CREATED - Price: 149.80, Size: 1.00
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2021-11-15: BUY EXECUTED - Price: 150.18, Size: 1.00, Cost: 150.18, 
Commission: 0.00
Final Portfolio Value: 1048.01

The log contains information about all the created and executed trades, as well as the operation 
results in case the position was closed.

6.	 Plot the results:

cerebro.plot(iplot=True, volume=False)

Running the snippet generates the following plot:

Figure 12.4: Summary of our strategy’s behavior/performance over the backtested period

In Figure 12.4, we can see Apple’s stock price, the 20-day SMA, the buy and sell orders, and the evolution 
of our portfolio’s value over time. As we can see, this strategy made $48 over the backtest’s duration. 
While considering the performance, please bear in mind that the strategy is only operating with a 
single stock, while keeping most of the available resources in cash.

How it works...
The key idea of working with backtrader is that there is the main brain of the backtest—Cerebro—and 
by using different methods, we provide it with historical data, the designed trading strategy, additional 
metrics we want to calculate (for example, the portfolio value over the investment horizon, or the 
overall Sharpe ratio), information about commissions/slippage, and so on.
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There are two ways of creating strategies: using signals (bt.Signal) or defining a full strategy  
(bt.Strategy). Both yield the same results, however, the lengthier approach (created using bt.Strategy) 
provides more logging of what is actually happening in the background. This makes it easier to debug 
and keep track of all operations (the level of detail included in the logging depends on our needs). That 
is why we start by showing that approach in this recipe. 

You can find the equivalent strategy built using the signal approach in the book’s GitHub repository.

After importing the libraries and helper functions in Step 1, we downloaded price data from Yahoo 
Finance using the bt.feeds.YahooFinanceData function.

In Step 3, we defined the trading strategy as a class inheriting from bt.Strategy. Inside the class, we 
defined the following methods (we were actually overwriting them to make them tailor-made for our 
needs): 

•	 __init__: In this method, we defined the objects that we would like to keep track of. In our 
example, these were the close price, a placeholder for the order, and the TA indicator (SMA).

•	 log: This method is defined for logging purposes. It logs the date and the provided string. We 
used the helper functions get_action_log_string and get_result_log_string to create the 
strings with various order-related information.

•	 notify_order: This method reports the status of the order (position). In general, on day t, 
the indicator can suggest opening/closing a position based on the close price (assuming we 
are working with daily data). Then, the (market) order will be carried out on the next trading 
day (using the open price of time t+1). However, there is no guarantee that the order will be 
executed, as it can be canceled or we might have insufficient cash. This method also removes 
any pending order by setting self.order = None.

•	 notify_trade: This method reports the results of trades (after the positions are closed).
•	 next: This method contains the trading strategy’s logic. First, we checked whether there 

was an order already pending, and did nothing if there was. The second check was to 
see whether we already had a position (enforced by our strategy, this is not a must) and 
if we did not, we checked whether the close price was higher than the moving average. A 
positive outcome resulted in an entry to the log and the placing of a buy order using  
self.order = self.buy(). This is also the place where we can choose the stake (number of 
assets we want to buy). The default is 1 (equivalent to using self.buy(size=1)).

•	 start/stop: These methods are executed at the very beginning/end of the backtest and can 
be used, for example, for reporting the portfolio value.

 You can also add data from a CSV file, a pandas DataFrame, Nasdaq Data Link, and other 
sources. For a list of available options, please refer to the documentation of bt.feeds. We 
show how to load data from a pandas DataFrame in the Notebook on GitHub.
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In Step 4, we set up the backtest, that is, we executed a series of operations connected to Cerebro:

•	 We created the instance of bt.Cerebro and set stdstats=False, in order to suppress a lot of 
default elements of the plot. By doing so, we avoided cluttering the output. Instead, we man-
ually picked the interesting elements (observers and indicators).

•	 We added the data using the adddata method.
•	 We set up the amount of available money using the setcash method of the broker. 
•	 We added the strategy using the addstrategy method.
•	 We added the observers using the addobserver method. We selected two observers: the custom 

BuySell observer used for displaying the buy/sell decisions on the plot (denoted by green and 
red triangles), and the Value observer used for tracking the evolution of the portfolio’s value 
over time.

The last steps involved running the backtest with cerebro.run() and plotting the results with  
cerebro.plot(). In the latter step, we disabled displaying the volume charts to avoid cluttering the 
graph.

Some additional points about backtesting with backtrader:

•	 By design, Cerebro should only be used once. If we want to run another backtest, we should 
create a new instance, not add something to it after starting the calculations.

•	 In general, a strategy built using bt.Signal uses only one signal. However, we can combine 
multiple signals based on different conditions by using bt.SignalStrategy instead.

•	 When we do not specify otherwise, all orders are placed for one unit of the asset.
•	 backtrader automatically handles the warm-up period. In this case, no trade can be carried 

out until there are enough data points to calculate the 20-day SMA. When considering multiple 
indicators at once, backtrader automatically selects the longest necessary period.

There’s more...
It is worth mentioning that backtrader has parameter optimization capabilities, which we present 
in the code that follows. The code is a modified version of the strategy from this recipe, in which we 
optimize the number of days used for calculating the SMA.

The following list provides details of modifications to the code (we only show the relevant ones, as 
the bulk of the code is identical to the code used before):

•	 Instead of using cerebro.addstrategy, we use cerebro.optstrategy, and provide the defined 
strategy object and the range of parameter values:

cerebro.optstrategy(SmaStrategy, ma_period=range(10, 31))

 When tuning the values of the strategy’s parameters, you can create a simpler version 
of the strategy that does not log that much information (start value, creating/executing 
orders, and so on.). You can find an example of the modified strategy in the script  
sma_strategy_optimization.py.
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•	 We modify the stop method to also log the considered value of the ma_period parameter.
•	 We increase the number of CPU cores when running the extended backtesting: 

cerebro.run(maxcpus=4)

We present the results in the following summary (please bear in mind that the order of parameters 
can be shuffled when using multiple cores):

2021-12-30: (ma_period = 10) --- Terminal Value: 1018.82
2021-12-30: (ma_period = 11) --- Terminal Value: 1022.45
2021-12-30: (ma_period = 12) --- Terminal Value: 1022.96
2021-12-30: (ma_period = 13) --- Terminal Value: 1032.44
2021-12-30: (ma_period = 14) --- Terminal Value: 1027.37
2021-12-30: (ma_period = 15) --- Terminal Value: 1030.53
2021-12-30: (ma_period = 16) --- Terminal Value: 1033.03
2021-12-30: (ma_period = 17) --- Terminal Value: 1038.95
2021-12-30: (ma_period = 18) --- Terminal Value: 1043.48
2021-12-30: (ma_period = 19) --- Terminal Value: 1046.68
2021-12-30: (ma_period = 20) --- Terminal Value: 1048.01
2021-12-30: (ma_period = 21) --- Terminal Value: 1044.00
2021-12-30: (ma_period = 22) --- Terminal Value: 1046.98
2021-12-30: (ma_period = 23) --- Terminal Value: 1048.62
2021-12-30: (ma_period = 24) --- Terminal Value: 1051.08
2021-12-30: (ma_period = 25) --- Terminal Value: 1052.44
2021-12-30: (ma_period = 26) --- Terminal Value: 1051.30
2021-12-30: (ma_period = 27) --- Terminal Value: 1054.78
2021-12-30: (ma_period = 28) --- Terminal Value: 1052.75
2021-12-30: (ma_period = 29) --- Terminal Value: 1045.74
2021-12-30: (ma_period = 30) --- Terminal Value: 1047.60

We see that the strategy performed best when we used 27 days for calculating the SMA.

See also
You can refer to the following book for more information about algorithmic trading and building 
successful trading strategies:

•	 Chan, E. (2013). Algorithmic Trading: Winning Strategies and Their Rationale (Vol. 625). John 
Wiley & Sons.

 We should always keep in mind that tuning the hyperparameters of a strategy comes 
together with a higher risk of overfitting!
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Backtesting a long/short strategy based on the RSI 
The relative strength index (RSI) is an indicator that uses the closing prices of an asset to identify 
oversold/overbought conditions. Most commonly, the RSI is calculated using a 14-day period, and it is 
measured on a scale from 0 to 100 (it is an oscillator). Traders usually buy an asset when it is oversold 
(if the RSI is below 30), and sell when it is overbought (if the RSI is above 70). More extreme high/
low levels, such as 80-20, are used less frequently and, at the same time, imply stronger momentum.

In this recipe, we build a trading strategy with the following rules:

•	 We can go long and short.
•	 For calculating the RSI, we use 14 periods (trading days).
•	 Enter a long position if the RSI crosses the lower threshold (standard value of 30) upward; exit 

the position when the RSI becomes larger than the middle level (value of 50).
•	 Enter a short position if the RSI crosses the upper threshold (standard value of 70) downward; 

exit the position when the RSI becomes smaller than 50.
•	 Only one position can be open at a time.

We evaluate the strategy on Meta’s stock in 2021 and apply a commission of 0.1%.

How to do it…
Execute the following steps to implement and backtest a strategy based on the RSI:

1.	 Import the libraries:

from datetime import datetime
import backtrader as bt
from backtrader_strategies.strategy_utils import *

2.	 Define the signal strategy based on bt.SignalStrategy:

class RsiSignalStrategy(bt.SignalStrategy):
    params = dict(rsi_periods=14, rsi_upper=70,
                  rsi_lower=30, rsi_mid=50)

    def __init__(self):       
        # add RSI indicator
        rsi = bt.indicators.RSI(period=self.p.rsi_periods,
                                upperband=self.p.rsi_upper,
                                lowerband=self.p.rsi_lower)
        # add RSI from TA-lib just for reference
        bt.talib.RSI(self.data, plotname="TA_RSI")
    
        # long condition (with exit)
        rsi_signal_long = bt.ind.CrossUp(
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            rsi, self.p.rsi_lower, plot=False
        )
        self.signal_add(bt.SIGNAL_LONG, rsi_signal_long)
        self.signal_add(
            bt.SIGNAL_LONGEXIT, -(rsi > self.p.rsi_mid)
        )
 
        # short condition (with exit)
        rsi_signal_short = -bt.ind.CrossDown(
            rsi, self.p.rsi_upper, plot=False
        )
        self.signal_add(bt.SIGNAL_SHORT, rsi_signal_short)
        self.signal_add(
            bt.SIGNAL_SHORTEXIT, rsi < self.p.rsi_mid
        )

3.	 Download data:

data = bt.feeds.YahooFinanceData(dataname="META",
                                 fromdate=datetime(2021, 1, 1),
                                 todate=datetime(2021, 12, 31))

4.	 Set up and run the backtest:

cerebro = bt.Cerebro(stdstats=False)

cerebro.addstrategy(RsiSignalStrategy)
cerebro.adddata(data)
cerebro.addsizer(bt.sizers.SizerFix, stake=1)
cerebro.broker.setcash(1000.0)
cerebro.broker.setcommission(commission=0.001)
cerebro.addobserver(MyBuySell)
cerebro.addobserver(bt.observers.Value)

print(
    f"Starting Portfolio Value: {cerebro.broker.getvalue():.2f}"
)
cerebro.run()
print(
    f"Final Portfolio Value: {cerebro.broker.getvalue():.2f}"
)
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After running the snippet, we see the following output:

Starting Portfolio Value: 1000.00
Final Portfolio Value: 1042.56

5.	 Plot the results:

cerebro.plot(iplot=True, volume=False)

Running the snippet generates the following plot:

Figure 12.5: Summary of our strategy’s behavior/performance over the backtested period

We look at the triangles in pairs. The first triangle in a pair indicates opening a position (going long if 
the triangle is green and facing up; going short if the triangle is red and facing down). The next trian-
gle in the opposite direction indicates closing of a position. We can match the opening and closing of 
positions with the RSI located in the lower part of the chart. Sometimes, there are multiple triangles 
of the same color in sequence. That is because the RSI fluctuates around the line of opening a position, 
crossing it multiple times. But the actual position is only opened on the first instance of a signal (no 
accumulation is the default setting of all backtests).

How it works...
In this recipe, we presented the second approach to defining strategies in backtrader, that is, using 
signals. A signal is represented as a number, for example, the difference between the current data 
point and some TA indicator. If the signal is positive, it is an indication to go long (buy). A negative 
one is an indication to take a short position (sell). The value of 0 means there is no signal.
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After importing the libraries and the helper functions, we defined the trading strategy using 
bt.SignalStrategy. As this is a strategy involving multiple signals (various entry/exit conditions), 
we had to use bt.SignalStrategy instead of simply bt.Signal. First, we defined the indicator (RSI), 
with selected arguments. We also added the second instance of the RSI indicator, just to show that 
backtrader provides an easy way to use indicators from the popular TA-Lib library (the library must 
be installed for the code to work). The trading strategy does not depend on this second indicator—it 
is only plotted for reference. In general, we could add an arbitrary number of indicators.

The next step was to define signals. To do so, we used the bt.CrossUp/bt.CrossDown indicators, which 
returned 1 if the first series (price) crossed the second (upper or lower RSI threshold) from below/
above, respectively. For entering a short position, we made the signal negative, by adding a minus in 
front of the bt.CrossDown indicator.

The following is a description of the available signal types:

•	 LONGSHORT: This type takes into account both long and short indications from the signal.
•	 LONG: Positive signals indicate going long; negative ones are used for closing the long position.
•	 SHORT: Negative signals indicate going short; positive ones are used for closing the short position.
•	 LONGEXIT: A negative signal is used to exit a long position.
•	 SHORTEXIT: A positive signal is used to exit a short position.

Exiting positions can be more complex, which in turn enables users to build more sophisticated 
strategies. We describe the logic below:

•	 LONG: If there is a LONGEXIT signal, it is used for exiting the long position, instead of the behavior 
mentioned above. If there is a SHORT signal and no LONGEXIT signal, the SHORT signal is used 
to close the long position before opening a short one.

•	 SHORT: If there is a SHORTEXIT signal, it is used for exiting the short position, instead of the 
behavior mentioned above. If there is a LONG signal and no SHORTEXIT signal, the LONG signal 
is used to close the short position before opening a long one.

 Even when adding indicators for reference only, their existence influences the “warm-up 
period.” For example, if we additionally included a 200-day SMA indicator, no trade would 
be carried out before there exists at least one value for the SMA indicator.

We can disable printing any indicator, by adding plot=False to the function call.
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As the last step of defining the strategy, we added tracking of all the signals, by using the  
signal_add method. For exiting the positions, the conditions we used (RSI value higher/lower than 
50) resulted in a Boolean, which we had to negate when exiting a long position: in Python, -True has 
the same meaning as -1.

In Step 3, we downloaded Meta’s stock prices from 2021.

Then, we set up the backtest. Most of the steps should already be familiar, that is why we focus only 
on the new ones:

•	 Adding a sizer using the addsizer method—we did not have to do it at this point, as by default, 
backtrader uses the stake of 1, that is, 1 unit of the asset will be purchased/sold. However, we 
wanted to show at which point we can modify the order size when creating a trading strategy 
using the signal approach.

•	 Setting up the commission to 0.1% using the setcommission method of the broker.
•	 We also accessed and printed the portfolio’s current value before and after running the backtest. 

To do so, we used the getvalue method of broker.

In the very last step, we plotted the results of the backtest.

There’s more…
In this recipe, we have introduced a couple of new concepts to the backtesting framework—sizers and 
commission. There are a few more useful things we can experiment with using those two components.

Going “all-in”
Before, our simple strategy only went long or short with a single unit of the asset. However, we can 
easily modify this behavior to use all the available cash. We simply add the AllInSizer sizer using 
the addsizer method:

cerebro = bt.Cerebro(stdstats=False)

cerebro.addstrategy(RsiSignalStrategy)
cerebro.adddata(data)
cerebro.addsizer(bt.sizers.AllInSizer)
cerebro.broker.setcash(1000.0)
cerebro.broker.setcommission(commission=0.001)
cerebro.addobserver(bt.observers.Value)

 As you might have already realized, the signal is calculated for every time point (as visual-
ized at the bottom of the plot), which effectively creates a continuous stream of positions to 
be opened/closed (the signal value of 0 is not very likely to happen). That is why, by default, 
backtrader disables accumulation (the constant opening of new positions, even when 
we have one already opened) and concurrency (generating new orders without hearing 
back from the broker whether the previously submitted ones were executed successfully).
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print(f"Starting Portfolio Value: {cerebro.broker.getvalue():.2f}")
cerebro.run()
print(f"Final Portfolio Value: {cerebro.broker.getvalue():.2f}")

Running the backtest generates the following result:

Starting Portfolio Value: 1000.00
Final Portfolio Value: 1183.95

The result is clearly better than what we achieved using only a single unit at a time.

Fixed commission per share
In our initial backtest of the RSI-based strategy, we used a 0.1% commission fee. However, some bro-
kers might have a different commission scheme, for example, a fixed commission per share. 

To incorporate such information, we need to define a custom class storing the commission scheme. 
We can inherit from bt.CommInfoBase and add the required information:

class FixedCommissionShare(bt.CommInfoBase):
    """
    Scheme with fixed commission per share
    """
    params = (
        ("commission", 0.03),
        ("stocklike", True),
        ("commtype", bt.CommInfoBase.COMM_FIXED),
    )

    def _getcommission(self, size, price, pseudoexec):
        return abs(size) * self.p.commission

The most important aspects of the definition are the fixed commission of $0.03 per share and the way 
that the commission is calculated in the _getcommission method. We take the absolute value of the 
size and multiply it by the fixed commission.

We can then easily input that information into the backtest. Building on top of the previous example 
with the “all-in” strategy, the code would look as follows:

cerebro = bt.Cerebro(stdstats=False)

cerebro.addstrategy(RsiSignalStrategy)
cerebro.adddata(data)
cerebro.addsizer(bt.sizers.AllInSizer)
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cerebro.broker.setcash(1000.0)
cerebro.broker.addcommissioninfo(FixedCommissionShare())
cerebro.addobserver(bt.observers.Value)

print(f"Starting Portfolio Value: {cerebro.broker.getvalue():.2f}")
cerebro.run()
print(f"Final Portfolio Value: {cerebro.broker.getvalue():.2f}")

With the following result:

Starting Portfolio Value: 1000.00
Final Portfolio Value: 1189.94

These numbers lead to the conclusion that the 0.01% commission was actually higher than 3 cents 
per share.

Fixed commission per order
Other brokers might offer a fixed commission per order. In the following snippet, we define a custom 
commission scheme in which we pay $2.5 per order, regardless of its size. 

We changed the value of the commission parameter and the way commission is calculated in the 
_getcommission method. This time, this method always returns the $2.5 we specified before:

class FixedCommissionOrder(bt.CommInfoBase):
    """
    Scheme with fixed commission per order
    """
    params = (
        ("commission", 2.5),
        ("stocklike", True),
        ("commtype", bt.CommInfoBase.COMM_FIXED),
    )

    def _getcommission(self, size, price, pseudoexec):
        return self.p.commission

We do not include the backtest setup, as it would be almost identical to the previous one. We only need 
to pass a different class using the addcommissioninfo method. The result of the backtest is:

Starting Portfolio Value: 1000.00
Final Portfolio Value: 1174.70
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See also
Below, you might find useful references to backtrader's documentation:

•	 To read more about sizers: https://www.backtrader.com/docu/sizers-reference/
•	 To read more about commission schemes and the available parameters: https://www.

backtrader.com/docu/commission-schemes/commission-schemes/

Backtesting a buy/sell strategy based on Bollinger 
bands
Bollinger bands are a statistical method, used for deriving information about the prices and volatility 
of a certain asset over time. To obtain the Bollinger bands, we need to calculate the moving average 
and standard deviation of the time series (prices), using a specified window (typically 20 days). Then, 
we set the upper/lower bands at K times (typically 2) the moving standard deviation above/below the 
moving average. 

The interpretation of the bands is quite simple: the bands widen with an increase in volatility and 
contract with a decrease in volatility. 

In this recipe, we build a simple trading strategy that uses Bollinger bands to identify underbought 
and oversold levels and then trade based on those areas. The rules of the strategy are as follows:

•	 Buy when the price crosses the lower Bollinger band upward.
•	 Sell (only if stocks are in possession) when the price crosses the upper Bollinger band downward.
•	 All-in strategy—when creating a buy order, buy as many shares as possible. 
•	 Short selling is not allowed.

We evaluate the strategy on Microsoft’s stock in 2021. Additionally, we set the commission to be equal 
to 0.1%.

How to do it...
Execute the following steps to implement and backtest a strategy based on the Bollinger bands:

1.	 Import the libraries:

import backtrader as bt
import datetime
import pandas as pd
from backtrader_strategies.strategy_utils import *

To make the code more readable, we first present the general outline of the class defining the 
trading strategy and then introduce the separate methods in the following substeps. 

https://www.backtrader.com/docu/sizers-reference/
https://www.backtrader.com/docu/commission-schemes/commission-schemes/ 
https://www.backtrader.com/docu/commission-schemes/commission-schemes/ 
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2.	 Define the strategy based on the Bollinger bands:

class BollingerBandStrategy(bt.Strategy):
    params = (("period", 20),
              ("devfactor", 2.0),)
    def __init__(self):
        # some code

    def log(self, txt):
        # some code

    def notify_order(self, order):
        # some code

    def notify_trade(self, trade):
        # some code

    def next_open(self):
        # some code

    def start(self):
        print(f"Initial Portfolio Value: {self.broker.get_value():.2f}")

    def stop(self):
        print(f"Final Portfolio Value: {self.broker.get_value():.2f}")

When defining strategies using the strategy approach, there is quite some boilerplate code. 
That is why in the following substeps, we only mention the methods that are different from the 
ones we have previously explained. You can also find the strategy’s entire code in the book’s 
GitHub repository:

a.	 The __init__ method is defined as:

def __init__(self):
    # keep track of prices
    self.data_close = self.datas[0].close
    self.data_open = self.datas[0].open
 
    # keep track of pending orders
    self.order = None
 
    # add Bollinger Bands indicator and track buy/sell
    # signals
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    self.b_band = bt.ind.BollingerBands(
        self.datas[0], 
        period=self.p.period, 
        devfactor=self.p.devfactor
    )
    self.buy_signal = bt.ind.CrossOver(
        self.datas[0], 
        self.b_band.lines.bot,
        plotname="buy_signal"
    )
    self.sell_signal = bt.ind.CrossOver(
        self.datas[0], 
        self.b_band.lines.top,
        plotname="sell_signal"
    )

b.	 The next_open method is defined as:

def next_open(self):
    if not self.position:
        if self.buy_signal > 0:
            # calculate the max number of shares ("all-in")
            size = int(
                self.broker.getcash() / self.datas[0].open
            )
            # buy order
            log_str = get_action_log_string(
                "b", "c", 
                price=self.data_close[0], 
                size=size,
                cash=self.broker.getcash(),
                open=self.data_open[0],
                close=self.data_close[0]
            )
            self.log(log_str)
            self.order = self.buy(size=size)
    else:
        if self.sell_signal < 0:
            # sell order
            log_str = get_action_log_string(
                "s", "c", self.data_close[0], 
                self.position.size
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            )
            self.log(log_str)
            self.order = self.sell(size=self.position.size)

3.	 Download data:

data = bt.feeds.YahooFinanceData(
    dataname="MSFT",
    fromdate=datetime.datetime(2021, 1, 1),
    todate=datetime.datetime(2021, 12, 31)
)

4.	 Set up the backtest:

cerebro = bt.Cerebro(stdstats=False, cheat_on_open=True)

cerebro.addstrategy(BollingerBandStrategy)
cerebro.adddata(data)
cerebro.broker.setcash(10000.0)
cerebro.broker.setcommission(commission=0.001)
cerebro.addobserver(MyBuySell)
cerebro.addobserver(bt.observers.Value)
cerebro.addanalyzer(
    bt.analyzers.Returns, _name="returns"
)
cerebro.addanalyzer(
    bt.analyzers.TimeReturn, _name="time_return"
)

5.	 Run the backtest:

backtest_result = cerebro.run()

Running the backtest generates the following (abbreviated) log:

Initial Portfolio Value: 10000.00
2021-03-01: BUY CREATED - Price: 235.03, Size: 42.00, Cash: 10000.00, 
Open: 233.99, Close: 235.03
2021-03-01: BUY EXECUTED - Price: 233.99, Size: 42.00, Cost: 9827.58, 
Commission: 9.83
2021-04-13: SELL CREATED - Price: 256.40, Size: 42.00
2021-04-13: SELL EXECUTED - Price: 255.18, Size: -42.00, Cost: 
9827.58, Commission: 10.72
2021-04-13: OPERATION RESULT - Gross: 889.98, Net: 869.43
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…
2021-12-07: BUY CREATED - Price: 334.23, Size: 37.00, Cash: 12397.10, 
Open: 330.96, Close: 334.23
2021-12-07: BUY EXECUTED - Price: 330.96, Size: 37.00, Cost: 12245.52, 
Commission: 12.25
Final Portfolio Value: 12668.27

6.	 Plot the results:

cerebro.plot(iplot=True, volume=False)

Running the snippet generates the following plot:

Figure 12.6: Summary of our strategy’s behavior/performance over the backtested period

We can see that the strategy managed to make money, even after accounting for commission 
costs. The flat periods in the portfolio’s value represent periods when we did not have an open 
position.

7.	 Investigate different returns metrics:

backtest_result[0].analyzers.returns.get_analysis()

Running the code generates the following output:

OrderedDict([('rtot', 0.2365156915893157),
             ('ravg', 0.0009422935919893056),
             ('rnorm', 0.2680217199688534),
             ('rnorm100', 26.80217199688534)])
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8.	 Extract daily portfolio returns and plot them:

returns_dict = (
    backtest_result[0].analyzers.time_return.get_analysis()
)
returns_df = (
    pd.DataFrame(list(returns_dict.items()), 
                 columns = ["date", "return"])
    .set_index("date")
)
returns_df.plot(title="Strategy's daily returns")

Figure 12.7: Daily portfolio returns of the strategy based on Bollinger bands

We can see that the flat periods in the portfolio’s returns in Figure 12.7 correspond to the periods 
during which we had no open positions, as can be seen in Figure 12.6.

How it works...
There are a lot of similarities between the code used for creating the Bollinger bands-based strategy 
and that used in the previous recipes. That is why we only discuss the novelties and refer you to the 
Event-driven backtesting with backtrader recipe for more details.
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As we were going all-in in this strategy, we had to use a method called cheat_on_open. This means 
that we calculated the signals using day t’s close price, but calculated the number of shares we wanted 
to buy based on day t+1’s open price. To do so, we had to set cheat_on_open=True when instantiating 
the Cerebro object.

As a result, we also defined a next_open method instead of next within the Strategy class. This 
clearly indicated to Cerebro that we were cheating on open. Before creating a potential buy order, we 
manually calculated the maximum number of shares we could buy using the open price from day t+1.

When calculating the buy/sell signals based on the Bollinger bands, we used the CrossOver indicator. 
It returned the following:

•	 1 if the first data (price) crossed the second data (indicator) upward
•	 -1 if the first data (price) crossed the second data (indicator) downward

The last addition included utilizing analyzers—backtrader objects that help to evaluate what is hap-
pening with the portfolio. In this recipe, we used two analyzers:

•	 Returns: A collection of different logarithmic returns, calculated over the entire timeframe: 
total compound return, the average return over the entire period, and the annualized return.

•	 TimeReturn: A collection of returns over time (using a provided timeframe, in this case, daily 
data).

There’s more…
We have already seen how to extract the daily returns from the backtest. This creates a perfect op-
portunity to combine that information with the functionalities of the quantstats library. Using the 
following snippet, we can calculate a variety of metrics to evaluate our portfolio’s performance in 
detail. Additionally, we compare the performance of our strategy to a simple buy-and-hold strategy 
(which, for simplicity, does not include the transaction costs):

import quantstats as qs
qs.reports.metrics(returns_df,
                   benchmark="MSFT",
                   mode="basic")

 We can also use CrossUp and CrossDown functions when we want to con-
sider crossing from only one direction. The buy signal would look like this: 
self.buy_signal = bt.ind.CrossUp(self.datas[0], self.b_band. 
lines.bot).

 We can obtain the same result as from the TimeReturn analyzer by adding an ob-
server with the same name: cerebro.addobserver(bt.observers.TimeReturn). 
The only difference is that the observer will be plotted on the main results plot, 
which is not always desired.
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Running the snippet generates the following report:

                    Strategy    Benchmark
------------------  ----------  -----------
Start Period        2021-01-04  2021-01-04
End Period          2021-12-30  2021-12-30
Risk-Free Rate      0.0%        0.0%
Time in Market      42.0%       100.0%

Cumulative Return   26.68%      57.18%
CAGR﹪              27.1%       58.17%

Sharpe              1.65        2.27
Sortino             2.68        3.63
Sortino/√2          1.9         2.57
Omega               1.52        1.52

For brevity’s sake, we only present the few main pieces of information available in the report.

Backtesting a moving average crossover strategy using 
crypto data
So far, we have created and backtested a few strategies on stocks. In this recipe, we cover another 
popular asset class—cryptocurrencies. There are a few key differences in handling crypto data:

•	 Cryptos can be traded 24/7
•	 Cryptos can be traded using fractional units

As we want our backtests to closely resemble real-life trading, we should account for those crypto-spe-
cific characteristics in our backtests. Fortunately, the backtrader framework is very flexible and we 
can slightly adjust our already-established approach to handle this new asset class.

 In Chapter 11, Asset Allocation, we mentioned that an alternative library to quantstats 
is pyfolio. The latter has the potential disadvantage of not being actively maintained 
anymore. However, pyfolio is nicely integrated with backtrader. We can easily add a 
dedicated analyzer (bt.analyzers.PyFolio). For an example of implementation, please 
see the book’s GitHub repository.

 Some brokers also allow for buying fractional shares of stocks.
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In this recipe, we backtest a moving average crossover strategy with the following rules:

•	 We are only interested in Bitcoin and use daily data from 2021.
•	 We use two moving averages with window sizes of 20-days (fast one) and 50-days (slow one).
•	 If the fast MA crosses over the slow one upward, we allocate 70% of available cash to buying BTC.
•	 If the fast MA crosses over the slow one downward, we sell all the BTC we have.
•	 Short selling is not allowed.

How to do it…
Execute the following steps to implement and backtest a strategy based on the moving average cross-
over:

1.	 Import the libraries:

import backtrader as bt
import datetime
import pandas as pd
from backtrader_strategies.strategy_utils import *

2.	 Define the commission scheme allowing for fractional trades:

class FractionalTradesCommission(bt.CommissionInfo):
    def getsize(self, price, cash):
        """Returns the fractional size"""
        return self.p.leverage * (cash / price)

To make the code more readable, we first present the general outline of the class defining the 
trading strategy and then introduce the separate methods in the following substeps.

3.	 Define the SMA crossover strategy:

class SMACrossoverStrategy(bt.Strategy):
    params = (
        ("ma_fast", 20),
        ("ma_slow", 50),
        ("target_perc", 0.7)
    )

    def __init__(self):
        # some code
        
    def log(self, txt):
        # some code
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    def notify_order(self, order):
       # some code

    def notify_trade(self, trade):
        # some code

    def next(self):
        # some code

    def start(self):
        print(f"Initial Portfolio Value: {self.broker.get_value():.2f}")

    def stop(self):
        print(f"Final Portfolio Value: {self.broker.get_value():.2f}")

a.	 The __init__ method is defined as:

def __init__(self):
    # keep track of close price in the series
    self.data_close = self.datas[0].close
        
    # keep track of pending orders
    self.order = None
 
    # calculate the SMAs and get the crossover signal        
    self.fast_ma = bt.indicators.MovingAverageSimple(
        self.datas[0], 
        period=self.params.ma_fast
    )
    self.slow_ma = bt.indicators.MovingAverageSimple(
        self.datas[0], 
        period=self.params.ma_slow
    )
    self.ma_crossover = bt.indicators.CrossOver(self.fast_ma, 
                                                self.slow_ma)

b.	 The next method is defined as:

def next(self):
 
    if self.order:
        # pending order execution. Waiting in orderbook
        return  
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    if not self.position:
        if self.ma_crossover > 0:
            self.order = self.order_target_percent(
                target=self.params.target_perc
            )
            log_str = get_action_log_string(
                "b", "c", 
                price=self.data_close[0], 
                size=self.order.size,
                cash=self.broker.getcash(),
                open=self.data_open[0],
                close=self.data_close[0]
            )
            self.log(log_str)

    else:
        if self.ma_crossover < 0:
            # sell order
            log_str = get_action_log_string(
                "s", "c", self.data_close[0], 
                self.position.size
            )
            self.log(log_str)
            self.order = (
                self.order_target_percent(target=0)
            )

4.	 Download the BTC-USD data:

data = bt.feeds.YahooFinanceData(
    dataname="BTC-USD",
    fromdate=datetime.datetime(2020, 1, 1),
    todate=datetime.datetime(2021, 12, 31)
)
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5.	 Set up the backtest:

cerebro = bt.Cerebro(stdstats=False)

cerebro.addstrategy(SMACrossoverStrategy)
cerebro.adddata(data)
cerebro.broker.setcash(10000.0)
cerebro.broker.addcommissioninfo(
    FractionalTradesCommission(commission=0.001)
)
cerebro.addobserver(MyBuySell)
cerebro.addobserver(bt.observers.Value)
cerebro.addanalyzer(
    bt.analyzers.TimeReturn, _name="time_return"
)

6.	 Run the backtest:

backtest_result = cerebro.run()

Running the snippet generates the following (abbreviated) log:

Initial Portfolio Value: 10000.00
2020-04-19: BUY CREATED - Price: 7189.42, Size: 0.97, Cash: 10000.00, 
Open: 7260.92, Close: 7189.42
2020-04-20: BUY EXECUTED - Price: 7186.87, Size: 0.97, Cost: 6997.52, 
Commission: 7.00
2020-06-29: SELL CREATED - Price: 9190.85, Size: 0.97
2020-06-30: SELL EXECUTED - Price: 9185.58, Size: -0.97, Cost: 6997.52, 
Commission: 8.94
2020-06-30: OPERATION RESULT - Gross: 1946.05, Net: 1930.11
…
Final Portfolio Value: 43547.99

In the excerpt from the full log, we can see that we are now operating with fractional positions. 
Also, the strategy has generated quite significant returns—we have approximately quadrupled 
the initial portfolio’s value.

7.	 Plot the results:

cerebro.plot(iplot=True, volume=False)
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Running the snippet generates the following plot:

Figure 12.8: Summary of our strategy’s behavior/performance over the backtested period

We have already established that we have generated >300% returns using our strategy. However, we 
can also see in Figure 12.8 that the great performance might simply be due to the gigantic increase in 
BTC’s price over the considered period.

Using code identical to the code used in the previous recipe, we can compare the performance of our 
strategy to the simple buy-and-hold strategy. This way, we can verify how our active strategy performed 
compared to a static benchmark. We present the abbreviated performance comparison below, while 
the code can be found in the book’s GitHub repository.

                    Strategy    Benchmark
------------------  ----------  -----------
Start Period        2020-01-01  2020-01-01
End Period          2021-12-30  2021-12-30
Risk-Free Rate      0.0%        0.0%
Time in Market      57.0%       100.0%

Cumulative Return   335.48%     555.24%
CAGR﹪              108.89%     156.31%

Sharpe              1.6         1.35
Sortino             2.63        1.97
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Sortino/√2          1.86        1.4
Omega               1.46        1.46

Unfortunately, our strategy did not outperform the benchmark over the analyzed timeframe. This 
confirms our initial suspicion that the good performance is connected to the increase in BTC’s price 
over the considered period.

How it works…
After importing the libraries, we defined a custom commission scheme in order to allow for fractional 
shares. Before, when we created a custom commission scheme, we inherited from bt.CommInfoBase 
and we modified the _getcommission method. This time, we inherited from bt.CommissionInfo and 
modified the getsize method to return a fractional value depending on the available cash and the 
asset’s price.

In Step 3 (and its substeps) we defined the moving average crossover strategy. By this recipe, most 
of the code will already look very familiar. A new thing we have applied here is the different type of 
order, that is, order_target_percent. Using this type of order indicates that we want the given asset 
to be X% of our portfolio.

It is a very convenient method because we leave the exact order size calculations to backtrader. If, at 
the moment of issuing the order, we are below the specified target percentage, we will buy more of 
the asset. If we are above it, we will sell some amount of the asset.

For exiting the position, we indicate that we want BTC to be 0% of our portfolio, which is equivalent 
to selling all we have. By using order_target_percent with the target of zero, we do not have to track/
access the current number of units we possess.

In Step 4, we downloaded the daily BTC prices (in USD) from 2021. In the following steps, we set up the 
backtest, ran it, and plotted the results. The only thing worth mentioning is that we had to add the cus-
tom commission scheme (containing the fractional share logic) using the addcommissioninfo method.

There’s more…
In the recipe, we have introduced the target order. backtrader offers three types of target orders:

•	 order_target_percent: Indicates the percentage of the current portfolio’s value we want to 
have in the given asset

•	 order_target_size: Indicates the target number of units of a given asset we want to have in 
the portfolio

•	 order_target_value: Indicates the asset’s target value in monetary units that we want to have 
in the portfolio

Target orders are very useful when we know the target percentage/value/size of a given asset, but do 
not want to spend additional time calculating whether we should buy additional units or sell them to 
arrive at the target.
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There is also one more important thing to mention about fractional shares. In this recipe, we have 
defined a custom commission scheme that accounts for the fractional shares and then we used the 
target orders to buy/sell the asset. This way, when the engine was calculating the number of units to 
trade in order to arrive at the target, it knew it could use fractional values.

However, there is another way of using fractional shares without defining a custom commission scheme. 
We simply need to manually calculate the number of shares we want to buy/sell and create an order 
with a given stake. We did something very similar in the previous recipe, but there, we rounded the 
potential fractional values to an integer. For an implementation of the SMA crossover strategy with 
manual fractional order size calculations, please refer to the book’s GitHub repository.

Backtesting a mean-variance portfolio optimization
In the previous chapter, we covered asset allocation and mean-variance optimization. Combining 
mean-variance optimization with a backtest would be an interesting exercise, especially because it 
involves working with multiple assets at once.

In this recipe, we backtest the following allocation strategy:

•	 We consider the FAANG stocks.
•	 Every Friday after the market closes, we find the tangency portfolio (maximizing the Sharpe 

ratio). Then, we create target orders to match the calculated optimal weights on Monday when 
the market opens.

•	 We assume we need to have at least 252 data points to calculate the expected returns and the 
covariance matrix (using the Ledoit-Wolf approach).

For this exercise, we download the prices of the FAANG stocks from 2020 to 2021. Due to the warm-up 
period we set up for calculating the weights, the trading actually happens only in 2021.

Getting ready
As we will be working with fractional shares in this recipe, we need to use the custom commission 
scheme (FractionalTradesCommission) defined in the previous recipe.

How to do it…
Execute the following steps to implement and backtest a strategy based on the mean-variance port-
folio optimization:

1.	 Import the libraries:

from datetime import datetime
import backtrader as bt
import pandas as pd
from pypfopt.expected_returns import mean_historical_return
from pypfopt.risk_models import CovarianceShrinkage
from pypfopt.efficient_frontier import EfficientFrontier
from backtrader_strategies.strategy_utils import *
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To make the code more readable, we first present the general outline of the class defining the 
trading strategy and then introduce the separate methods in the following substeps.

2.	 Define the strategy:

class MeanVariancePortfStrategy(bt.Strategy):
    params = (("n_periods", 252), )

    def __init__(self):  
        # track number of days
        self.day_counter = 0
               
    def log(self, txt):
        dt = self.datas[0].datetime.date(0).isoformat()
        print(f"{dt}: {txt}")
    def notify_order(self, order):
        # some code

    def notify_trade(self, trade):
        # some code

    def next(self):
        # some code

    def start(self):
        print(f"Initial Portfolio Value: {self.broker.get_value():.2f}")

    def stop(self):
        print(f"Final Portfolio Value: {self.broker.get_value():.2f}")

a.	 The next method is defined as:

def next(self):
    # check if we have enough data points
    self.day_counter += 1
    if self.day_counter < self.p.n_periods:
        return
 
    # check if the date is a Friday
    today = self.datas[0].datetime.date()
    if today.weekday() != 4: 
        return
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    # find and print the current allocation
    current_portf = {}
    for data in self.datas:
        current_portf[data._name] = (
            self.positions[data].size * data.close[0]
        )
    
    portf_df = pd.DataFrame(current_portf, index=[0])
    print(f"Current allocation as of {today}")
    print(portf_df / portf_df.sum(axis=1).squeeze())
 
    # extract the past price data for each asset
    price_dict = {}
    for data in self.datas:
        price_dict[data._name] = (
            data.close.get(0, self.p.n_periods+1)
        )
    prices_df = pd.DataFrame(price_dict)
 
    # find the optimal portfolio weights
    mu = mean_historical_return(prices_df)
    S = CovarianceShrinkage(prices_df).ledoit_wolf()
    ef = EfficientFrontier(mu, S)
    weights = ef.max_sharpe(risk_free_rate=0)
    print(f"Optimal allocation identified on {today}")
    print(pd.DataFrame(ef.clean_weights(), index=[0]))
 
    # create orders
    for allocation in list(ef.clean_weights().items()):
        self.order_target_percent(data=allocation[0],
                                  target=allocation[1])

3.	 Download the prices of the FAANG stocks and store the data feeds in a list:

TICKERS = ["META", "AMZN", "AAPL", "NFLX", "GOOG"]
data_list = []

for ticker in TICKERS:
    data = bt.feeds.YahooFinanceData(
        dataname=ticker,
        fromdate=datetime(2020, 1, 1),
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        todate=datetime(2021, 12, 31)
    )
    data_list.append(data)

4.	 Set up the backtest:

cerebro = bt.Cerebro(stdstats=False)

cerebro.addstrategy(MeanVariancePortfStrategy)

for ind, ticker in enumerate(TICKERS):
    cerebro.adddata(data_list[ind], name=ticker)

cerebro.broker.setcash(1000.0)
cerebro.broker.addcommissioninfo(
    FractionalTradesCommission(commission=0)
)
cerebro.addobserver(MyBuySell)
cerebro.addobserver(bt.observers.Value)

5.	 Run the backtest:

backtest_result = cerebro.run()

Running the backtest generates the following log:

Initial Portfolio Value: 1000.00
Current allocation as of 2021-01-08
  META  AMZN  AAPL  NFLX  GOOG
0 NaN   NaN   NaN   NaN   NaN
Optimal allocation identified on 2021-01-08
  META     AMZN     AAPL  NFLX  GOOG
0  0.0  0.69394  0.30606   0.0   0.0
2021-01-11: Order Failed: AAPL
2021-01-11: BUY EXECUTED - Price: 157.40, Size: 4.36, Asset: AMZN, Cost: 
686.40, Commission: 0.00
Current allocation as of 2021-01-15
  META  AMZN  AAPL  NFLX  GOOG
0  0.0   1.0   0.0   0.0   0.0
Optimal allocation identified on 2021-01-15
  META     AMZN     AAPL  NFLX  GOOG
0  0.0  0.81862  0.18138   0.0   0.0
2021-01-19: BUY EXECUTED - Price: 155.35, Size: 0.86, Asset: AMZN, Cost: 
134.08, Commission: 0.00
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2021-01-19: Order Failed: AAPL
Current allocation as of 2021-01-22
  META  AMZN  AAPL  NFLX  GOOG
0  0.0   1.0   0.0   0.0   0.0
Optimal allocation identified on 2021-01-22
  META     AMZN     AAPL  NFLX  GOOG
0  0.0  0.75501  0.24499   0.0   0.0
2021-01-25: SELL EXECUTED - Price: 166.43, Size: -0.46, Asset: AMZN, Cost: 
71.68, Commission: 0.00
2021-01-25: Order Failed: AAPL
...
0  0.0   0.0  0.00943   0.0  0.99057
2021-12-20: Order Failed: GOOG
2021-12-20: SELL EXECUTED - Price: 167.82, Size: -0.68, Asset: AAPL, Cost: 
110.92, Commission: 0.00
Final Portfolio Value: 1287.22

We will not spend time evaluating the strategy, as this would be very similar to what we did in the 
previous recipe. Thus, we leave it as a potential exercise for the reader. It could also be interesting to 
test the performance of this strategy against a benchmark 1/n portfolio.

It is worth mentioning that some of the orders failed. We will describe the reason for it in the follow-
ing section.

How it works…
After importing the libraries, we defined the strategy using mean-variance optimization. In the __init__ 
method, we defined a counter that we used to determine if we had enough data points to run the 
optimization routine. The selected 252 days is arbitrary and you can experiment with different values. 

In the next method, there are multiple new components:

•	 We first add 1 to the day counter and check if we have enough observations. If not, we simply 
proceed to the next trading day.

•	 We extract the current date from the price data and check if it is a Friday. If not, we proceed 
to the next trading day.

•	 We calculate the current allocation by accessing the position size of each asset and multiplying 
it by the close price of the given day. Lastly, we divide each asset’s worth by the total portfolio’s 
value and print the weights.

•	 We need to extract the last 252 data points for each stock for our optimization routine. The 
self.datas object is an iterable containing all the data feeds we pass to Cerebro when setting 
up the backtest. We create a dictionary and populate it with arrays containing the 252 data 
points. We extract those using the get method. Then, we create a pandas DataFrame from the 
dictionary containing the prices.
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•	 We find the weights maximizing the Sharpe ratio using the pypfopt library. Please refer to the 
previous chapter for more details. We also print the new weights.

•	 For each of the assets, we place a target order (using the order_target_percent method) 
with the target being the optimal portfolio weight. As we are working with multiple assets 
this time, we need to indicate for which asset we are placing an order. We do so by specifying 
the data argument.

In Step 3, we created a list containing all the data feeds. We simply iterated over the tickers of the 
FAANG stocks, downloaded the data for each one of them, and appended the object to the list.

In Step 4, we set up the backtest. A lot of the steps are already very familiar by now, including setting up 
the fractional shares commission scheme. The new component was adding the data, as we iteratively 
added each of the downloaded data feeds using the already covered adddata method. At this point, 
we also had to provide the name of the data feeds using the name argument. 

In the very last step, we ran the backtest. As we have mentioned before, the new thing we can observe 
here is the failing orders. These are caused by the fact that we are calculating the portfolio weights 
on Friday using the close prices and preparing the orders on the same day. On Monday’s market 
open, the prices are different, and not all the orders can be executed. We tried to account for that 
using fractional shares and setting the commission to 0, but the differences can still be too big for 
this simple approach to work. A possible solution would be to always keep some cash on the side to 
cover the potential price differences. 

To do so, we could assume that we purchase the stocks with ~90% of our portfolio’s worth while keep-
ing the rest in cash. For that, we could use the order_target_value method. We could calculate the 
target value for each asset using the portfolio weights and 90% of the monetary value of our portfolio. 
Alternatively, we could use the DiscreteAllocation approach of pypfopt, which we mentioned in 
the previous chapter.

Summary
In this chapter, we have extensively covered the topic of backtesting. We started with the simpler 
approach, that is, vectorized backtesting. While it is not as rigorous and robust as the event-driven 
approach, it is often faster to implement and execute, due to its vectorized nature. Afterward, we com-
bined the exploration of the event-driven backtesting framework with the knowledge we obtained in 
the previous chapters, for example, calculating various technical indicators and finding the optimal 
portfolio weights.

Under the hood, backtrader uses the array module for storing the matrix-like objects.
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We spent the most time using the backtrader library, due to its popularity and flexibility when it 
comes to implementing various scenarios. However, there are many alternative backtesting libraries 
on the market. You might also want to investigate the following:

•	 vectorbt (https://github.com/polakowo/vectorbt): A pandas-based library for efficient 
backtesting of trading strategies at scale. The author of the library also offers a pro (paid) 
version of the library with more features and improved performance.

•	 bt (https://github.com/pmorissette/bt): A library offering a framework based on reusable 
and flexible blocks containing the strategy’s logic. It supports multiple instruments and outputs 
detailed statistics and charts.

•	 backtesting.py (https://github.com/kernc/backtesting.py): A backtesting framework 
built on top of backtrader.

•	 fastquant (https://github.com/enzoampil/fastquant): A wrapper library around backtrader 
that aims to reduce the amount of boilerplate code we need to write in order to run a backtest 
for popular trading strategies, for example, the moving average crossover.

•	 zipline (https://github.com/quantopian/zipline / https://github.com/stefan-jansen/
zipline-reloaded): The library used to be the most popular (based on GitHub stars) and prob-
ably the most complex of the open-source backtesting libraries. However, as we have already 
mentioned, Quantopian was closed and the library is not maintained anymore. You can use 
the fork (zipline-reloaded) maintained by Stefan Jansen.

Backtesting is a fascinating field and there is much more to learn about it. Below, you can also find 
some very interesting references for more robust approaches to backtesting:

•	 Bailey, D. H., Borwein, J., Lopez de Prado, M., & Zhu, Q. J. (2016). “The probability of backtest 
overfitting.” Journal of Computational Finance, forthcoming.

•	 Bailey, D. H., & De Prado, M. L. (2014). “The deflated Sharpe ratio: correcting for selection bias, 
backtest overfitting, and non-normality.” The Journal of Portfolio Management, 40 (5), 94-107.

•	 Bailey, D. H., Borwein, J., Lopez de Prado, M., & Zhu, Q. J. (2014). “Pseudo-mathematics and 
financial charlatanism: The effects of backtest overfitting on out-of-sample performance.” 
Notices of the American Mathematical Society, 61 (5), 458-471.

•	 De Prado, M. L. (2018). Advances in Financial Machine Learning. John Wiley & Sons.

https://github.com/polakowo/vectorbt
https://github.com/pmorissette/bt
https://github.com/kernc/backtesting.py
https://github.com/enzoampil/fastquant
https://github.com/quantopian/zipline
https://github.com/stefan-jansen/zipline-reloaded
https://github.com/stefan-jansen/zipline-reloaded
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Applied Machine Learning: 
Identifying Credit Default

In recent years, we have witnessed machine learning gaining more and more popularity in solving 
traditional business problems. Every so often, a new algorithm is published, beating the current state 
of the art. It is only natural for businesses (in all industries) to try to leverage the incredible powers 
of machine learning in their core functionalities.

Before specifying the task we will be focusing on in this chapter, we provide a brief introduction to the 
field of machine learning. The machine learning domain can be broken down into two main areas: 
supervised learning and unsupervised learning. In the former, we have a target variable (label), which 
we try to predict as accurately as possible. In the latter, there is no target, and we try to use different 
techniques to draw some insights from the data.

We can further break down supervised problems into regression problems (where a target variable 
is a continuous number, such as income or the price of a house) and classification problems (where 
the target is a class, either binary or multi-class). An example of unsupervised learning is clustering, 
which is often used for customer segmentation.

In this chapter, we tackle a binary classification problem set in the financial industry. We work with a 
dataset contributed to the UCI Machine Learning Repository, which is a very popular data repository. 
The dataset used in this chapter was collected in a Taiwanese bank in October 2005. The study was 
motivated by the fact that—at that time—more and more banks were giving credit (either cash or via 
credit cards) to willing customers. On top of that, more people, regardless of their repayment capa-
bilities, accumulated significant amounts of debt. All of this led to situations in which some people 
were unable to repay their outstanding debts. In other words, they defaulted on their loans.
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The goal of the study was to use some basic information about customers (such as gender, age, and 
education level), together with their past repayment history, to predict which of them were likely to 
default. The setting can be described as follows—using the previous 6 months of repayment history 
(April-September 2005), we try to predict whether the customer will default in October 2005. Naturally, 
such a study could be generalized to predict whether a customer will default in the next month, within 
the next quarter, and so on.

By the end of this chapter, you will be familiar with a real-life approach to a machine learning task, 
from gathering and cleaning data to building and tuning a classifier. Another takeaway is understanding 
the general approach to machine learning projects, which can then be applied to many different tasks, 
be it churn prediction or estimating the price of new real estate in a neighborhood.

In this chapter, we focus on the following recipes:

•	 Loading data and managing data types
•	 Exploratory data analysis
•	 Splitting data into training and test sets
•	 Identifying and dealing with missing values
•	 Encoding categorical variables
•	 Fitting a decision tree classifier
•	 Organizing the project with pipelines
•	 Tuning hyperparameters using grid search and cross-validation

Loading data and managing data types
In this recipe, we show how to load a dataset from a CSV file into Python. The very same principles can 
be used for other file formats as well, as long as they are supported by pandas. Some popular formats 
include Parquet, JSON, XLM, Excel, and Feather.

We also show how certain data type conversions can significantly reduce the size of DataFrames in 
the memory of our computers. This can be especially important when working with large datasets 
(GBs or TBs), which can simply not fit into memory unless we optimize their usage.

 pandas has a very consistent API, which makes finding its functions much easier. For exam-
ple, all functions used for loading data from various sources have the syntax pd.read_xxx, 
where xxx should be replaced by the file format.
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In order to present a more realistic scenario (including messy data, missing values, and so on) we 
applied some transformations to the original dataset. For more information on those changes, please 
refer to the accompanying GitHub repository.

How to do it...
Execute the following steps to load a dataset from a CSV file into Python:

1.	 Import the libraries:

import pandas as pd

2.	 Load the data from the CSV file:

df = pd.read_csv("../Datasets/credit_card_default.csv", 
                 na_values="")
df

Running the snippet generates the following preview of the dataset:

Figure 13.1: Preview of the dataset. Not all columns were displayed

The DataFrame has 30,000 rows and 24 columns. It contains a mix of numeric and categorical 
variables.
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3.	 View the summary of the DataFrame:

df.info()

Running the snippet generates the following summary:

RangeIndex: 30000 entries, 0 to 29999
Data columns (total 24 columns):
 #   Column                      Non-Null Count  Dtype  
---  ------                      --------------  -----  
 0   limit_bal                   30000 non-null  int64  
 1   sex                         29850 non-null  object
 2   education                   29850 non-null  object
 3   marriage                    29850 non-null  object
 4   age                         29850 non-null  float64
 5   payment_status_sep          30000 non-null  object
 6   payment_status_aug          30000 non-null  object
 7   payment_status_jul          30000 non-null  object
 8   payment_status_jun          30000 non-null  object
 9   payment_status_may          30000 non-null  object
 10  payment_status_apr          30000 non-null  object
 11  bill_statement_sep          30000 non-null  int64  
 12  bill_statement_aug          30000 non-null  int64  
 13  bill_statement_jul          30000 non-null  int64  
 14  bill_statement_jun          30000 non-null  int64  
 15  bill_statement_may          30000 non-null  int64  
 16  bill_statement_apr          30000 non-null  int64  
 17  previous_payment_sep        30000 non-null  int64  
 18  previous_payment_aug        30000 non-null  int64  
 19  previous_payment_jul        30000 non-null  int64  
 20  previous_payment_jun        30000 non-null  int64  
 21  previous_payment_may        30000 non-null  int64  
 22  previous_payment_apr        30000 non-null  int64  
 23  default_payment_next_month  30000 non-null  int64  
dtypes: float64(1), int64(14), object(9)
memory usage: 5.5+ MB

In the summary, we can see information about the columns and their data types, the number 
of non-null (in other words, non-missing) values, the memory usage, and so on. 
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We can also observe a few distinct data types: floats (floating-point numbers, such as 3.42), 
integers, and objects. The last ones are the pandas representation of string variables. The 
number next to float and int indicates how many bits this type uses to represent a particular 
value. The default types use 64 bits (or 8 bytes) of memory. 

4.	 Define a function for inspecting the exact memory usage of a DataFrame:

def get_df_memory_usage(df, top_columns=5):
    print("Memory usage ----")
    memory_per_column = df.memory_usage(deep=True) / (1024 ** 2)
    print(f"Top {top_columns} columns by memory (MB):")
    print(memory_per_column.sort_values(ascending=False) \
                           .head(top_columns))
    print(f"Total size: {memory_per_column.sum():.2f} MB")

We can now apply the function to our DataFrame:

get_df_memory_usage(df, 5)

Running the snippet generates the following output:

Memory usage ----
Top 5 columns by memory (MB):
education             1.965001
payment_status_sep    1.954342
payment_status_aug    1.920288
payment_status_jul    1.916343
payment_status_jun    1.904229
dtype: float64
Total size: 20.47 MB

In the output, we can see that the 5.5+ MB reported by the info method turned out to be almost 
4 times more. This is still very small in terms of current machines’ capabilities, however, the 
memory-saving principles we show in this chapter apply just as well to DataFrames measured 
in gigabytes.

 The basic int8 type covers integers in the following range: -128 to 127. uint8 
stands for unsigned integer and covers the same total span, but only the non-neg-
ative values, that is, 0 to 255. By knowing the range of values covered by specific 
data types (please refer to the link in the See also section), we can try to optimize 
allocated memory. For example, for features such as the month of purchase (repre-
sented by numbers in the range 1-12), there is no point in using the default int64, 
as a much smaller type would suffice.
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5.	 Convert the columns with the object data type into the category type:

object_columns = df.select_dtypes(include="object").columns
df[object_columns] = df[object_columns].astype("category")

get_df_memory_usage(df)

Running the snippet generates the following overview:

Memory usage ----
Top 5 columns by memory (MB):
bill_statement_sep      0.228882
bill_statement_aug      0.228882
previous_payment_apr    0.228882
previous_payment_may    0.228882
previous_payment_jun    0.228882
dtype: float64
Total size: 3.70 MB

Just by converting the object columns into a pandas-native categorical representation, we 
managed to reduce the size of the DataFrame by ~80%!

6.	 Downcast the numeric columns to integers:

numeric_columns = df.select_dtypes(include="number").columns
for col in numeric_columns:
    df[col] = pd.to_numeric(df[col], downcast="integer")

get_df_memory_usage(df)

Running the snippet generates the following overview:

Memory usage ----
Top 5 columns by memory (MB):
age                     0.228882
bill_statement_sep      0.114441
limit_bal               0.114441
previous_payment_jun    0.114441
previous_payment_jul    0.114441
dtype: float64
Total size: 2.01 MB

In the summary, we can see that after a few data type conversions, the column that takes up 
the most memory is the one containing customers’ ages (you can see that in the output of 
df.info(), not shown here for brevity). That is because it is encoded using a float data type 
and downcasting using the integer setting was not applied to float columns. 
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7.	 Downcast the age column using the float data type:

df["age"] = pd.to_numeric(df["age"], downcast="float")
get_df_memory_usage(df)

Running the snippet generates the following overview:

Memory usage ----
Top 5 columns by memory (MB):
bill_statement_sep      0.114441
limit_bal               0.114441
previous_payment_jun    0.114441
previous_payment_jul    0.114441
previous_payment_aug    0.114441
dtype: float64
Total size: 1.90 MB

Using various data type conversions, we have managed to reduce the memory size of our DataFrame 
from 20.5 MB to 1.9 MB, which is a 91% reduction.

How it works... 
After importing pandas, we loaded the CSV file by using the pd.read_csv function. When doing so, 
we indicated that empty strings should be interpreted as missing values. 

In Step 3, we displayed a summary of the DataFrame to inspect its contents. To get a better understand-
ing of the dataset, we provide a simplified description of the variables: 

•	 limit_bal—the amount of the given credit (NT dollars) 
•	 sex—biological sex
•	 education—level of education 
•	 marriage— marital status 
•	 age—age of the customer 
•	 payment_status_{month}—status of payments in one of the previous 6 months
•	 bill_statement_{month}—the number of bill statements (NT dollars) in one of the previous 

6 months
•	 previous_payment_{month}—the number of previous payments (NT dollars) in one of the 

previous 6 months 
•	 default_payment_next_month—the target variable indicating whether the customer defaulted 

on the payment in the following month

In general, pandas tries to load and store data as efficiently as possible. It automatically assigns data 
types (which we can inspect by using the dtypes method of a pandas DataFrame). However, there are 
some tricks that can lead to much better memory allocation, which definitely makes working with 
larger tables (in hundreds of MBs, or even GBs) easier and more efficient.
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In Step 4, we defined a function for inspecting the exact memory usage of a DataFrame. The  
memory_usage method returns a pandas Series with the memory usage (in bytes) for each of the Data-
Frame’s columns. We converted the output into MBs to make it easier to understand.

In Step 5, we leveraged a special data type called category to reduce the DataFrame’s memory usage. 
The underlying idea is that string variables are encoded as integers, and pandas uses a special map-
ping dictionary to decode them back into their original form. This is especially useful when dealing 
with a limited number of distinct values, for example, certain levels of education, country of origin, 
and so on. To save memory, we first identified all the columns with the object data type using the 
select_dtypes method. Then, we changed the data type of those columns from object to category. 
We did so using the astype method.

In Step 6, we used the select_dtypes method to identify all numeric columns. Then, using a 
for loop iterating over the identified columns, we converted the values to numeric using the  
pd.to_numeric function. This might strike as odd, given that we first identified the numeric columns 
and then converted them to numeric again. However, the crucial part is the downcast argument of 
the function. By passing the "integer" value, we have optimized the memory usage of all the integer 
columns by downcasting the default int64 data type to smaller alternatives (int32 and int8).

Even though we applied the function to all numeric columns, only the ones that contained integers 
were successfully transformed. That is why in Step 7 we additionally downcasted the float column 
containing the clients’ ages.

There’s more…
In this recipe, we have mentioned how to optimize the memory usage of a pandas DataFrame. We first 
loaded the data into Python, then we inspected the columns, and at the end we converted the data 
types of some columns to reduce memory usage. However, such an approach might not be possible, 
as the data might simply not fit into memory in the first place. 

If that is the case, we can also try the following:

•	 Read the dataset in chunks (by using the chunk argument of pd.read_csv). For example, we 
could load just the first 100 rows of data.

 When using the memory_usage method, we specified deep=True. That is because the 
object data type, unlike other dtypes (short for data types), does not have a fixed memory 
allocation for each cell. In other words, as the object dtype usually corresponds to text, 
it means that the amount of memory used depends on the number of characters in each 
cell. Intuitively, the more characters in a string, the more memory that cell uses.

 We should know when it is actually profitable (from the memory’s perspective) to use 
the category data type. A rule of thumb is to use it for variables with a ratio of unique 
observations to the overall number of observations lower than 50%.
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•	 Read only the columns we actually need (by using the usecols argument of pd.read_csv).
•	 While loading the data, use the column_dtypes argument to define the data types used for 

each of the columns.

To illustrate, we can use the following snippet to load our dataset and while doing so indicate that the 
selected three columns should have a category data type:

column_dtypes = {
    "education": "category",
    "marriage": "category",
    "sex": "category"
}
df_cat = pd.read_csv("../Datasets/credit_card_default.csv",
                     na_values="", dtype=column_dtypes)

If all of those approaches fail, we should not give up. While pandas is definitely the gold standard of 
working with tabular data in Python, we can leverage the power of some alternative libraries, which 
were built specifically for such a case. Below you can find a list of libraries you could use when working 
with large volumes of data:

•	 Dask: an open-source library for distributed computing. It facilitates running many compu-
tations at the same time, either on a single machine or on clusters of CPUs. Under the hood, 
the library breaks down a single large data processing job into many smaller tasks, which are 
then handled by numpy or pandas. As the last step, the library reassembles the results into a 
coherent whole.

•	 Modin: a library designed to parallelize pandas DataFrames by automatically distributing the 
computation across all of the system’s available CPU cores. The library divides an existing 
DataFrame into different parts such that each part can be sent to a different CPU core. 

•	 Vaex: an open-source DataFrame library specializing in lazy out-of-core DataFrames. Vaex 
requires negligible amounts of RAM for inspecting and interacting with a dataset of arbitrary 
size, all thanks to combining the concepts of lazy evaluations and memory mapping. 

•	 datatable: an open-source library for manipulating 2-dimensional tabular data. In many ways, 
it is similar to pandas, with special emphasis on speed and the volume of data (up to 100 GB) 
while using a single-node machine. If you have worked with R, you might already be familiar 
with the related package called data.table, which is R users’ go-to package when it comes to 
the fast aggregation of large data. 

•	 cuDF: a GPU DataFrame library that is part of NVIDIA’s RAPIDS, a data science ecosystem 
spanning multiple open-source libraries and leveraging the power of GPUs. cuDF allows us to 
use a pandas-like API to benefit from the performance boost without going into the details of 
CUDA programming.

•	 polars: an open-source DataFrame library that achieves phenomenal computation speed by 
leveraging Rust (programming language) with Apache Arrow as its memory model. 
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See also
Additional resources: 

•	 Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.
edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. 

•	 Yeh, I. C. & Lien, C. H. (2009). “The comparisons of data mining techniques for the predictive 
accuracy of probability of default of credit card clients.” Expert Systems with Applications, 36(2), 
2473-2480. https://doi.org/10.1016/j.eswa.2007.12.020.

•	 List of different data types used in Python: https://numpy.org/doc/stable/user/basics.
types.html#.

Exploratory data analysis
The second step of a data science project is to carry out Exploratory Data Analysis (EDA). By doing so, 
we get to know the data we are supposed to work with. This is also the step during which we test the 
extent of our domain knowledge. For example, the company we are working for might assume that 
the majority of its customers are people between the ages of 18 and 25. But is this actually the case? 
While doing EDA we might also run into some patterns that we do not understand, which are then a 
starting point for a discussion with our stakeholders.

While doing EDA, we can try to answer the following questions: 

•	 What kind of data do we actually have, and how should we treat different data types? 
•	 What is the distribution of the variables? 
•	 Are there outliers in the data and how can we treat them? 
•	 Are any transformations required? For example, some models work better with (or require) 

normally distributed variables, so we might want to use techniques such as log transformation. 
•	 Does the distribution vary per group (for example, sex or education level)? 
•	 Do we have cases of missing data? How frequent are these, and in which variables do they occur? 
•	 Is there a linear relationship (correlation) between some variables? 
•	 Can we create new features using the existing set of variables? An example might be deriving 

an hour/minute from a timestamp, a day of the week from a date, and so on. 
•	 Are there any variables that we can remove as they are not relevant for the analysis? An example 

might be a randomly generated customer identifier. 

Naturally, this list is non-exhaustive and carrying out the analysis might spark more questions than we 
initially had. EDA is extremely important in all data science projects, as it enables analysts to develop 
an understanding of the data, facilitates asking better questions, and makes it easier to pick modeling 
approaches suitable for the type of data being dealt with. 

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.eswa.2007.12.020
https://numpy.org/doc/stable/user/basics.types.html#.
https://numpy.org/doc/stable/user/basics.types.html#.
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In real-life cases, it makes sense to first carry out a univariate analysis (one feature at a time) for all 
relevant features to get a good understanding of them. Then, we can proceed to multivariate analysis, 
that is, comparing distributions per group, correlations, and so on. For brevity, we only show selected 
analysis approaches to selected features, but a deeper analysis is highly encouraged. 

Getting ready
We continue with exploring the data we loaded in the previous recipe.

How to do it... 
Execute the following steps to carry out the EDA of the loan default dataset:

1.	 Import the libraries:

import pandas as pd
import numpy as np
import seaborn as sns

2.	 Get summary statistics of the numeric variables: 

df.describe().transpose().round(2) 

Running the snippet generates the following summary table:

Figure 13.2: Summary statistics of the numeric variables
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3.	 Get summary statistics of the categorical variables:

df.describe(include="object").transpose()

Running the snippet generates the following summary table: 

Figure 13.3: Summary statistics of the categorical variables

4.	 Plot the distribution of age and split it by sex:

ax = sns.kdeplot(data=df, x="age",
                 hue="sex", common_norm=False,
                 fill=True)
ax.set_title("Distribution of age")
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Running the snippet generates the following plot: 

Figure 13.4: The KDE plot of age, grouped by sex 

By analyzing the kernel density estimate (KDE) plot, we can say there is not much difference 
in the shape of the distribution per sex. The female sample is slightly younger, on average.

5.	 Create a pairplot of selected variables:

COLS_TO_PLOT = ["age", "limit_bal", "previous_payment_sep"]

pair_plot = sns.pairplot(df[COLS_TO_PLOT], kind="reg",
                         diag_kind="kde", height=4,
                         plot_kws={"line_kws":{"color":"red"}})
pair_plot.fig.suptitle("Pairplot of selected variables")
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Running the snippet generates the following plot: 

Figure 13.5: A pairplot with KDE plots on the diagonal and fitted regression lines in each 
scatterplot

We can make a few observations from the created pairplot:

•	 The distribution of previous_payment_sep is highly skewed—it has a very long tail.
•	 Connected to the previous point, we can observe some very extreme values of  

previous_payment_sep in the scatterplots.
•	 It is difficult to draw conclusions from the scatterplots, as there are 30,000 observations 

on each of them. When plotting such volumes of data, we could use transparent markers 
to better visualize the density of the observation in certain areas.

•	 The outliers can have a significant impact on the regression lines.
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Additionally, we can separate the sexes by specifying the hue argument:

pair_plot = sns.pairplot(data=df,
                         x_vars=COLS_TO_PLOT,
                         y_vars=COLS_TO_PLOT,
                         hue="sex",
                         height=4)
pair_plot.fig.suptitle("Pairplot of selected variables")

Running the snippet generates the following plot:

Figure 13.6: The pairplot with separate markers for each sex

While we can gain some more insights from the diagonal plots with the split per sex, the scat-
terplots are still quite unreadable due to the sheer volume of plotted data. 

As a potential solution, we could randomly sample from the entire dataset and only plot the 
selected observations. A possible downside of that approach is that we might miss some ob-
servations with extreme values (outliers).
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6.	 Analyze the relationship between age and limit balance:

ax = sns.jointplot(data=df, x="age", y="limit_bal", 
                   hue="sex", height=10)
ax.fig.suptitle("Age vs. limit balance")

Running the snippet generates the following plot:

Figure 13.7: A joint plot showing the relationship between age and limit balance, grouped 
by sex
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A joint plot contains quite a lot of useful information. First of all, we can see the relationship 
between two variables on the scatterplot. Then, we can also investigate the distributions of 
the two variables individually using the KDE plots along the axes (we can also plot histograms 
instead).

7.	 Define and run a function for plotting the correlation heatmap:

def plot_correlation_matrix(corr_mat):
    sns.set(style="white")
    mask = np.zeros_like(corr_mat, dtype=bool)
    mask[np.triu_indices_from(mask)] = True
    fig, ax = plt.subplots()
    cmap = sns.diverging_palette(240, 10, n=9, as_cmap=True)
    sns.heatmap(corr_mat, mask=mask, cmap=cmap, 
                vmax=.3, center=0, square=True, 
                linewidths=.5, cbar_kws={"shrink": .5}, 
                ax=ax)
    ax.set_title("Correlation Matrix", fontsize=16)
    sns.set(style="darkgrid")

corr_mat = df.select_dtypes(include="number").corr()    
plot_correlation_matrix(corr_mat)
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Running the snippet generates the following plot: 

Figure 13.8: Correlation heatmap of the numeric features

We can see that age seems to be uncorrelated to any of the other features. 

8.	 Analyze the distribution of age in groups using box plots:

ax = sns.boxplot(data=df, y="age", x="marriage", hue="sex")
ax.set_title("Distribution of age")
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Running the snippet generates the following plot:

Figure 13.9: Distribution of age by marital status and sex

The distributions seem quite similar within marital groups, with men always having a higher 
median age.

9.	 Plot the distribution of limit balance for each sex and education level:

ax = sns.violinplot(x="education", y="limit_bal", 
                    hue="sex", split=True, data=df)
ax.set_title(
    "Distribution of limit balance per education level", 
    fontsize=16
)
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Running the snippet generates the following plot: 

Figure 13.10: Distribution of limit balance by education level and sex

Inspecting the plot reveals a few interesting patterns:

•	 The largest balance appears in the group with the Graduate school level of education. 
•	 The shape of the distribution is different per education level: the Graduate school level 

resembles the Others category, while the High school level is similar to the University level. 
•	 In general, there are few differences between the sexes. 

10.	 Investigate the distribution of the target variable per sex and education level:

ax = sns.countplot("default_payment_next_month", hue="sex",
                   data=df, orient="h")
ax.set_title("Distribution of the target variable", fontsize=16)
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Running the snippet generates the following plot:

Figure 13.11: Distribution of the target variable by sex

By analyzing the plot, we can say that the percentage of defaults is higher among male cus-
tomers.

11.	 Investigate the percentage of defaults per education level:

ax = df.groupby("education")["default_payment_next_month"] \
       .value_counts(normalize=True) \
       .unstack() \
       .plot(kind="barh", stacked="True")
ax.set_title("Percentage of default per education level",
             fontsize=16)
ax.legend(title="Default", bbox_to_anchor=(1,1))



Applied Machine Learning: Identifying Credit Default482

Running the snippet generates the following plot: 

Figure 13.12: Percentage of defaults by education level

Relatively speaking, most defaults happen among customers with a high-school education, while the 
fewest defaults happen in the Others category.

How it works... 
In the previous recipe, we already explored two DataFrame methods that are useful for starting ex-
ploratory data analysis: shape and info. We can use them to quickly learn the shape of the dataset 
(number of rows and columns), what data types are used for representing each feature, and so on. 

In this recipe, we started the analysis by using a very simple yet powerful method of a pandas Data-
Frame—describe. It printed summary statistics, such as the count, mean, min/max, and quartiles 
of all the numeric variables in the DataFrame. By inspecting these metrics, we could infer the value 
range of a certain feature, or whether the distribution is skewed (by looking at the difference between 
the mean and median). Also, we could easily spot values outside the plausible range, for example, a 
negative or very young/old age. 

 In this recipe, we are mostly using the seaborn library, as it is the go-to library when it 
comes to exploring data. However, we could use alternative plotting libraries. The plot 
method of a pandas DataFrame is quite powerful and allows for quickly visualizing our 
data. Alternatively, we could use plotly (and its plotly.express module) to create fully 
interactive data visualizations.
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The count metric represents the number of non-null observations, so it is also a way to determine 
which numeric features contain missing values. Another way of investigating the presence of missing 
values is by running df.isnull().sum(). For more information on missing values, please see the 
Identifying and dealing with missing values recipe. 

In Step 3, we added the include="object" argument while calling the describe method to inspect 
the categorical features separately. The output was different from the numeric features: we could see 
the count, the number of unique categories, which one was the most frequent, and how many times 
it appeared in the dataset. 

In Step 4, we showed a way of investigating the distribution of a variable, in this case, the age of the 
customers. To do so, we created a KDE plot. It is a method of visualizing the distribution of a variable, 
very similar to a traditional histogram. KDE represents the data using a continuous probability density 
curve in one or more dimensions. One of its advantages over a histogram is that the resulting plot 
is less cluttered and easier to interpret, especially when considering multiple distributions at once.

Together with a histogram, the KDE plot is one of the most popular methods of inspecting the distri-
bution of a single feature. To create a histogram, we can use the sns.histplot function. Alternatively, 
we can use the plot method of a pandas DataFrame, while specifying kind="hist". We show examples 
of creating histograms in the accompanying Jupyter notebook (available on GitHub).

 We can include additional percentiles in the describe method by passing an extra ar-
gument, for example, percentiles=[.99]. In this case, we added the 99th percentile.

 We can use include="all"to display the summary metrics for all features—only the met-
rics available for a given data type will be present, while the rest will be filled with NA values.

 A common source of confusion around the KDE plots is about the units on the density 
axis. In general, the kernel density estimation results in a probability distribution. How-
ever, the height of the curve at each point gives a density, instead of the probability. We 
can obtain a probability by integrating the density across a certain range. The KDE curve 
is normalized so that the integral over all possible values is equal to 1. This means that 
the scale of the density axis depends on the data values. To take it a step further, we can 
decide how to normalize the density when we are dealing with multiple categories in one 
plot. If we use common_norm=True, each density is scaled by the number of observations 
so that the total area under all curves sums to 1. Otherwise, the density of each category 
is normalized independently.
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An extension of this analysis can be done by using a pairplot. It creates a matrix of plots, where the 
diagonal shows the univariate histograms or KDE plots, while the off-diagonal plots are scatterplots 
of two features. This way, we can also try to see if there is a relationship between the two features. To 
make identifying the potential relationships easier, we have also added the regression lines. 

In our case, we only plotted three features. That is because with 30,000 observations it can take quite 
some time to render the plot for all numeric columns, not to mention losing readability with so many 
small plots in one matrix. When using pairplots, we can also specify the hue argument to add a split 
for a category (such as sex, or education level). 

We can also zoom into a relationship between two variables using a joint plot (sns.jointplot). It is 
a type of plot that combines a scatterplot to analyze the bivariate relationship and KDE plots or his-
tograms to analyze the univariate distribution. In Step 6, we analyzed the relationship between age 
and limit balance.

In Step 7, we defined a function for plotting a heatmap representing the correlation matrix. In the 
function, we used a couple of operations to mask the upper triangular matrix and the diagonal (all 
diagonal elements of the correlation matrix are equal to 1). This way, the output is much easier to 
interpret. Using the annot argument of sns.heatmap, we could add the underlying numbers to the 
heatmap. However, we should only do so when the number of analyzed features is not too high. Oth-
erwise, they will become unreadable.

To calculate the correlations, we used the corr method of a DataFrame, which by default calculates 
the Pearson’s correlation coefficient. We did this only for numeric features. There are also methods 
for calculating the correlation of categorical features; we mention some of them in the There’s more… 
section. Inspecting correlations is crucial, especially when using machine learning algorithms that 
assume linear independence of the features. 

In Step 8, we used box plots to investigate the distribution of age by marital status and sex. A box plot 
(also called a box-and-whisker plot) presents the distribution of data in such a way that facilitates 
comparisons between levels of a categorical variable. A box plot presents the information about the 
distribution of the data using a 5-number summary: 

•	 Median (50th percentile)—represented by the horizontal black line within the boxes.
•	 Interquartile range (IQR)—represented by the box. It spans the range between the first quartile 

(25th percentile) and the third quartile (75th percentile).
•	 The whiskers—represented by the lines stretched from the box. The extreme values of the 

whiskers (marked as horizontal lines) are defined as the first quartile − 1.5 IQR and the third 
quartile + 1.5 IQR.

We can use the box plots to gather the following insights about our data:

•	 The points marked outside of the whiskers can be considered outliers. This method is called 
Tukey’s fences and is one of the simplest outlier detection techniques. In short, it assumes that 
observations lying outside of the [Q1 – 1.5 IQR, Q3 + 1.5 IQR] range are outliers.
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•	 The potential skewness of the distribution. A right-skewed (positive skewness) distribution can 
be observed when the median is closer to the lower bound of the box, and the upper whisker is 
longer than the lower one. Vice versa for the left-skewed distributions. Figure 13.13 illustrates this.

Figure 13.13: Determining the skewness of distribution using box plots

In Step 9, we used violin plots to investigate the distribution of the limit balance feature per educa-
tion level and sex. We created them by using sns.violinplot. We indicated the education level with 
the x argument. Additionally, we set hue="sex" and split=True. By doing so, each half of the violin 
represented a different sex. 

In general, violin plots are very similar to box plots and we can find the following information in them: 

•	 The median, represented by a white dot. 
•	 The interquartile range, represented as the black bar in the center of a violin. 
•	 The lower and upper adjacent values, represented by the black lines stretched from the bar. 

The lower adjacent value is defined as the first quartile − 1.5 IQR, while the upper one is de-
fined as the third quartile + 1.5 IQR. Again, we can use the adjacent values as a simple outlier 
detection technique.

Violin plots are a combination of a box plot and a KDE plot. A definite advantage of a violin plot over 
a box plot is that the former enables us to clearly see the shape of the distribution. This is especially 
useful when dealing with multimodal distributions (distributions with multiple peaks), such as the 
limit balance violin in the Graduate school education category.
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In the last two steps, we investigated the distribution of the target variable (default) per sex 
and education. In the first case, we used sns.countplot to display the count of occurrenc-
es of both possible outcomes for each sex. In the second case, we opted for a different ap-
proach. We wanted to plot the percentage of defaults per education level, as comparing per-
centages between groups is easier than comparing nominal values. To do so, we first grouped by 
education level, selected the variable of interest, calculated the percentages per group (using the  
value_counts(normalize=True) method), unstacked (to remove multi-index), and generated a plot 
using the already familiar plot method.

There’s more...
In this recipe, we introduced a range of possible approaches to investigate the data at hand. However, 
this requires many lines of code (quite a lot of them boilerplate) each time we want to carry out 
the EDA. Thankfully, there is a Python library that simplifies the process. The library is called  
pandas_profiling and with a single line of code, it generates a comprehensive summary of the dataset 
in the form of an HTML report.

To create a report, we need to run the following:

from pandas_profiling import ProfileReport
profile = ProfileReport(df, title="Loan Default Dataset EDA")
profile

For practical reasons, we might prefer to save the report as an HTML file and inspect it in a browser 
instead of the Jupyter notebook. We can easily do so using the following snippet:

profile.to_file("loan_default_eda.html")

 We could also create a profile using the new (added by pandas_profiling)  
profile_report method of a pandas DataFrame.
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The report is very exhaustive and contains a lot of useful information. Please see the following figure 
for an example.

Figure 13.14: Example of a deep-dive into the limit balance feature

For brevity’s sake, we will only discuss selected elements of the report: 

•	 An overview giving information about the size of the DataFrame (number of features/rows, 
missing values, duplicated rows, memory size, breakdown per data type). 

•	 Alerts warning us about potential issues with our data, including a high percentage of dupli-
cated rows, highly correlated (and potentially redundant) features, features that have a high 
percentage of zero values, highly skewed features, etc.

•	 Different measures of correlation: Spearman’s 𝜌𝜌 , Pearson’s r, Kendall’s 𝜏𝜏 , Cramér’s V, and Phik 
(𝜑𝜑𝜑 ). The last one is especially interesting, as it is a recently developed correlation coefficient 
that works consistently between categorical, ordinal, and interval variables. On top of that, 
it captures non-linear dependencies. Please see the See also section for a reference paper 
describing the metric.

•	 Detailed analysis of missing values.
•	 Detailed univariate analysis of each feature (more details are available by clicking Toggle details 

in the report).
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pandas-profiling is the most popular auto-EDA tool in Python’s vast ecosystem of libraries. However, 
it is definitely not the only one. You can also investigate the following:

•	 sweetviz—https://github.com/fbdesignpro/sweetviz

•	 autoviz—https://github.com/AutoViML/AutoViz

•	 dtale—https://github.com/man-group/dtale

•	 dataprep—https://github.com/sfu-db/dataprep

•	 lux—https://github.com/lux-org/lux

Each one of them approaches EDA a bit differently. Hence, it is best to explore them all and pick the 
tool that works best for your needs.

See also
For more information about Phik (𝜑𝜑𝜑 ), please see the following paper:

•	 Baak, M., Koopman, R., Snoek, H., & Klous, S. (2020). “A new correlation coefficient between 
categorical, ordinal and interval variables with Pearson characteristics.” Computational Statistics 
& Data Analysis, 152, 107043. https://doi.org/10.1016/j.csda.2020.107043.

Splitting data into training and test sets 
Having completed the EDA, the next step is to split the dataset into training and test sets. The idea is 
to have two separate datasets:

•	 Training set—on this part of the data, we train a machine learning model
•	 Test set—this part of the data was not seen by the model during training and is used to evaluate 

its performance

By splitting the data this way, we want to prevent overfitting. Overfitting is a phenomenon that oc-
curs when a model finds too many patterns in data used for training and performs well only on that 
particular data. In other words, it fails to generalize to unseen data.

This is a very important step in the analysis, as doing it incorrectly can introduce bias, for example, in 
the form of data leakage. Data leakage can occur when, during the training phase, a model observes 
information to which it should not have access. We follow up with an example. A common scenario 
is that of imputing missing values with the feature’s average. If we had done this before splitting the 
data, we would have also used data from the test set to calculate the average, introducing leakage. 
That is why the proper order would be to split the data into training and test sets first and then carry 
out the imputation, using the data observed in the training set. The same goes for setting up rules for 
identifying outliers.

Additionally, splitting the data ensures consistency, as unseen data in the future (in our case, new 
customers that will be scored by the model) will be treated in the same way as the data in the test set.

https://github.com/fbdesignpro/sweetviz
https://github.com/AutoViML/AutoViz
https://github.com/man-group/dtale
https://github.com/sfu-db/dataprep
https://github.com/lux-org/lux
https://doi.org/10.1016/j.csda.2020.107043
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How to do it... 
Execute the following steps to split the dataset into training and test sets:

1.	 Import the libraries:

import pandas as pd
from sklearn.model_selection import train_test_split

2.	 Separate the target from the features:

X = df.copy()
y = X.pop("default_payment_next_month")

3.	 Split the data into training and test sets:

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

4.	 Split the data into training and test sets without shuffling:

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, shuffle=False
)

5.	 Split the data into training and test sets with stratification:

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, stratify=y, random_state=42
)

6.	 Verify that the ratio of the target is preserved:

print("Target distribution - train")
print(y_train.value_counts(normalize=True).values)
print("Target distribution - test")
print(y_test.value_counts(normalize=True).values)

Running the snippet generates the following output:

Target distribution - train
[0.77879167 0.22120833]
Target distribution - test
[0.77883333 0.22116667]

In both sets, the percentage of payment defaults is around 22.12%. 
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How it works...
After importing the libraries, we separated the target from the features using the pop method of a 
pandas DataFrame.

In Step 3, we showed how to do the most basic split. We passed X and y objects to the  
train_test_split function. Additionally, we specified the size of the test set, as a fraction of all 
observations. For reproducibility, we also specified the random state. We had to assign the output of 
the function to four new objects.

In Step 4, we took a different approach. By specifying test_size=0.2 and shuffle=False, we assigned 
the first 80% of the data to the training set and the remaining 20% to the test set. This might come in 
handy when we want to preserve the order in which the observations are becoming available.

In Step 5, we also specified the stratification argument by passing the target variable (stratify=y). 
Splitting the data with stratification means that both the training and test sets will have an almost 
identical distribution of the specified variable. This parameter is very important when dealing with 
imbalanced data, such as in cases of fraud detection. If 99% of data is normal and only 1% covers 
fraudulent cases, a random split can result in the training set not having any fraudulent cases. That 
is why when dealing with imbalanced data, it is crucial to split it correctly.

In the very last step, we verified if the stratified train/test split resulted in the same ratio of defaults in 
both datasets. To verify that, we used the value_counts method of a pandas DataFrame.

In the rest of the chapter, we will use the data obtained from the stratified split.

There’s more...
It is also common to split data into three sets: training, validation, and test. The validation set is 
used for frequent evaluation and tuning of the model’s hyperparameters. Suppose we want to train a 
decision tree classifier and find the optimal value of the max_depth hyperparameter, which decides 
the maximum depth of the tree. 

To do so, we can train the model multiple times using the training set, each time with a different value 
of the hyperparameter. Then, we can evaluate the performance of all these models, using the valida-
tion set. We pick the best model of those, and then ultimately evaluate its performance on the test set.

In the following snippet, we illustrate a possible way of creating a train-validation-test split, using the 
same train_test_split function:

import numpy as np
 
# define the size of the validation and test sets
VALID_SIZE = 0.1
TEST_SIZE = 0.2
 
# create the initial split - training and temp
X_train, X_temp, y_train, y_temp = train_test_split(
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    X, y, 
    test_size=(VALID_SIZE + TEST_SIZE), 
    stratify=y, 
    random_state=42
)
 
# calculate the new test size
new_test_size = np.around(TEST_SIZE / (VALID_SIZE + TEST_SIZE), 2)
 
# create the valid and test sets
X_valid, X_test, y_valid, y_test = train_test_split(
    X_temp, y_temp, 
    test_size=new_test_size, 
    stratify=y_temp, 
    random_state=42
)

We basically ran train_test_split twice. What is important is that we had to adjust the sizes of the 
test_size input in such a way that the initially defined proportions (70-10-20) were preserved.

We also verify that everything went according to plan: that the size of the datasets corresponds to the 
intended split and that the ratio of defaults is the same in each set. We do so using the following snippet:

print("Percentage of data in each set ----")
print(f"Train: {100 * len(X_train) / len(X):.2f}%")
print(f"Valid: {100 * len(X_valid) / len(X):.2f}%")
print(f"Test: {100 * len(X_test) / len(X):.2f}%")
print("")
print("Class distribution in each set ----")
print(f"Train: {y_train.value_counts(normalize=True).values}")
print(f"Valid: {y_valid.value_counts(normalize=True).values}")
print(f"Test: {y_test.value_counts(normalize=True).values}")

Executing the snippet generates the following output:

Percentage of data in each set ----
Train: 70.00%
Valid: 9.90%
Test: 20.10%

Class distribution in each set ----
Train: [0.77879899 0.22120101]
Valid: [0.77878788 0.22121212]
Test: [0.77880948 0.22119052]
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We have indeed verified that the original dataset was split with the intended 70-10-20 ratio and that 
the distribution of defaults (target variable) was preserved due to stratification. Sometimes, we do not 
have enough data to split it into three sets, either because we do not have that many observations in 
general or because the data can be highly imbalanced, and we would remove valuable training samples 
from the training set. That is why practitioners often use a method called cross-validation, which we 
describe in the Tuning hyperparameters using grid search and cross-validation recipe.

Identifying and dealing with missing values
In most real-life cases, we do not work with clean, complete data. One of the potential problems we are 
bound to encounter is that of missing values. We can categorize missing values by the reason they occur: 

•	 Missing completely at random (MCAR)—The reason for the missing data is unrelated to the 
rest of the data. An example could be a respondent accidentally missing a question in a survey.

•	 Missing at random (MAR)—The missingness of the data can be inferred from data in another 
column(s). For example, a missing response to a certain survey question can to some extent 
be determined conditionally by other factors such as sex, age, lifestyle, and so on.

•	 Missing not at random (MNAR)—When there is some underlying reason for the missing values. 
For example, people with very high incomes tend to be hesitant about revealing it.

•	 Structurally missing data—Often a subset of MNAR, the data is missing because of a logical 
reason. For example, when a variable representing the age of a spouse is missing, we can infer 
that a given person has no spouse.

Some machine learning algorithms can account for missing data, for example, decision trees can treat 
missing values as a separate and unique category. However, many algorithms either cannot do so or 
their popular implementations (such as the ones in scikit-learn) do not incorporate this functionality.

Some popular solutions to handling missing values include:

•	 Drop observations with one or more missing values—while this is the easiest approach, it is 
not always a good one, especially in the case of small datasets. We should also be aware of 
the fact that even if there is only a small fraction of missing values per feature, they do not 
necessarily occur for the same observations (rows), so the actual number of rows we might 
need to remove can be much higher. Additionally, in the case of data missing not at random, 
removing such observations from the analysis can introduce bias into the results. 

•	 We can opt to drop the entire column (feature) if it is mostly populated with missing values. 
However, we need to be cautious as this can already be an informative signal for our model.

•	 Replace the missing values with a value far outside the possible range, so that algorithms such 
as decision trees can treat it as a special value, indicating missing data. 

 We should only impute features, not the target variable!
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•	 In the case of dealing with time series, we can use forward-filling (take the last-known obser-
vation before the missing one), backward-filling (take the first-known observation after the 
missing one), or interpolation (linear or more advanced). 

•	 Hot-deck imputation—in this simple algorithm, we first select one or more of the other features 
correlated with the one containing missing values. Then, we sort the rows of the dataset by 
these selected features. Lastly, we iterate over the rows from top to bottom and replace each 
missing value with the previous non-missing value in the same feature.

•	 Replace the missing values with an aggregate metric—for continuous data, we can use the 
mean (when there are no clear outliers in the data) or median (when there are outliers). In the 
case of categorical variables, we can use mode (the most common value in the set). Potential 
disadvantages of mean/median imputation include the reduction of variance in the dataset and 
distorting the correlations between the imputed features and the rest of the dataset.

•	 Replace the missing values with aggregate metrics calculated per group—for example, when 
dealing with body-related metrics, we can calculate the mean or median per sex, to more 
accurately replace the missing data. 

•	 ML-based approaches—we can treat the considered feature as a target, and use complete cases 
to train a model and predict values for the missing observations. 

In general, exploring the missing values is part of the EDA. We briefly touched upon it when analyz-
ing the report generated with pandas_profiling. But we deliberately left it without much coverage 
until now, as it is crucial to carry out any kind of missing value imputation after the train/test split. 
Otherwise, we cause data leakage. 

In this recipe, we show how to identify the missing values in our data and how to impute them.

Getting ready
For this recipe, we assume that we have the outputs of the stratified train/test split from the previous 
recipe, Splitting data into training and test sets.

How to do it... 
Execute the following steps to investigate and deal with missing values in the dataset: 

1.	 Import the libraries:

import pandas as pd
import missingno as msno
from sklearn.impute import SimpleImputer

2.	 Inspect the information about the DataFrame: 

X.info()
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Executing the snippet generates the following summary (abbreviated):

RangeIndex: 30000 entries, 0 to 29999
Data columns (total 23 columns):
 #   Column                Non-Null Count  Dtype  
---  ------                --------------  -----  
 0   limit_bal             30000 non-null  int64  
 1   sex                   29850 non-null  object
 2   education             29850 non-null  object
 3   marriage              29850 non-null  object
 4   age                   29850 non-null  float64
 5   payment_status_sep    30000 non-null  object
 6   payment_status_aug    30000 non-null  object
 7   payment_status_jul    30000 non-null  object

Our dataset has more columns, however, the missing values are only present in the 4 columns 
visible in the summary. For brevity, we have not included the rest of the output.

3.	 Visualize the nullity of the DataFrame:

msno.matrix(X)

Running the line of code results in the following plot:

Figure 13.15: The nullity matrix plot of the loan default dataset

The white bars visible in the columns represent missing values. We should keep in mind that 
when working with large datasets with only a few missing values, those white bars might be 
quite difficult to spot. 
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The line on the right side of the plot describes the shape of data completeness. The two num-
bers indicate the maximum and minimum nullity in the dataset. When an observation has no 
missing values, the line will be at the maximum right position and have a value equal to the 
number of columns in the dataset (23 in this case). As the number of missing values starts to 
increase within an observation, the line moves towards the left. The nullity value of 21 indi-
cates that there is a row with 2 missing values in it, as the maximum value for this dataset is 
23 (the number of columns).

4.	 Define columns with missing values per data type:

NUM_FEATURES = ["age"]
CAT_FEATURES = ["sex", "education", "marriage"]

5.	 Impute numerical features:

for col in NUM_FEATURES:
    num_imputer = SimpleImputer(strategy="median")
    num_imputer.fit(X_train[[col]])
    X_train.loc[:, col] = num_imputer.transform(X_train[[col]])
    X_test.loc[:, col] = num_imputer.transform(X_test[[col]])

6.	 Impute categorical features:

for col in CAT_FEATURES:
    cat_imputer = SimpleImputer(strategy="most_frequent")
    cat_imputer.fit(X_train[[col]])
    X_train.loc[:, col] = cat_imputer.transform(X_train[[col]])
    X_test.loc[:, col] = cat_imputer.transform(X_test[[col]])

We can verify that neither the training nor test sets contain missing values using the info method.

How it works...
In Step 1, we imported the required libraries. Then, we used the info method of a pandas DataFrame 
to view information about the columns, such as their type and the number of non-null observations. 
The difference between the total number of observations and the non-null ones corresponds to the 
number of missing observations. Another way of inspecting the number of missing values per column 
is to run X.isnull().sum().

Instead of imputing, we could also drop the observations (or even columns) con-
taining missing values. To drop all rows containing any missing value, we could use  
X_train.dropna(how="any", inplace=True). In our sample case, the number of missing values is 
not large, however, in a real-life dataset it can be considerable or the dataset might be too small for the 
analysts to be able to remove observations. Alternatively, we could also specify the thresh argument 
of the dropna method to indicate in how many columns an observation (row) needs to have missing 
values in order to be dropped from the dataset.
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In Step 3, we visualized the nullity of the DataFrame, with the help of the missingno library.

In Step 4, we defined lists containing features we wanted to impute, one list per data type. The reason 
for this is the fact that numeric features are imputed using different strategies than categorical features. 
For basic imputation, we used the SimpleImputer class from scikit-learn.

In Step 5, we iterated over the numerical features (in this case, only the age feature), and used the 
median to replace the missing values. Inside the loop, we defined the imputer object with the cor-
rect strategy ("median"), fitted it to the given column of the training data, and transformed both the 
training and test data. This way, the median was estimated by using only the training data, preventing 
potential data leakage.

Step 6 is analogous to Step 5, where we used the same approach to iterate over categorical columns. 
The difference lies in the selected strategy—we used the most frequent value ("most_frequent") in 
the given column. This strategy can be used for both categorical and numerical features. In the latter 
case, it corresponds to the mode.

There’s more...
There are a few more things worth mentioning when covering handling missing values.

More visualizations available in the missingno library
In this recipe, we have already covered the nullity matrix representation of missing values in a dataset. 
However, the missingno library offers a few more helpful visualizations:

•	 msno.bar—generates a bar chart representing the nullity in each column. Might be easier to 
quickly interpret than the nullity matrix.

•	 msno.heatmap—visualizes the nullity correlation, that is, how strongly the presence/absence of 
one feature impacts the presence of another. The interpretation of the nullity correlation is very 
similar to the standard Pearson’s correlation coefficient. It ranges from -1 (when one feature 
occurs, then the other one certainly does not) through 0 (features appearing or not appearing 
have no effect on each other) to 1 (if one feature occurs, then the other one certainly does too).

•	 msno.dendrogram—allows us to better understand the correlations between variable comple-
tion. Under the hood, it uses hierarchical clustering to bin features against one another by 
their nullity correlation.

 In this recipe, we used scikit-learn to deal with the imputation of miss-
ing values. However, we can also do this manually. To do so, for each column 
with any missing values (either in the training or test set), we need to calcu-
late the given statistic (mean/median/mode) using the training set, for example,  
age_median = X_train.age.median(). Afterward, we need to use this median to fill 
in the missing values for the age column (in both the training and test sets) using the 
fillna method. We show how to do it in the Jupyter notebook available in the book’s 
GitHub repository.
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Figure 13.16: Example of the nullity dendrogram

To interpret the figure, we need to analyze it from a top-down perspective. First, we should look at 
cluster leaves, which are linked at a distance of zero. Those fully predict each other’s presence, that is, 
one feature might always be missing when the other is present, or they might always both be present 
or missing, and so on. Cluster leaves with a split close to zero predict each other very well.

In our case, the dendrogram links together the features that are present in every observation. We 
know this for certain, as we have introduced the missing observations by design in only four features.

ML-based approaches to imputing missing values
In this recipe, we mentioned how to impute missing values. Approaches such as replacing the missing 
values with one large value or the mean/median/mode are called single imputation approaches, as they 
replace missing values with one specific value. On the other hand, there are also multiple imputation 
approaches, and one of those is Multiple Imputation by Chained Equations (MICE).

In short, the algorithm runs multiple regression models, and each missing value is determined condi-
tionally on the basis of the non-missing data points. A potential benefit of using an ML-based approach 
to imputation is the reduction of bias introduced by single imputation. The MICE algorithm is available 
in scikit-learn under the name of IterativeImputer.

Alternatively, we could use the nearest neighbors imputation (implemented in scikit-learn's 
KNNImputer). The underlying assumption of the KNN imputation is that a missing value can be ap-
proximated by the values of the same feature coming from the observations that are closest to it. The 
closeness to the other observations is determined using other features and some form of a distance 
metric, for example, the Euclidean distance.
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As the algorithm uses KNN, it comes with some of its drawbacks:

•	 Requires tuning of the k hyperparameter for best performance
•	 We need to scale the data and preprocess categorical features
•	 We need to pick an appropriate distance metric (especially in cases when we have a mix of 

categorical and numerical features)
•	 The algorithm is sensitive to outliers and noise in data
•	 Can be computationally expensive as it requires calculating the distances between every pair 

of observations

Another of the available ML-based algorithms is called MissForest (available in the missingpy library). 
Without going into too much detail, the algorithm starts by filling in the missing values with the me-
dian or mode imputation. Then, it trains a Random Forest model to predict the feature that is missing 
using the other known features. The model is trained using the observations for which we know the 
values of the target (so the ones that were not imputed in the first step) and then makes predictions 
for the observations with the missing feature. In the next step, the initial median/mode prediction is 
replaced with the one coming from the RF model. The process of looping through the missing data 
points is repeated several times, and each iteration tries to improve upon the previous one. The al-
gorithm stops when some stopping criterion is met or we exhaust the allowed number of iterations.

Advantages of MissForest:

•	 Can handle missing values in both numeric and categorical features
•	 Does not require data preprocessing (such as scaling)
•	 Robust to noisy data, as Random Forest makes little to no use of uninformative features
•	 Non-parametric—it does not make assumptions about the relationship between the features 

(MICE assumes linearity)
•	 Can leverage non-linear and interaction effects between features to improve imputation per-

formance

Disadvantages of MissForest:

•	 Imputation time increases with the number of observations, features, and the number of 
features containing missing values

•	 Similar to Random Forest, not very easy to interpret
•	 It is an algorithm and not a model object we can store somewhere (for example, as a pickle 

file) and reuse whenever we need to impute missing values

See also
Additional resources are available here:

•	 Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). “Multiple imputation by chained 
equations: what is it and how does it work?” International Journal of Methods in Psychiatric 
Research, 20(1), 40-49. https://doi.org/10.1002/mpr.329. 

https://doi.org/10.1002/mpr.329
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•	 Buck, S. F. (1960). “A method of estimation of missing values in multivariate data suitable for 
use with an electronic computer.” Journal of the Royal Statistical Society: Series B (Methodological), 
22(2), 302-306. https://www.jstor.org/stable/2984099. 

•	 Stekhoven, D. J. & Bühlmann, P. (2012). “MissForest—non-parametric missing value imputation 
for mixed-type data.” Bioinformatics, 28(1), 112-118.

•	 van Buuren, S. & Groothuis-Oudshoorn, K. (2011). “MICE: Multivariate Imputation by Chained 
Equations in R.” Journal of Statistical Software 45 (3): 1–67. 

•	 Van Buuren, S. (2018). Flexible Imputation of Missing Data. CRC press. 
•	 miceforest—a Python library for fast, memory-efficient MICE with LightGBM.
•	 missingpy—a Python library containing the implementation of the MissForest algorithm.

Encoding categorical variables
In the previous recipes, we have seen that some features are categorical variables (originally repre-
sented as either object or category data types). However, most machine learning algorithms work 
exclusively with numeric data. That is why we need to encode categorical features into a representation 
compatible with the ML models. 

The first approach to encoding categorical features is called label encoding. In this approach, we re-
place the categorical values of a feature with distinct numeric values. For example, with three distinct 
classes, we use the following representation: [0, 1, 2].

One potential issue with label encoding is that it introduces a relationship between the categories, 
while often there is none. In a three-classes example, the relationship looks as follows: 0 < 1 < 2. This 
does not make much sense if the categories are, for example, countries. However, this can work for 
features that represent some kind of order (ordinal variables). For example, label encoding could work 
well with a rating of service received, on a scale of Bad-Neutral-Good.

To overcome the preceding problem, we can use one-hot encoding. In this approach, for each category 
of a feature, we create a new column (sometimes called a dummy variable) with binary encoding to 
denote whether a particular row belongs to this category. A potential drawback of this method is that 
it significantly increases the dimensionality of the dataset (curse of dimensionality). First, this can 
increase the risk of overfitting, especially when we do not have that many observations in our dataset. 
Second, a high-dimensional dataset can be a significant problem for any distance-based algorithm 
(for example, k-Nearest Neighbors), as—on a very high level—a large number of dimensions causes all 
the observations to appear equidistant from each other. This can naturally render the distance-based 
models useless.

 This is already very similar to the outcome of converting to the category data type in 
pandas. Let’s assume we have a DataFrame called df_cat, which has a feature called 
feature_1. This feature is encoded as the category data type. We can then access the 
codes of the categories by running df_cat["feature_1"].cat.codes. Additionally, we 
can recover the mapping by running dict(zip(df_cat["feature_1"].cat.codes, 
df_cat["feature_1"])). We can also use the pd.factorize function to arrive at a 
very similar representation.

https://www.jstor.org/stable/2984099
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Summing up, we should avoid label encoding as it introduces false order to the data, which can lead to 
incorrect conclusions. Tree-based methods (decision trees, Random Forest, and so on) can work with 
categorical data and label encoding. However, one-hot encoding is the natural representation of cate-
gorical features for algorithms such as linear regression, models calculating distance metrics between 
features (such as k-means clustering or k-Nearest Neighbors), or Artificial Neural Networks (ANN).

Getting ready
For this recipe, we assume that we have the outputs of the imputed training and test sets from the 
previous recipe, Identifying and dealing with missing values.

How to do it...
Execute the following steps to encode categorical variables with label encoding and one-hot encoding: 

1.	 Import the libraries:

import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer

2.	 Use Label Encoder to encode a selected column: 

COL = "education"

X_train_copy = X_train.copy()
X_test_copy = X_test.copy()

label_enc = LabelEncoder()
label_enc.fit(X_train_copy[COL])
X_train_copy.loc[:, COL] = label_enc.transform(X_train_copy[COL])
X_test_copy.loc[:, COL] = label_enc.transform(X_test_copy[COL])

X_test_copy[COL].head()

 Another thing we should be aware of is that creating dummy variables introduces a form 
of redundancy to the dataset. In fact, if a feature has three categories, we only need two 
dummy variables to fully represent it. That is because if an observation is neither of the 
two, it must be the third one. This is often referred to as the dummy-variable trap, and it 
is best practice to always remove one column (known as the reference value) from such 
an encoding. This is especially important in unregularized linear models.
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Running the snippet generates the following preview of the transformed column:

6907     3
24575    0
26766    3
2156     0
3179     3
Name: education, dtype: int64

We created a copy of X_train and X_test, just to show how to work with LabelEncoder, but 
we do not want to modify the actual DataFrames we intend to use later. 

3.	 Select categorical features for one-hot encoding:

cat_features = X_train.select_dtypes(include="object") \
                      .columns \
                      .to_list()
cat_features

We will apply one-hot encoding to the following columns:

['sex', 'education',  'marriage', 'payment_status_sep', 'payment_status_
aug', 'payment_status_jul', 'payment_status_jun', 'payment_status_may', 
'payment_status_apr']

4.	 Instantiate the OneHotEncoder object:

one_hot_encoder = OneHotEncoder(sparse=False,
                                handle_unknown="error",
                                drop="first")

5.	 Create the column transformer using the one-hot encoder:

one_hot_transformer = ColumnTransformer(
    [("one_hot", one_hot_encoder, cat_features)],
    remainder="passthrough",
    verbose_feature_names_out=False
)

6.	 Fit the transformer:

one_hot_transformer.fit(X_train)

 We can access the labels stored within the fitted LabelEncoder by using the 
classes_ attribute.
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Executing the snippet prints the following preview of the column transformer:

Figure 13.17: Preview of the column transformer with one-hot encoding

7.	 Apply the transformations to both training and test sets:

col_names = one_hot_transformer.get_feature_names_out()

X_train_ohe = pd.DataFrame(
    one_hot_transformer.transform(X_train), 
    columns=col_names, 
    index=X_train.index
)

X_test_ohe = pd.DataFrame(one_hot_transformer.transform(X_test),
                          columns=col_names,
                          index=X_test.index)

As we have mentioned before, one-hot encoding comes with the potential disadvantage of increasing 
the dimensionality of the dataset. In our case, we started with 23 columns. After applying one-hot 
encoding, we ended up with 72 columns.

How it works...
First, we imported the required libraries. In the second step, we selected the column we wanted to 
encode using label encoding, instantiated the LabelEncoder, fitted it to the training data, and trans-
formed both the training and the test data. We did not want to keep the label encoding, and for that 
reason we operated on copies of the DataFrames. 

 We demonstrated using label encoding as it is one of the available options, however, it 
comes with quite serious drawbacks. So in practice, we should refrain from using it. Ad-
ditionally, scikit-learn's documentation warns us with the following statement: This 
transformer should be used to encode target values, i.e. y, and not the input X.
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In Step 3, we started the preparations for one-hot encoding by creating a list of all the categorical 
features. We used the select_dtypes method to select all features with the object data type.

In Step 4, we created an instance of OneHotEncoder. We specified that we did not want to work 
with a sparse matrix (a special kind of data type, suitable for storing matrices with a very high 
percentage of zeros), we dropped the first column per feature (to avoid the dummy variable trap), 
and we specified what to do if the encoder finds an unknown value while applying the transformation  
(handle_unknown='error').

In Step 5, we defined the ColumnTransformer, which is a convenient approach to applying the same 
transformation (in this case, the one-hot encoder) to multiple columns. We passed a list of steps, where 
each step was defined by a tuple. In this case, it was a single tuple with the name of the step ("one_hot"), 
the transformation to be applied, and the features to which we wanted to apply the transformation.

When creating the ColumnTransformer, we also specified another argument, remainder="passthrough", 
which has effectively fitted and transformed only the specified columns, while leaving the rest intact. 
The default value for the remainder argument was "drop", which dropped the unused columns. We 
also specified the value of the verbose_feature_names_out argument as False. This way, when we 
use the get_feature_names_out method later, it will not prefix all feature names with the name of 
the transformer that generated that feature.

If we had not changed it, some features would have the "one_hot__" prefix, while the others would 
have "remainder__".

In Step 6, we fitted the column transformer to the training data using the fit method. Lastly, we ap-
plied the transformations using the transform method to both training and test sets. As the transform 
method returns a numpy array instead of a pandas DataFrame, we had to convert them ourselves. We 
started by extracting the names of the features using the get_feature_names_out. Then, we created 
a pandas DataFrame using the transformed features, the new column names, and the old indices (to 
keep everything in order).

There’s more...
We would like to mention a few more things regarding the encoding of categorical variables. 

Using pandas for one-hot encoding
Alternatively to scikit-learn, we can use pd.get_dummies for one-hot encoding categorical features. 
The example syntax looks like the following: 

pd.get_dummies(X_train, prefix_sep="_", drop_first=True)

 Similar to handling missing values or detecting outliers, we fit all the transformers (in-
cluding one-hot encoding) to the training data only, and then we apply the transformations 
to both training and test sets. This way, we avoid potential data leakage.
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It’s good to know this alternative approach, as it can be easier to work with (column names are auto-
matically accounted for), especially when creating a quick Proof of Concept (PoC). However, when 
productionizing the code, the best approach would be to use the scikit-learn variant and create the 
dummy variables within a pipeline.

Specifying possible categories for OneHotEncoder 
When creating ColumnTransformer, we could have additionally provided a list of possible categories 
for all the considered features. A simplified example follows:

one_hot_encoder = OneHotEncoder(
    categories=[["Male", "Female", "Unknown"]],
    sparse=False,
    handle_unknown="error",
    drop="first"
)

one_hot_transformer = ColumnTransformer(
    [("one_hot", one_hot_encoder, ["sex"])]
)

one_hot_transformer.fit(X_train)
one_hot_transformer.get_feature_names_out()

Executing the snippet returns the following:

array(['one_hot__sex_Female', 'one_hot__sex_Unknown'], dtype=object)

By passing a list (of lists) containing possible categories for each feature, we are taking into account 
the possibility that the specific value does not appear in the training set, but might appear in the test 
set (or as part of the batch of new observations in the production environment). If this were the case, 
we would run into errors. 

In the preceding code block, we added an extra category called "Unknown" to the column representing 
sex. As a result, we will end up with an extra “dummy” column for that category. The male category 
was dropped as the reference one.

Category Encoders library
Aside from using pandas and scikit-learn, we can also use another library called Category Encoders. 
It belongs to a set of libraries compatible with scikit-learn and provides a selection of encoders 
using a similar fit-transform approach. That is why it is also possible to use them together with 
ColumnTransformer and Pipeline.

We show an alternative implementation of the one-hot encoder.
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Import the library:

import category_encoders as ce

Create the encoder object: 

one_hot_encoder_ce = ce.OneHotEncoder(use_cat_names=True)

Additionally, we could specify an argument called drop_invariant, to indicate that we want to drop 
columns with no variance, so for example columns filled with only one distinct value. This could help 
with reducing the number of features.

Fit the encoder, and transform the data:

one_hot_encoder_ce.fit(X_train)
X_train_ce = one_hot_encoder_ce.transform(X_train)

This implementation of the one-hot encoder automatically encodes only the columns containing strings 
(unless we specify only a subset of categorical columns by passing a list to the cols argument). By 
default, it also returns a pandas DataFrame (in comparison to the numpy array, in the case of scikit-
learn's implementation) with the adjusted column names. The only drawback of this implementation 
is that it does not allow for dropping the one redundant dummy column of each feature.

A warning about one-hot encoding and decision tree-based 
algorithms
While regression-based models can naturally handle the OR condition of one-hot-encoded features, 
the same is not that simple with decision tree-based algorithms. In theory, decision trees are capable 
of handling categorical features without the need for encoding. 

However, its popular implementation in scikit-learn still requires all features to be numerical. 
Without going into too much detail, such an approach favors continuous numerical features over 
one-hot-encoded dummies, as a single dummy can only bring a fraction of the total feature infor-
mation into the model. A possible solution is to use either a different kind of encoding (label/target 
encoding) or an implementation that handles categorical features, such as Random Forest in the h2o 
library or the LightGBM model.

Fitting a decision tree classifier
A decision tree classifier is a relatively simple yet very important machine learning algorithm used for 
both regression and classification problems. The name comes from the fact that the model creates a set 
of rules (for example, if x_1 > 50 and x_2 < 10 then y = 'default'), which taken together can be 
visualized in the form of a tree. The decision trees segment the feature space into a number of smaller 
regions, by repeatedly splitting the features at a certain value. To do so, they use a greedy algorithm 
(together with some heuristics) to find a split that minimizes the combined impurity of the children 
nodes. The impurity in classification tasks is measured using the Gini impurity or entropy, while for 
regression problems the trees use the mean squared error or the mean absolute error as the metric.
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In the case of a binary classification problem, the algorithm tries to obtain nodes that contain as many 
observations from one class as possible, thus minimizing the impurity. The prediction in a terminal 
node (leaf) is made on the basis of mode in the case of classification, and mean for regression problems.

The advantages of decision trees include the following:

•	 Easily visualized in the form of a tree—high interpretability
•	 Fast training and prediction stages
•	 A relatively small number of hyperparameters to tune
•	 Support numerical and categorical features
•	 Can handle non-linearity in data
•	 Can be further improved with feature engineering, though there is no explicit need to do so
•	 Do not require scaling or normalization of features
•	 Incorporate their version of feature selection by choosing the features on which to split the 

sample
•	 Non-parametric model—no assumptions about the distribution of the features/target

On the other hand, the disadvantages of decision trees include the following:

•	 Instability—the trees are very sensitive to the noise in input data. A small change in the data 
can change the model significantly.

•	 Overfitting—if we do not provide maximum values or stopping criteria, the trees tend to grow 
very deep and do not generalize well.

•	 The trees can only interpolate, but not extrapolate—they make constant predictions for observa-
tions that lie beyond the boundary region established on the feature space of the training data.

•	 The underlying greedy algorithm does not guarantee the selection of a globally optimal de-
cision tree.

•	 Class imbalance can lead to biased trees.
•	 Information gain (a decrease in entropy) in a decision tree with categorical variables results 

in a biased outcome for features with a higher number of categories.

Getting ready
For this recipe, we assume that we have the outputs of the one-hot-encoded training and test sets from 
the previous recipe, Encoding categorical variables.

 Decision trees are a base for many complex algorithms, such as Random Forest, Gradient 
Boosted Trees, XGBoost, LightGBM, CatBoost, and so on.
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How to do it...
Execute the following steps to fit a decision tree classifier:

1.	 Import the libraries:

from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn import metrics

from chapter_13_utils import performance_evaluation_report

In this recipe and the following ones, we will be using the performance_evaluation_report 
helper function. It plots useful metrics (confusion matrix, ROC curve) used for evaluating 
binary classification models. Also, it returns a dictionary containing more metrics, which we 
cover in the How it works… section.

2.	 Create the instance of the model, fit it to the training data, and create predictions:

tree_classifier = DecisionTreeClassifier(random_state=42)
tree_classifier.fit(X_train_ohe, y_train)
y_pred = tree_classifier.predict(X_test_ohe)

3.	 Evaluate the results:

LABELS = ["No Default", "Default"]
tree_perf = performance_evaluation_report(tree_classifier,
                                          X_test_ohe,
                                          y_test, labels=LABELS,
                                          show_plot=True)

Executing the snippet generates the following plot:

Figure 13.18: The performance evaluation report of the fitted decision tree classifier
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The tree_perf object is a dictionary containing more relevant metrics, which can further help 
us with evaluating the performance of our model. We present those metrics below:

{'accuracy': 0.7141666666666666,
 'precision': 0.3656509695290859,
 'recall': 0.39788997739261495,
 'specificity': 0.8039803124331265,
 'f1_score': 0.3810898592565861,
 'cohens_kappa': 0.1956931046277427,
 'matthews_corr_coeff': 0.1959883714391891,
 'roc_auc': 0.601583581287813,
 'pr_auc': 0.44877724015824927,
 'average_precision': 0.2789754297204212}

For more insights into the interpretation of the evaluation metrics, please refer to the How it 
works… section.

4.	 Plot the first few levels of the fitted decision tree:

plot_tree(tree_classifier, max_depth=3, fontsize=10)

Executing the snippet generates the following plot:

Figure 13.19: The fitted decision tree, capped at a max depth of 3

Using the one-liner, we can already visualize quite a lot of information. We decided to plot only the 3 
levels of the decision tree, as the fitted tree actually reached the depth of 44 levels. As we have men-
tioned, not restricting the max_depth hyperparameter can lead to such cases, which are also very 
likely to overfit.
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In the tree, we can see the following information:

•	 Which feature is used to split the tree and at which value. Unfortunately, with the default 
settings, we only see the column number instead of the feature’s name. We will fix that soon.

•	 The value of the Gini impurity.
•	 The number of samples in each node/leaf.
•	 The number of observations of each class within the node/leaf.

We can add more information to the plot with a few additional arguments of the plot_tree function:

plot_tree(
    tree_classifier,
    max_depth=2,
    feature_names=X_train_ohe.columns,
    class_names=["No default", "Default"],
    rounded=True,
    filled=True,
    fontsize=10
)

Executing the snippet generates the following plot:

Figure 13.20: The fitted decision tree, capped at a max depth of 2
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In Figure 13.20, we see some additional information:

•	 The name of the feature used for creating the split
•	 The name of the class dominating in each node/leaf

Visualizing decision trees has many benefits. First, we can gain insights into which features are used 
for creating the model (a possible measure of feature importance) and what values were used to 
create the splits. Provided that the features have clear interpretation, this could work as a form of a 
sanity check to see if our initial hypotheses about the data and the considered problem came true 
and are aligned with common sense or domain knowledge. It could also help with presenting a clear 
and coherent story to the business stakeholders, who can quite easily understand such a simple rep-
resentation of the model. We will discuss the feature importance and model explainability in depth 
in the following chapter.

How it works...
In Step 2, we used the typical scikit-learn approach to training a machine learning model. First, 
we created the object of the DecisionTreeClassifier class (using all the default settings and a fixed 
random state). Then, we fitted the model to the training data (we needed to pass both the features and 
the target) using the fit method. Lastly, we obtained the predictions by using the predict method.

In Step 3, we evaluated the performance of the model. We used a custom function to display all the 
results. We will not go deeper into its specifics, as it is quite standard and is built using functions from 
the metrics module of scikit-learn. For a detailed description of the function, please refer to the 
accompanying GitHub repository.

The confusion matrix summarizes all possible combinations of the predicted values as opposed to 
the actual target. The possible values are as follows:

•	 True positive (TP): The model predicts a default, and the client defaulted
•	 False positive (FP): The model predicts a default, but the client did not default
•	 True negative (TN): The model predicts a good customer, and the client did not default
•	 False negative (FN): The model predicts a good customer, but the client defaulted

In the scenarios presented above, we assumed that default is represented by the positive class. It does 
not mean that the outcome (client defaulting) is good or positive, just that an event occurred. Most 
frequently, the majority class is the “uninteresting” case and is assigned the negative label. This is a 
typical convention used in data science projects.

 Using the predict method results in an array of predicted classes (in this case, it is either 
a 0 or a 1). However, there are cases when we are interested in the assigned probabilities 
or scores. To obtain those, we can use the predict_proba method, which returns an array 
of size n_test_observations by n_classes. Each row contains all the possible class 
probabilities (they sum up to 1). In the case of binary classification, the predict method 
automatically assigns a positive class when the corresponding probability is above 50%.
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Using the presented values, we can further build multiple evaluation criteria:

•	 Accuracy [expressed as (TP + TN) / (TP + FP + TN + FN)]—measures the model’s overall ability 
to correctly predict the class of the observation.

•	 Precision [expressed as TP / (TP + FP)]—measures what fraction of all predictions of the positive 
class (in our case, the default) indeed were positive. In our project, it answers the question: 
Out of all predictions of default, how many clients actually defaulted? Or in other words: When the 
model predicts default, how often is it correct?

•	 Recall [expressed as TP / (TP + FN)]—measures what fraction of all positive cases were predicted 
correctly. Also called sensitivity or the true positive rate. In our case, it answers the question: 
What fraction of all observed defaults did we predict correctly?

•	 F-1 Score—a harmonic average of precision and recall. The reason for using the harmonic mean 
instead of arithmetic average is that it takes into account the harmony (similarity) between the 
two scores. Thus, it punishes extreme outcomes and discourages highly unequal values. For 
example, a classifier with precision = 1 and recall = 0 would score a 0.5 using a simple average, 
but a 0 when using the harmonic mean.

•	 Specificity [expressed as TN / (TN + FP)]—measures what fraction of negative cases (clients 
without a default) actually did not default. A helpful way of thinking about specificity is to 
consider it the recall of the negative class.

Understanding the subtleties behind these metrics is very important for the correct evaluation of the 
model’s performance. Accuracy can be highly misleading in the case of class imbalance. Imagine a 
case when 99% of data is not fraudulent and only 1% is fraudulent. Then, a naïve model classifying 
each observation as non-fraudulent achieves 99% accuracy, while it is actually worthless. That is why, 
in such cases, we should refer to precision or recall:

•	 When we try to achieve as high precision as possible, we will get fewer false positives, at the 
cost of more false negatives. We should optimize for precision when the cost of a false positive 
is high, for example, in spam detection.

•	 When optimizing for recall, we will achieve fewer false negatives, at the cost of more false 
positives. We should optimize for recall when the cost of a false negative is high, for example, 
in fraud detection.

The second plot contains the Receiver Operating Characteristic (ROC) curve. The ROC curve presents 
a trade-off between the true positive rate (TPR, recall) and the false positive rate (FPR, which is equal 
to 1 minus specificity) for different probability thresholds. A probability threshold determines the 
predicted probability above which we decide that the observation belongs to the positive class (by 
default, it is 50%).

 There is no one-size-fits-all rule about which metric is best. The metric that we try to 
optimize for should be selected based on the use case.
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An ideal classifier would have a false positive rate of 0 and a true positive rate of 1. Thus, the sweet 
spot in the ROC plot is the (0,1) point in the plot. A skillful model’s curve would be as close to it as 
possible. On the other hand, a model with no skill will have a line close to the diagonal (45°) line. To 
better understand the ROC curve, please consider the following:

•	 Let’s assume that we pick the decision threshold to be 0, that is, all observations are classified 
as defaults. This leads to two conclusions. First, no actual defaults are predicted as the negative 
class (false negatives), which means that the true positive rate (recall) is 1. Second, no good 
customers are classified as such (true negatives), which means that the false positive rate is 
also 1. This corresponds to the top-right corner of the ROC curve.

•	 Let’s move to the other extreme and assume that the decision threshold is 1, that is, all cus-
tomers are classified as good customers (no default, that is, the negative class). As there are 
no positive predictions at all, this leads to the following conclusions. First, there are no true 
positives (TPR = 0). Second, there are no false positives (FPR = 0). Such a scenario corresponds 
to the bottom left of the curve.

•	 As such, all the points on the curve correspond to the scores of a classifier for thresholds 
between the two extremes (0 and 1). The curve should approach the ideal point, in which the 
true positive rate is 1 and the false positive rate is 0. That is, no defaulting client is classified 
as a good customer and no good customer is classified as likely to default. In other words, a 
perfect classifier.

•	 If the performance approaches the diagonal line, the model is classifying roughly as many 
defaulting and non-defaulting customers as defaulting. In other words, this would be a clas-
sifier as good as random guessing.

To summarize the performance of a model with one number, we can look at the area under the ROC 
curve (AUC). It is an aggregate measure of performance across all possible decision thresholds. It is 
a metric with values between 0 and 1 and it tells us how much the model is capable of distinguishing 
between the classes. A model with an AUC of 0 is always wrong, while a model with an AUC of 1 is always 
correct. An AUC of 0.5 indicates a model with no skill that is pretty much equal to random guessing.

We can interpret the AUC in probabilistic terms. In short, it indicates how well the probabilities from 
the positive classes are separated from the negative classes. AUC represents the probability that a 
model ranks a random positive observation more highly than a random negative one.

An example might make it a bit easier to understand. Let’s assume we have predictions obtained from 
some model, ranked in ascending order by their score/probability. Figure 13.21 illustrates this. An AUC 
of 75% means that if we take one random positive observation and one random negative observation, 
with a 75% probability they will be ordered in the correct way, that is, the random positive example 
is to the right of the random negative example.

A model with a curve below the diagonal line is possible and is actually better 
than the “no-skill” one, as its predictions can be simply inverted to obtain better 
performance.
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Figure 13.21: Model’s output ordered by predicted score/probability

In the last step, we visualized the decision tree using the plot_tree function.

There’s more...
We have already covered the basics of using an ML model (in our case, a decision tree) to solve a bi-
nary classification task. We have also gone through the most popular classification evaluation metrics. 
However, there are still a few interesting topics to at least mention.

Diving deeper into classification evaluation metrics
One of the metrics we have covered quite extensively was the ROC curve. One issue with it is that it 
loses its credibility when it comes to evaluating the performance of the model when we are dealing 
with (severe) class imbalance. In such cases, we should use another curve—the Precision-Recall curve. 
That is because, for calculating both precision and recall, we do not use the true negatives, and only 
consider the correct prediction of the minority class (the positive one). 

We start by extracting the predicted scores/probabilities and calculating precision and recall for 
different thresholds: 

y_pred_prob = tree_classifier.predict_proba(X_test_ohe)[:, 1]

precision, recall, _ = metrics.precision_recall_curve(y_test,
                                                      y_pred_prob)

 In practice, we may use the ROC curve to select a threshold that results in an appropriate 
balance between false positives and false negatives. Furthermore, AUC is a good metric 
to compare the difference in performance between various models.

 As we do not actually need the thresholds, we substitute that output of the function with 
an underscore.
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Having calculated the required elements, we can plot the curve: 

ax = plt.subplot()
ax.plot(recall, precision,
        label=f"PR-AUC = {metrics.auc(recall, precision):.2f}")
ax.set(title="Precision-Recall Curve",
       xlabel="Recall",
       ylabel="Precision")
ax.legend()

Executing the snippet generates the following plot:

Figure 13.22: Precision-recall curve of the fitted decision tree classifier

Similar to the ROC curve, we can analyze the Precision-Recall curve as follows:

•	 Each point in the curve corresponds to the values of precision and recall for a different deci-
sion threshold.

•	 A decision threshold of 0 results in precision = 0 and recall = 1.
•	 A decision threshold of 1 results in precision = 1 and recall = 0.
•	 As a summary metric, we can approximate the area under the Precision-Recall curve.
•	 The PR-AUC ranges from 0 to 1, where 1 indicates the perfect model.
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•	 A model with a PR-AUC of 1 can identify all the positive observations (perfect recall), while 
not wrongly labeling a single negative observation as a positive one (perfect precision). The 
perfect point is located in (1, 1), that is, the top-right corner of the plot.

•	 We can consider models that bow toward the (1, 1) point as skillful.

One potential issue with the PR-Curve in Figure 13.22 is that it might be overly optimistic due to the 
undertaken interpolations when plotting the values of precision and recall for each threshold. A more 
realistic representation can be obtained using the following snippet:

ax = metrics.PrecisionRecallDisplay.from_estimator(
    tree_classifier, X_test_ohe, y_test
)
ax.ax_.set_title("Precision-Recall Curve")

Executing the snippet generates the following plot:

Figure 13.23: More realistic precision-recall curve of the fitted decision tree classifier

First, we can see that even though the shape is different, we can easily recognize the pattern and what 
the interpolation actually does. We can imagine connecting the extreme points of the plot with the sin-
gle point (values of ~0.4 for both metrics), which would result in the shape obtained using interpolation.
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Second, we can also see that the score decreased quite substantially (from 0.45 to 0.28). 
In the first case, we obtained the score using trapezoidal interpolation of the PR curve  
(auc(precision, recall) in scikit-learn). In the second case, the score is actually another met-
ric—average precision. Average precision summarizes a precision-recall curve as the weighted mean 
of precisions achieved at each threshold, where the weights are calculated as the increase in recall 
from the previous threshold.

Even though these two metrics produce very similar estimates in many cases, they are fundamentally 
different. The first approach uses an overly optimistic linear interpolation and its effect might be more 
pronounced when the data is highly skewed/imbalanced.

We have already covered the F1-Score, which was the harmonic mean of precision and recall. Actually, 
it is a specific case of a more general metric called the 𝐹𝐹𝐹𝐹 -Score, where the 𝛽𝛽  factor defines how much 
weight is put on recall, while precision has a weight of 1. To make sure that the weights sum up to one, 
both are normalized by dividing them by (𝛽𝛽 𝛽 𝛽𝛽 . Such a definition of the score implies the following:

•	 𝛽𝛽 𝛽 𝛽 —more weight is put on recall

•	 𝛽𝛽 𝛽 𝛽 —the same as the F1-Score, so recall and precision are treated equally
•	 𝛽𝛽 𝛽 𝛽 —more weight is put on precision

Some potential pitfalls of using precision, recall, or F1-Score include the fact that those metrics are 
asymmetric, that is, they focus on the positive class. When looking at their formulas, we can clearly 
see that they never account for the true negative category. That is exactly what Matthew’s correlation 
coefficient (also known as the phi-coefficient) is trying to overcome:MCC = TP × TN − FP × FN√(TP + FP)(TP + FN)(TN + FP)(TN + FN) 
Analyzing the formula reveals the following:

•	 All of the elements of the confusion matrix are taken into account while calculating the score
•	 The formula looks similar to the one used for calculating Pearson’s correlation
•	 MCC treats the true class and the predicted class as two binary variables, and effectively cal-

culates their correlation coefficient
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MCC has values between -1 (a classifier always misclassifying) and 1 (a perfect classifier). A value of 0 
indicates that the classifier is no better than random guessing. Overall, as MCC is a symmetric metric, 
in order to achieve a high value the classifier must be doing well in predicting both the positive and 
negative classes.

Visualizing decision trees using dtreeviz
The default plotting functionalities in scikit-learn can definitely be considered good enough for 
visualizing decision trees. However, we can take it a step further using the dtreeviz library.

First, we import the library:

from dtreeviz.trees import *

Then, we train a smaller decision tree with a maximum depth of 3. We do so just in order to make the 
visualization easier to read. Unfortunately, there is no option in dtreeviz to plot only x levels of a tree:

small_tree = DecisionTreeClassifier(max_depth=3,
                                    random_state=42)
small_tree.fit(X_train_ohe, y_train)

Lastly, we plot the tree:

viz = dtreeviz(small_tree,
               x_data=X_train_ohe,
               y_data=y_train,
               feature_names=X_train_ohe.columns,
               target_name="Default",
               class_names=["No", "Yes"],
               title="Decision Tree - Loan default dataset")
viz

 As MCC is not as intuitive and easy to interpret as F1-Score, it might be a good metric to 
use when the cost of low precision and low recall is unknown or unquantifiable. Then, 
MCC can be better than F1-Score as it provides a more balanced (symmetric) evaluation 
of a classifier.
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Running the snippet generates the following plot:

Figure 13.24: Decision tree visualized using dtreeviz

Compared to the previously generated plots, the ones created with dtreeviz additionally show the 
distribution of the feature used for splitting (separately for each class) together with the split value. 
What is more, the leaf nodes are presented as pie charts.

For more examples of using dtreeviz, including adding a path following a particular observation 
through all the splits in the tree, please refer to the notebook in the book’s GitHub repository.

See also
Information on the dangers of using ROC-AUC as a performance evaluation metric: 

•	 Lobo, J. M., Jiménez‐Valverde, A., & Real, R. (2008). “AUC: a misleading measure of the per-
formance of predictive distribution models.” Global Ecology and Biogeography, 17(2), 145-151.

•	 Sokolova, M. & Lapalme, G. (2009). “A systematic analysis of performance measures for clas-
sification tasks.” Information Processing and Management, 45(4), 427-437.

More information about the Precision-Recall curve:
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•	 Davis, J. & Goadrich, M. (2006, June). “The relationship between Precision-Recall and ROC 
curves.” In Proceedings of the 23rd international conference on Machine learning (pp. 233-240).

Additional resources on decision trees:

•	 Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984) Classification and Regression Trees. 
Chapman & Hall, Wadsworth, New York. 

•	 Breiman, L. (2017). Classification and Regression Trees. Routledge.

Organizing the project with pipelines
In the previous recipes, we showed all the steps required to build a machine learning model—starting 
with loading data, splitting it into training and test sets, imputing missing values, encoding categorical 
features, and ultimately fitting a decision tree classifier.

The process requires multiple steps to be executed in a certain order, which can sometimes be tricky 
with a lot of modifications to the pipeline mid-work. That is why scikit-learn introduced pipelines. 
By using pipelines, we can sequentially apply a list of transformations to the data, and then train a 
given estimator (model).

One important point to be aware of is that the intermediate steps of the pipeline must have the fit 
and transform methods, while the final estimator only needs the fit method.

Using pipelines has several benefits:

•	 The flow is much easier to read and understand—the chain of operations to be executed on 
given columns is clear.

•	 Makes it easier to avoid data leakage, for example, when scaling the training set and then 
using cross-validation.

•	 The order of steps is enforced by the pipeline.
•	 Increased reproducibility.

In this recipe, we show how to create the entire project’s pipeline, from loading the data to training 
the classifier.

 In scikit-learn's terminology, we refer to objects containing the fit and transform 
methods as transformers. We use those to clean and preprocess data. An example could 
be the OneHotEncoder we have already covered. Similarly, we use the term estima-
tors for objects with the fit and predict methods. Those are ML models, such as the 
DecisionTreeClassifier.
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How to do it... 
Execute the following steps to build the project’s pipeline:

1.	 Import the libraries:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.tree import DecisionTreeClassifier
from sklearn.pipeline import Pipeline
from chapter_13_utils import performance_evaluation_report

2.	 Load the data, separate the target, and create the stratified train-test split: 

df = pd.read_csv("../Datasets/credit_card_default.csv", 
                 na_values="")

X = df.copy()
y = X.pop("default_payment_next_month")

X_train, X_test, y_train, y_test = train_test_split(
    X, y, 
    test_size=0.2, 
    stratify=y, 
    random_state=42
)

3.	 Prepare lists of numerical/categorical features: 

num_features = X_train.select_dtypes(include="number") \
                      .columns \
                      .to_list()
cat_features = X_train.select_dtypes(include="object") \
                      .columns \
                      .to_list()
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4.	 Define the numerical pipeline: 

num_pipeline = Pipeline(steps=[
    ("imputer", SimpleImputer(strategy="median"))
])

5.	 Define the categorical pipeline: 

cat_list = [
    list(X_train[col].dropna().unique()) for col in cat_features
]
 
cat_pipeline = Pipeline(steps=[
    ("imputer", SimpleImputer(strategy="most_frequent")),
    ("onehot", OneHotEncoder(categories=cat_list, sparse=False, 
                             handle_unknown="error", 
                             drop="first"))
])

6.	 Define the ColumnTransformer object: 

preprocessor = ColumnTransformer(
    transformers=[
        ("numerical", num_pipeline, num_features),
        ("categorical", cat_pipeline, cat_features)
    ],
    remainder="drop"
)

7.	 Define the full pipeline including the decision tree model: 

dec_tree = DecisionTreeClassifier(random_state=42)

tree_pipeline = Pipeline(steps=[
    ("preprocessor", preprocessor),
    ("classifier", dec_tree)
])

8.	 Fit the pipeline to the data: 

tree_pipeline.fit(X_train, y_train)
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Executing the snippet generates the following preview of the pipeline:

Figure 13.25: Preview of the pipeline

9.	 Evaluate the performance of the entire pipeline: 

LABELS = ["No Default", "Default"]
tree_perf = performance_evaluation_report(tree_pipeline, X_test,
                                          y_test, labels=LABELS,
                                          show_plot=True)

Executing the snippet generates the following plot: 

Figure 13.26: The performance evaluation report of the fitted pipeline

We see that the performance of the model is very similar to what we achieved by carrying out all the 
steps separately. Considering how little has changed, this is exactly what we expected to achieve.
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How it works... 
In Step 1, we imported the required libraries. The list can look a bit daunting, but that is due to the fact 
that we need to combine multiple functions/classes used in the previous recipes. 

In Step 2, we loaded the data from a CSV file, separated the target variable from the features, and 
lastly created a stratified train-test split. Then, we also created two lists containing the names 
of the numerical and categorical features. We did so as we will apply different transforma-
tions depending on the data type of the feature. To select the appropriate columns, we used the  
select_dtypes method. 

In Step 4, we defined the first Pipeline containing the transformations we wanted to apply to numer-
ical features. As a matter of fact, we only wanted to impute the missing values of the features using 
the median value. While creating an instance of the Pipeline class, we provided a list of tuples con-
taining the steps, each of the tuples consisting of the name of the step (for easier identification and 
accessing) and the class we wanted to use. In this case, it was the SimpleImputer class we covered in 
the Identifying and dealing with missing values recipe.

In Step 5, we prepared a similar pipeline for categorical features. This time, however, we chained two 
different operations—the imputer (using the most frequent value) and the one-hot encoder. For the 
encoder, we also specified a list of lists called cat_list, in which we listed all the possible categories. 
We based that information only on X_train. We did so as preparation for the next recipe, in which 
we introduce cross-validation, during which it can happen that some of the random draws will not 
contain all of the available categories.

In Step 6, we defined the ColumnTransformer object. In general, we use a ColumnTransformer when 
we want to apply separate transformations to different groups of columns/features. In our case, we 
have separate pipelines for numerical and categorical features. Again, we passed a list of tuples, where 
each tuple contains a name, one of the pipelines we defined before, and a list of columns to which the 
transformations should be applied. We also specified remainder="drop", to drop any extra columns to 
which no transformations were applied. In this case, the transformations were applied to all features, 
so no columns were dropped. One thing to bear in mind is that ColumnTransformer returns numpy 
arrays instead of pandas DataFrames!

In Step 7, we once again used a Pipeline to chain the preprocessor (the previously defined 
ColumnTransformer object) with the decision tree classifier (for reproducibility’s sake, we set the 
random state to 42). The last two steps involved fitting the entire pipeline to the data and using the 
custom function to evaluate its performance.

 Another useful class available in scikit-learn is FeatureUnion. We can use it when 
we want to transform the same input data in different ways and then use those outputs as 
features. For example, we could be working with text data and want to apply two transfor-
mations: TF-IDF (term frequency-inverse document frequency) vectorization and extract-
ing the text’s length. The outputs of those should be appended to the original DataFrame, 
so we could use them as features for our model.
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There’s more...
Adding custom transformers to a pipeline
In this recipe, we showed how to create the entire pipeline for a data science project. However, there 
are many other transformations we can apply to data as preprocessing steps. Some of them include:

•	 Scaling numerical features: In other words, changing the range of the features due to the fact 
that different features are measured on different scales, as that can introduce bias to the model. 
We should mostly be concerned with feature scaling when dealing with models that calculate 
some kind of distance between features (such as k-Nearest Neighbors) or linear models. Some 
popular scaling options from scikit-learn include StandardScaler and MinMaxScaler.

•	 Discretizing continuous variables: We can transform a continuous variable (such as age) into a 
finite number of bins (for example: <25, 26-50, and >51 years). When we want to create specific 
bins, we can use the pd.cut function, while pd.qcut can be used for splitting based on quantiles.

•	 Transforming/removing outliers: During the EDA, we often see feature values that are extreme 
and can be caused by some kind of error (for example, adding an extra digit to the age) or are 
simply incompatible with the rest (for example, a multimillionaire among a sample of mid-
dle-class citizens). Such outliers can skew the results of the model, and it is good practice to 
somehow deal with them. One solution would be to remove them altogether, but this can have 
an impact on the model’s ability to generalize. We can also bring them closer to regular values.

In this example, we show how to create a custom transformer to detect and modify outliers. We 
apply a simple rule of thumb—we cap the values above/below the average +/- 3 standard deviations. 
We create a dedicated transformer for this task, so we can incorporate the outlier treatment into the 
previously established pipeline: 

1.	 Import the base estimator and transformer classes from sklearn:

from sklearn.base import BaseEstimator, TransformerMixin
import numpy as np

In order for the custom transformer to be compatible with scikit-learn’s pipelines, it must have 
methods such as fit, transform, fit_transform, get_params, and set_params.

 The performance_evaluation_report function was built in such a way that it works 
with any estimator or Pipeline that has the predict and predict_proba methods. Those 
are used to obtain predictions and their corresponding scores/probabilities.

 ML models based on decision trees do not require any scaling.
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We could define all of those manually, but a definitely more appealing approach is to use Py-
thon’s class inheritance to make the process easier. That is why we imported the BaseEstimator 
and TransformerMixin classes from scikit-learn. By inheriting from TransformerMixin, 
we do not need to specify the fit_transform method, while inheriting from BaseEstimator 
automatically provides the get_params and set_params methods.

2.	 Define the OutlierRemover class:

class OutlierRemover(BaseEstimator, TransformerMixin):
    def __init__(self, n_std=3):
        self.n_std = n_std
    
    def fit(self, X, y = None):
        if np.isnan(X).any(axis=None):
            raise ValueError("""Missing values in the array! 
                                Please remove them.""")
 
        mean_vec = np.mean(X, axis=0)
        std_vec = np.std(X, axis=0)
        
        self.upper_band_ = pd.Series(
            mean_vec + self.n_std * std_vec
        )
        self.upper_band_ = (
            self.upper_band_.to_frame().transpose()
        )
        self.lower_band_ = pd.Series(
            mean_vec - self.n_std * std_vec
        )
        self.lower_band_ = (
            self.lower_band_.to_frame().transpose()
        )
        self.n_features_ = len(self.upper_band_.columns)
        
        return self 
    

As a learning experience, it definitely makes sense to dive into the code of at least 
some of the more popular transformers/estimators in scikit-learn. By doing so, 
we can learn a lot about the best practices of object-oriented programming and 
observe (and appreciate) how all of those classes consistently follow the same set 
of guidelines/principles.
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    def transform(self, X, y = None):
        X_copy = pd.DataFrame(X.copy())
        
        upper_band = pd.concat(
            [self.upper_band_] * len(X_copy), 
            ignore_index=True
        )
        lower_band = pd.concat(
            [self.lower_band_] * len(X_copy), 
            ignore_index=True
        )
        
        X_copy[X_copy >= upper_band] = upper_band
        X_copy[X_copy <= lower_band] = lower_band
        
        return X_copy.values

The class can be broken down into the following components:

•	 In the __init__ method, we stored the number of standard deviations that determines 
whether observations will be treated as outliers (the default is 3)

•	 In the fit method, we stored the upper and lower thresholds for being considered an 
outlier, as well as the number of features in general 

•	 In the transform method, we capped all the values exceeding the thresholds deter-
mined in the fit method

One known limitation of this class is that it does not handle missing values. That is why we 
raise a ValueError when there are any missing values. Also, we use the OutlierRemover after 
the imputation in order to avoid that issue. We could, of course, account for the missing values 
in the transformer, however, this would make the code longer and less readable. We leave this 
as an exercise for the reader. Please refer to the definition of SimpleImputer in scikit-learn 
for an example of how to mask missing values while building transformers. 

3.	 Add the OutlierRemover to the numerical pipeline: 

num_pipeline = Pipeline(steps=[
    ("imputer", SimpleImputer(strategy="median")),
    ("outliers", OutlierRemover())
])

Alternatively, we could have used the clip method of a pandas DataFrame 
to cap the extreme values.
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4.	 Execute the rest of the pipeline to compare the results: 

preprocessor = ColumnTransformer(
    transformers=[
        ("numerical", num_pipeline, num_features),
        ("categorical", cat_pipeline, cat_features)
    ],
    remainder="drop"
)

dec_tree = DecisionTreeClassifier(random_state=42)

tree_pipeline = Pipeline(steps=[("preprocessor", preprocessor),
                                ("classifier", dec_tree)])

tree_pipeline.fit(X_train, y_train)

tree_perf = performance_evaluation_report(tree_pipeline, X_test,
                                          y_test, labels=LABELS,
                                          show_plot=True)

Executing the snippet generates the following plot:

Figure 13.27: The performance evaluation report of the fitted pipeline  
(including treating outliers)
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Including the outlier-capping transformation did not result in any significant changes in the perfor-
mance of the entire pipeline.

Accessing the elements of the pipeline
While pipelines make our project easier to reproduce and less prone to data leakage, they come with 
a small disadvantage. Accessing the elements of a pipeline for further inspection or substitution be-
comes a bit more difficult. Let’s illustrate with a few examples. 

We start by displaying the entire pipeline represented as a dictionary by using the following snippet:

tree_pipeline.named_steps

Using that structure (not printed here for brevity), we can access the ML model at the end of the pipe-
line using the name we assigned to it:

tree_pipeline.named_steps["classifier"]

It gets a bit more complicated when we want to dive into the ColumnTransformer. Let’s assume that we 
would like to inspect the upper bands (under the upper_bands_ attribute) of the fitted OutlierRemover. 
To do so, we have to use the following snippet:

(
    tree_pipeline
    .named_steps["preprocessor"]
    .named_transformers_["numerical"]["outliers"]
    .upper_band_
)

First, we followed the same approach as we have employed when accessing the estimator at the end 
of the pipeline. This time, we just used the name of the step containing the ColumnTransformer. Then, 
we used the named_transformers_ attribute to access the deeper levels of the transformer. We selected 
the numerical pipeline and then the outlier treatment step using their corresponding names. Lastly, 
we accessed the upper bands of the custom transformer.

 While accessing the steps of the ColumnTransformer, we could have used the 
transformers_ attribute instead of the named_transformers_. However, then the out-
put would be a list of tuples (the same ones as we have manually provided when defining 
the ColumnTransformer) and we have to access their elements using integer indices. We 
show how to access the upper bands using the transformers_ attribute in the notebook 
available on GitHub.
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Tuning hyperparameters using grid searches and cross-
validation 
In the previous recipes, we have used a decision tree model to try to predict whether a customer will 
default on their loan. As we have seen, the tree became quite massive with a depth of 44 levels, which 
prevented us from plotting it. However, this can also mean that the model is overfitted to the training 
data and will not perform well on unseen data. Maximum depth is actually one of the decision tree’s 
hyperparameters, which we can tune to achieve better performance by finding a balance between 
underfitting and overfitting (bias-variance trade-off).

First, we outline some properties of hyperparameters:

•	 External characteristics of the model
•	 Not estimated based on data
•	 Can be considered the model’s settings
•	 Set before the training phase
•	 Tuning them can result in better performance

We can also consider some properties of parameters: 

•	 Internal characteristics of the model
•	 Estimated based on data, for example, the coefficients of linear regression
•	 Learned during the training phase

While tuning the model’s hyperparameters, we would like to evaluate its performance on data that 
was not used for training. In the Splitting data into training and test sets recipe, we mentioned that we 
can create an additional validation set. The validation set is used explicitly to tune the model’s hy-
perparameters, before the ultimate evaluation using the test set. However, creating the validation set 
comes at a price: data used for training (and possibly testing) is sacrificed, which can be especially 
harmful when dealing with small datasets. 

That is the reason why cross-validation became so popular. It is a technique that allows us to obtain 
reliable estimates of the model’s generalization error. It is easiest to understand how it works with an 
example. When doing k-fold cross-validation, we randomly split the training data into k folds. Then, 
we train the model using k-1 folds and evaluate the performance on the kth fold. We repeat this process 
k times and average the resulting scores. 
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A potential drawback of cross-validation is the computational cost, especially when paired together 
with a grid search for hyperparameter tuning.

Figure 13.28: Scheme of a 5-fold cross-validation procedure 

We already mentioned that grid search is a technique used for tuning hyperparameters. The underlying 
idea is to create a grid of all possible hyperparameter combinations and train the model using each 
one of them. Due to its exhaustive, brute-force search, the approach guarantees to find the optimal 
parameter within the grid. The drawback is that the size of the grid grows exponentially when adding 
more parameters or more considered values. The number of required model fits and predictions 
increases significantly if we additionally use cross-validation!

Let’s illustrate this with an example by assuming that we are training a model with two hyperparame-
ters: a and b. We define a grid that covers the following values of the hyperparameters: {"a": [1, 2, 
3], "b": [5, 6]}. This means that there are 6 unique combinations of hyperparameters in our grid 
and the algorithm will fit the model 6 times. If we also use a 5-fold cross-validation procedure, it will 
result in 30 unique models being fitted in the grid search procedure!

As a potential solution to the problems encountered with grid search, we can also use the random search 
(also called randomized grid search). In this approach, we choose a random set of hyperparameters, 
train the model (also using cross-validation), return the scores, and repeat the entire process until we 
reach a predefined number of iterations or the computational time limit. Random search is preferred 
over grid search when dealing with a very large grid. That is because the former can explore a wider 
hyperparameter space and often find a hyperparameter set that performs very similarly to the optimal 
one (obtained from an exhaustive grid search) in a much shorter time. The only problematic question 
is: how many iterations are sufficient to find a good solution? Unfortunately, there is no simple answer 
to that. Most of the time, it is indicated by the available resources.

Getting ready
For this recipe, we use the decision tree pipeline created in the Organizing the project with pipelines 
recipe, including the outlier treatment from the There’s more... section.
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How to do it...
Execute the following steps to run both grid search and randomized search on the decision tree pipe-
line we have created in the Organizing the project with pipelines recipe:

1.	 Import the libraries:

from sklearn.model_selection import (
    GridSearchCV, cross_val_score, 
    RandomizedSearchCV, cross_validate, 
    StratifiedKFold
)
from sklearn import metrics

2.	 Define a cross-validation scheme: 

k_fold = StratifiedKFold(5, shuffle=True, random_state=42)

3.	 Evaluate the pipeline using cross-validation: 

cross_val_score(tree_pipeline, X_train, y_train, cv=k_fold)

Executing the snippet returns an array containing the estimator’s default score (accuracy) 
values: 

array([0.72333333, 0.72958333, 0.71375, 0.723125, 0.72])

4.	 Add extra metrics to the cross-validation: 

cv_scores = cross_validate(
    tree_pipeline, X_train, y_train, cv=k_fold, 
    scoring=["accuracy", "precision", "recall", 
             "roc_auc"]
)
pd.DataFrame(cv_scores)

Executing the snippet generates the following table:

Figure 13.29: The results of 5-fold cross-validation
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In Figure 13.29, we can see the 4 requested metrics for each of the 5 cross-validation folds. The 
metrics have very similar values in each of the 5 test folds, which suggests that the cross-vali-
dation with stratified split worked as intended.

5.	 Define the parameter grid:

param_grid = {
    "classifier__criterion": ["entropy", "gini"],
    "classifier__max_depth": range(3, 11),
    "classifier__min_samples_leaf": range(2, 11),
    "preprocessor__numerical__outliers__n_std": [3, 4]
}

6.	 Run the exhaustive grid search: 

classifier_gs = GridSearchCV(tree_pipeline, param_grid,
                             scoring="recall", cv=k_fold,
                             n_jobs=-1, verbose=1)

classifier_gs.fit(X_train, y_train)

Below we see how many models will be fitted using the exhaustive search:

Fitting 5 folds for each of 288 candidates, totalling 1440 fits

The best model from the exhaustive grid search is the following:

Best parameters: {'classifier__criterion': 'gini', 'classifier__max_
depth': 10, 'classifier__min_samples_leaf': 7, 'preprocessor__numerical__
outliers__n_std': 4}
Recall (Training set): 0.3858
Recall (Test set): 0.3775

7.	 Evaluate the performance of the tuned pipeline:

LABELS = ["No Default", "Default"]
tree_gs_perf = performance_evaluation_report(
    classifier_gs, X_test, 
    y_test, labels=LABELS, 
    show_plot=True
)
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Executing the snippet generates the following plot:

Figure 13.30: The performance evaluation report of the best pipeline identified by the ex-
haustive grid search

8.	 Run the randomized grid search:

classifier_rs = RandomizedSearchCV(tree_pipeline, param_grid, 
                                   scoring="recall", cv=k_fold, 
                                   n_jobs=-1, verbose=1, 
                                   n_iter=100, random_state=42)
classifier_rs.fit(X_train, y_train)

print(f"Best parameters: {classifier_rs.best_params_}")
print(f"Recall (Training set): {classifier_rs.best_score_:.4f}")
print(f"Recall (Test set): {metrics.recall_score(y_test, classifier_
rs.predict(X_test)):.4f}")

Below we can see that the randomized search will train fewer models than the exhaustive one:

Fitting 5 folds for each of 100 candidates, totalling 500 fits

The best model from the randomized grid search is the following:

Best parameters: {'preprocessor__numerical__outliers__n_std': 3, 
'classifier__min_samples_leaf': 7, 'classifier__max_depth': 10, 
'classifier__criterion': 'gini'}
Recall (Training set): 0.3854
Recall (Test set): 0.3760
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In the randomized search, we looked at 100 random sets of hyperparameters, which correspond to 
~1/3 of all possibilities covered by the exhaustive search. Even though the randomized search did not 
identify the same model as the best one, the performance of both pipelines is very similar on both 
training and test sets.

How it works... 
In Step 2, we defined the 5-fold cross-validation scheme. As there is no inherent order in the data, we 
used shuffling and specified the random state for reproducibility. Stratification ensured that each fold 
received a similar ratio of classes in the target variable. Such a setting is crucial when we are dealing 
with imbalanced classes.

In Step 3, we evaluated the pipeline created in the Organizing the project with pipelines recipe using the 
cross_val_score function. We passed the estimator (the entire pipeline), the training data, and the 
cross-validation scheme as arguments to the function. 

We could have also provided a number to the cv argument (the default is 5)—in the case of a classifi-
cation problem, it would have automatically applied the stratified k-fold cross-validation. However, by 
providing a custom scheme, we also ensured that the random state was defined and that the results 
were reproducible.

In Step 4, we extended the cross-validation by using the cross_validate function. This function is 
more flexible in the way it allows us to use multiple evaluation criteria (we used accuracy, precision, 
recall, and the ROC AUC). Additionally, it records the time spent in both the training and inference 
steps. We printed the results in the form of a pandas DataFrame to make them easier to read. By de-
fault, the output of the function is a dictionary.

In Step 5, we defined the parameter grid to be used for the grid search. An important point to remember 
here is the naming convention when working with Pipeline objects. The keys in the grid dictionary 
are built from the name of the step/model concatenated with the hyperparameter name using a dou-
ble underscore. In this example, we searched a space created on top of three hyperparameters of the 
decision tree classifier:

•	 criterion—the metric used for determining a split, either entropy or Gini importance.
•	 max_depth—the maximum depth of the tree.
•	 min_samples_leaf—the minimum number of observations in a leaf. It prevents the creation 

of trees with very few observations in leaves.

 We can clearly observe another advantage of using pipelines—we are not leaking any infor-
mation while carrying out cross-validation. Without pipelines, we would fit our transform-
ers (for example, StandardScaler) using the training data and then transform training 
and test sets separately. This way, we are not leaking any information from the test set. 
However, we are leaking a bit of information if we carry out cross-validation on such a 
transformed training set. That is because the folds used for validation were transformed 
using all the information from the training set.



Chapter 13 535

Additionally, we experimented with the outlier transformer, by using either three or four standard 
deviations from the mean to indicate whether an observation was an outlier. Please pay attention to 
the construction of the name, which contains the following pieces of information in sequence:

•	 preprocessor—the step of the pipeline.
•	 numerical—which pipeline it was within the ColumnTransformer.
•	 outliers—which step of that inner pipeline we are accessing.
•	 n_std—the name of the hyperparameter we wanted to specify.

We decided to select the best-performing decision tree model based on recall, that is, the percentage 
of all defaults correctly identified by the model. This evaluation metric is definitely useful in cases 
when we are dealing with imbalanced classes, for example, when predicting default or fraud. In real 
life, there is often a different cost of a false negative (predicting no default when the user actually 
defaulted) and a false positive (predicting that a good customer defaults). To predict defaults, we 
decided that we could accept the cost of more false positives, in return for reducing the number of 
false negatives (missed defaults).

In Step 6, we created an instance of the GridSearchCV class. We provided the pipeline and parameter 
grid as inputs. We also specified recall as the scoring metric to be used for selecting the best model 
(different metrics could have been used here). We also used our custom CV scheme and indicated that 
we wanted to use all available cores to speed up the computations (n_jobs=-1).

We then used the fit method of the GridSearchCV object, just like any other estimator in scikit-learn. 
From the output, we saw that the grid contained 288 different combinations of hyperparameters. For 
each set, we fitted five models (5-fold cross-validation).

 When only tuning the estimator (model), we should directly use the names of the hyper-
parameters.

 When working with the grid search classes of scikit-learn, we can actually provide 
multiple evaluation metrics (specified as a list or dictionary). That is definitely helpful 
when we want to carry out a more in-depth analysis of the fitted models. We need to re-
member that when using multiple metrics, we must use the refit argument to specify 
which metric should be used to determine the best combination of hyperparameters.

 GridSearchCV's default setting of refit=True means that after the entire grid search is 
completed, the best model has automatically been fitted once again, this time to the entire 
training set. We can then directly use that estimator (identified by the indicated criterion) 
for inference by running classifier_gs.predict(X_test).
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In Step 8, we created an instance of a randomized grid search. It is similar to a regular grid search, 
except that the maximum number of iterations was specified. In this case, we tested 100 different 
combinations from the parameter grid, which was roughly 1/3 of all available combinations.

There is one additional difference between the exhaustive and randomized approaches to grid search. 
In the latter one, we can provide a hyperparameter distribution instead of a list of distinct values. For 
example, let’s assume that we have a hyperparameter that describes a ratio between 0 and 1. In the 
exhaustive grid search, we might specify the following values: [0, 0.2, 0.4, 0.6, 0.8, 1]. In the 
randomized search, we can use the same values and the search will randomly (uniformly) pick up 
a value from the list (there is no guarantee that all of them will be tested). Alternatively, we might 
prefer to draw a random value from the uniform distribution (restricted to values between 0 and 1) 
as the hyperparameter’s value.

There’s more...
Faster search with successive halving
For each candidate set of hyperparameters, both exhaustive and random approaches to grid search 
train a model/pipeline using all available data. scikit-learn offers an additional approach to grid 
search called halving grid search, which is based on the idea of successive halving.

The algorithm works as follows. First, all candidate models are fitted using a small subset of the 
available training data (in general, using a limited amount of resources). Then, the best-performing 
candidates are picked out. In the next step, those best-performing candidates are retrained with a 
bigger subset of the training data. Those steps are repeated until the best set of hyperparameters is 
identified. In this approach, after each iteration, the number of available hyperparameter candidates 
is decreasing while the size of the training data (resources) is increasing.

The speed of the algorithm depends on two hyperparameters:

•	 min_resources—the minimum amount of resources that any candidate is allowed to use. In 
practice, this corresponds to the number of resources used in the first iteration.

 Under the hood, scikit-learn applies the following logic. If all hyperparameters are 
presented as lists, the algorithm performs sampling without replacement. If at least one hy-
perparameter is represented by a distribution, sampling with replacement is used instead.

The default behavior of the halving grid search is to use training data as a resource. How-
ever, we could just as well use another hyperparameter of the estimator we are trying to 
tune, as long as it accepts positive integer values. For example, we could use the number 
of trees (n_estimators) of the Random Forest model as the resource to be increased 
with each iteration.
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•	 factor—the halving parameter. The reciprocal of the factor (1 / factor) determines the pro-
portion of candidates to be selected as the best models in each iteration. The product of the 
factor and the previous iteration’s number of resources determines the current iteration’s 
number of resources.

While picking those two might seem a bit daunting with all the calculations to be carried out manually 
to make use of most of the resources, scikit-learn makes it easier for us with the "exhaust" value of 
the min_resources argument. Then, the algorithm will determine for us the number of the resources 
in the first iteration such that the last iteration uses as many resources as possible. In the default case, 
it will result in the last iteration using as much of the training data as possible.

Below we demonstrate how to use the HalvingGridSearchCV. First, we need to explicitly allow using 
the experimental feature before importing it (in the future, this step might be redundant when the 
feature is no longer experimental):

from sklearn.experimental import enable_halving_search_cv
from sklearn.model_selection import HalvingGridSearchCV

Then, we find the best hyperparameters for our decision tree pipeline:

classifier_sh = HalvingGridSearchCV(tree_pipeline, param_grid,
                                    scoring="recall", cv=k_fold,
                                    n_jobs=-1, verbose=1,
                                    min_resources="exhaust", factor=3)

classifier_sh.fit(X_train, y_train)

We can see how the successive halving algorithm works in practice in the following log:

n_iterations: 6
n_required_iterations: 6
n_possible_iterations: 6
min_resources_: 98
max_resources_: 24000
aggressive_elimination: False
factor: 3
----------
iter: 0
n_candidates: 288

Similar to the randomized grid search, scikit-learn also offers a randomized halving 
grid search. The only difference compared to what we have already described is that at the 
very beginning, a fixed number of candidates is sampled at random from the parameter 
space. This number is determined by the n_candidates argument.
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n_resources: 98
Fitting 5 folds for each of 288 candidates, totalling 1440 fits
----------
iter: 1
n_candidates: 96
n_resources: 294
Fitting 5 folds for each of 96 candidates, totalling 480 fits
----------
iter: 2
n_candidates: 32
n_resources: 882
Fitting 5 folds for each of 32 candidates, totalling 160 fits
----------
iter: 3
n_candidates: 11
n_resources: 2646
Fitting 5 folds for each of 11 candidates, totalling 55 fits
----------
iter: 4
n_candidates: 4
n_resources: 7938
Fitting 5 folds for each of 4 candidates, totalling 20 fits
----------
iter: 5
n_candidates: 2
n_resources: 23814
Fitting 5 folds for each of 2 candidates, totalling 10 fits

As we have mentioned before, max_resources is determined by the size of the training data, that is, 
24,000 observations. Then, the algorithm figured out that it needs to start with a sample size of 98 
in order to end the procedure with as big a sample as possible. In this case, in the last iteration, the 
algorithm used 23,814 training observations.

In the following table, we can see which values of the hyperparameters were picked by each of the 3 
approaches to grid search we have covered in this recipe. They are very similar, and so is their per-
formance on the test set (the exact comparison is available in the notebook on GitHub). We leave the 
comparison of fitting times of all those algorithms as an exercise for the reader.

Figure 13.31: The best values of hyperparameters identified by exhaustive, randomized, and halving 
grid search
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Grid search with multiple classifiers
We can also create a grid containing multiple classifiers. This way, we can see which model performs 
best with our data. To do so, we first import another classifier from scikit-learn. We will use the 
famous Random Forest: 

from sklearn.ensemble import RandomForestClassifier

We selected this model as it is an ensemble of decision trees and thus also does not require any further 
preprocessing of the data. For example, if we wanted to use a simple logistic regression classifier (with 
regularization), we should also scale the features (standardize/normalize) by adding an additional 
step to the numerical part of the preprocessing pipeline. We cover the Random Forest model in more 
detail in the next chapter.

Again, we need to define the parameter grid. This time, it is a list containing multiple dictionaries—one 
dictionary per classifier. The hyperparameters for the decision tree are the same as before, and we chose 
the simplest hyperparameters of the Random Forest, as those do not require additional explanations.

It is worth mentioning that if we want to tune some other hyperparameters in the 
pipeline, we need to specify them in each of the dictionaries in the list. That is why  
preprocessor__numerical__outliers__n_std is included twice in the following snippet:

param_grid = [
    {"classifier": [RandomForestClassifier(random_state=42)],
     "classifier__n_estimators": np.linspace(100, 500, 10, dtype=int),
     "classifier__max_depth": range(3, 11),
     "preprocessor__numerical__outliers__n_std": [3, 4]},
    {"classifier": [DecisionTreeClassifier(random_state=42)],
     "classifier__criterion": ["entropy", "gini"],
     "classifier__max_depth": range(3, 11),
     "classifier__min_samples_leaf": range(2, 11),
     "preprocessor__numerical__outliers__n_std": [3, 4]}
]

The rest of the process is exactly the same as before:

classifier_gs_2 = GridSearchCV(tree_pipeline, param_grid, 
                               scoring="recall", cv=k_fold, 
                               n_jobs=-1, verbose=1)
 
classifier_gs_2.fit(X_train, y_train)
 
print(f"Best parameters: {classifier_gs_2.best_params_}") 
print(f"Recall (Training set): {classifier_gs_2.best_score_:.4f}") 
print(f"Recall (Test set): {metrics.recall_score(y_test, classifier_gs_2.
predict(X_test)):.4f}")
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Running the snippet generates the following output:

Best parameters: {'classifier': DecisionTreeClassifier(max_depth=10, 
min_samples_leaf=7, random_state=42), 'classifier__criterion': 'gini', 
'classifier__max_depth': 10, 'classifier__min_samples_leaf': 7, 'preprocessor__
numerical__outliers__n_std': 4}
Recall (Training set): 0.3858
Recall (Test set): 0.3775

Turns out that the tuned decision tree managed to outperform an ensemble of trees. As we will see 
in the next chapter, we can easily change the outcome with a bit more tuning of the Random Forest 
classifier. After all, we have only tuned two of the many hyperparameters available.

We can use the following snippet to extract and print all the considered hyperparameter/classifier 
combinations, starting with the best one:

pd.DataFrame(classifier_gs_2.cv_results_).sort_values("rank_test_score")

See also
An additional resource on the randomized search procedure is available here: 

•	 Bergstra, J. & Bengio, Y. (2012). “Random search for hyper-parameter optimization.” Jour-
nal of Machine Learning Research, 13(Feb), 281-305. http://www.jmlr.org/papers/volume13/
bergstra12a/bergstra12a.pdf.

Summary
In this chapter, we have covered the basics required to approach any machine learning project, not 
just limited to the financial domain. We did the following:

•	 Imported the data and optimized its memory usage
•	 Thoroughly explored the data (distributions of features, missing values, and class imbalance), 

which should already provide some ideas about potential feature engineering
•	 Identified the missing values in our dataset and imputed them
•	 Learned how to encode categorical variables so that they are correctly interpreted by machine 

learning models
•	 Fitted a decision tree classifier using the most popular and mature ML library—scikit-learn

•	 Learned how to organize our entire codebase using pipelines
•	 Learned how to tune the hyperparameters of the model to squeeze out some extra performance 

and find a balance between underfitting and overfitting

It is crucial to understand those steps and their significance, as they can be applied to any data science 
project, not only binary classification. The steps would be virtually the same for a regression problem, 
for example, predicting the price of a house. We would use slightly different estimators (though most 
of them work for both classification and regression) and evaluate the performance using different 
metrics (MSE, RMSE, MAE, MAPE, and so on). But the principles stay the same.

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
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If you are interested in putting the knowledge from this chapter into practice, we can recommend the 
following sources for finding data for your next project:

•	 Google Datasets: https://datasetsearch.research.google.com/
•	 Kaggle: https://www.kaggle.com/datasets
•	 UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/index.php

In the next chapter, we cover a selection of techniques that might be helpful in further improving the 
initial model. We will cover, among others, more complex classifiers, Bayesian hyperparameter tuning, 
dealing with class imbalance, exploring feature importance and selection, and more.

Join us on Discord!
To join the Discord community for this book – where you can share feedback, ask questions to the 
author, and learn about new releases – follow the QR code below:

https://packt.link/ips2H

https://datasetsearch.research.google.com/
https://www.kaggle.com/datasets
https://archive.ics.uci.edu/ml/index.php
https://packt.link/ips2H




14
Advanced Concepts for Machine 
Learning Projects

In the previous chapter, we introduced a possible workflow for solving a real-life problem using 
machine learning. We went over the entire project, starting with cleaning the data, through training 
and tuning a model, and then lastly evaluating its performance. However, this is rarely the end of the 
project. In that project, we used a simple decision tree classifier, which most of the time can be used 
as a benchmark or minimum viable product (MVP). In this chapter, we cover a few more advanced 
concepts that can help with improving the value of the project and make it easier to adopt by the 
business stakeholders.

After creating the MVP, which serves as a baseline, we would like to improve the model’s performance. 
While attempting to improve the model, we should also try to balance underfitting and overfitting. 
There are a few ways to do so, some of which include:

•	 Gathering more data (observations)
•	 Adding more features—either by gathering additional data (for example, by using external data 

sources) or through feature engineering using currently available information
•	 Using more complex models
•	 Selecting only the relevant features
•	 Tuning the hyperparameters

There is a common stereotype that data scientists spend 80% of their time on a project gathering and 
cleaning data while only 20% remains for the actual modeling. In line with the stereotype, adding 
more data might greatly improve a model’s performance, especially when dealing with imbalanced 
classes in a classification problem. But finding additional data (be it observations or features) is not 
always possible, or might simply be too complicated. Then, the other solution may be to use more 
complex models or to tune the hyperparameters to squeeze out some extra performance.
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We start the chapter by presenting how to use more advanced classifiers, which are also based on 
decision trees. Some of them (XGBoost and LightGBM) are frequently used for winning machine learn-
ing competitions (such as those found on Kaggle). Additionally, we introduce the concept of stacking 
multiple machine learning models to further improve prediction performance.

Another common real-life problem concerns dealing with imbalanced data, that is, when one class 
(such as default or fraud) is rarely observed in practice. This makes it especially difficult to train a 
model to accurately capture the minority class observations. We introduce a few common approaches 
to handling class imbalance and compare their performance on a credit card fraud dataset, in which 
the minority class corresponds to 0.17% of all the observations.

Then, we also expand on hyperparameter tuning, which was explained in the previous chapter. Pre-
viously, we used either an exhaustive grid search or a randomized search, both of which are carried 
out in an uninformed manner. This means that there is no underlying logic in selecting the next set 
of hyperparameters to investigate. This time, we introduce Bayesian optimization, in which past at-
tempts are used to select the next set of values to explore. This approach can significantly speed up 
the tuning phase of our projects.

In many industries (and finance especially) it is crucial to understand the logic behind a model’s pre-
diction. For example, a bank might be legally obliged to provide actual reasons for declining a credit 
request, or it can try to limit its losses by predicting which customers are likely to default on a loan. To 
get a better understanding of the models, we explore various approaches to determining feature im-
portance and model explainability. The latter is especially relevant when dealing with complex models, 
which are often considered to be black boxes, that is, unexplainable. We can additionally use those 
insights to select only the most relevant features, which can further improve the model’s performance.

In this chapter, we present the following recipes:

•	 Exploring ensemble classifiers
•	 Exploring alternative approaches to encoding categorical features
•	 Investigating different approaches to handling imbalanced data
•	 Leveraging the wisdom of the crowds with stacked ensembles
•	 Bayesian hyperparameter optimization
•	 Investigating feature importance
•	 Exploring feature selection techniques
•	 Exploring explainable AI techniques

Exploring ensemble classifiers
In Chapter 13, Applied Machine Learning: Identifying Credit Default, we learned how to build an entire 
machine learning pipeline, which contained both preprocessing steps (imputing missing values, encod-
ing categorical features, and so on) and a machine learning model. Our task was to predict customer 
default, that is, their inability to repay their debts. We used a decision tree model as the classifier.
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Decision trees are considered simple models and one of their drawbacks is overfitting to the training 
data. They belong to the group of high-variance models, which means that a small change to the 
training data can greatly impact the tree’s structure and its predictions. To overcome those issues, they 
can be used as building blocks for more complex models. Ensemble models combine predictions of 
multiple base models (for example, decision trees) in order to improve the final model’s generalizabil-
ity and robustness. This way, they transform the initial high-variance estimators into a low-variance 
aggregate estimator.

On a high level, we could divide the ensemble models into two groups:

•	 Averaging methods—several models are estimated independently and then their predictions 
are averaged. The underlying principle is that the combined model is better than a single one 
as its variance is reduced. Examples: Random Forest and Extremely Randomized Trees.

•	 Boosting methods—in this approach, multiple base estimators are built sequentially and each 
one tries to reduce the bias of the combined estimator. Again, the underlying assumption is that 
a combination of multiple weak models produces a powerful ensemble. Examples: Gradient 
Boosted Trees, XGBoost, LightGBM, and CatBoost.

In this recipe, we use a selection of ensemble models to try to improve the performance of the decision 
tree approach. As those models are based on decision trees, the same principles about feature scaling 
(no explicit need for it) apply and we can reuse most of the previously created pipeline.

Getting ready
In this recipe, we build on top of what we already established in the Organizing the project with pipelines 
recipe from the previous chapter, in which we created the default prediction pipeline, from loading 
the data to training the classifier.

In this recipe, we use the variant without the outlier removal procedure. We will be replacing the last 
step (the classifier) with more complex ensemble models. Additionally, we first fit the decision tree 
pipeline to the data to obtain the baseline model for performance comparison. For your convenience, 
we reiterate all the required steps in the notebook accompanying this chapter.

How to do it...
Execute the following steps to train the ensemble classifiers:

1.	 Import the libraries:

from sklearn.ensemble import (RandomForestClassifier,
                              GradientBoostingClassifier)
from xgboost.sklearn import XGBClassifier
from lightgbm import LGBMClassifier
from chapter_14_utils import performance_evaluation_report

In this chapter, we also use the already familiar performance_evaluation_report helper 
function.
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2.	 Define and fit the Random Forest pipeline:

rf = RandomForestClassifier(random_state=42)
rf_pipeline = Pipeline(
    steps=[("preprocessor", preprocessor),
           ("classifier", rf)]
)

rf_pipeline.fit(X_train, y_train)
rf_perf = performance_evaluation_report(rf_pipeline, X_test,
                                        y_test, labels=LABELS,
                                        show_plot=True,
                                        show_pr_curve=True)

The performance of the Random Forest can be summarized by the following plot:

Figure 14.1: Performance evaluation of the Random Forest model

3.	 Define and fit the Gradient Boosted Trees pipeline:

gbt = GradientBoostingClassifier(random_state=42)
gbt_pipeline = Pipeline(
    steps=[("preprocessor", preprocessor),
           ("classifier", gbt)]
)

gbt_pipeline.fit(X_train, y_train)
gbt_perf = performance_evaluation_report(gbt_pipeline, X_test,
                                         y_test, labels=LABELS,
                                         show_plot=True,
                                         show_pr_curve=True)
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The performance of the Gradient Boosted Trees can be summarized by the following plot:

Figure 14.2: Performance evaluation of the Gradient Boosted Trees model

4.	 Define and fit an XGBoost pipeline:

xgb = XGBClassifier(random_state=42)
xgb_pipeline = Pipeline(
    steps=[("preprocessor", preprocessor),
           ("classifier", xgb)]
)

xgb_pipeline.fit(X_train, y_train)
xgb_perf = performance_evaluation_report(xgb_pipeline, X_test,
                                         y_test, labels=LABELS,
                                         show_plot=True,
                                         show_pr_curve=True)

The performance of the XGBoost can be summarized by the following plot:

Figure 14.3: Performance evaluation of the XGBoost model
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5.	 Define and fit the LightGBM pipeline:

lgbm = LGBMClassifier(random_state=42)
lgbm_pipeline = Pipeline(
    steps=[("preprocessor", preprocessor),
           ("classifier", lgbm)]
)

lgbm_pipeline.fit(X_train, y_train)
lgbm_perf = performance_evaluation_report(lgbm_pipeline, X_test,
                                          y_test, labels=LABELS,
                                          show_plot=True,
                                          show_pr_curve=True)

The performance of the LightGBM can be summarized by the following plot:

Figure 14.4: Performance evaluation of the LightGBM model

From the reports, it looks like the shapes of the ROC curve and the Precision-Recall curve were very 
similar for all the considered models. We will look at the scores of the models in the There’s more… 
section.

How it works...
This recipe shows how easy it is to use different classifiers, as long as we want to use their default 
settings. In the first step, we imported the classifiers from their respective libraries.

In Steps 2 to 5, we created a separate pipeline for each classifier. We combined the already established 
ColumnTransformer preprocessor with the corresponding classifier. Then, we fitted each pipeline to 
the training data and presented the performance evaluation report.

 In this recipe, we have used the scikit-learn API of libraries such as XGBoost or 
LightGBM. However, we could also use their native approaches to training models, which 
might require some additional effort, such as converting a pandas DataFrame to formats 
acceptable by those libraries. Using the native approaches can yield some extra benefits, 
for example, in terms of accessing certain hyperparameters or configuration settings.
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Thanks to modern Python libraries, fitting all the considered classifiers was extremely easy. We only 
had to replace the model’s class in the pipeline with another one. Keeping in mind how simple it is 
to experiment with different models, it is good to have at least a basic understanding of what those 
models do and what their strengths and weaknesses are. That is why below we provide a brief intro-
duction to the considered algorithms.

Random Forest
Random Forest is an example of an ensemble of models, that is, it trains multiple models (decision 
trees) and uses them to create predictions. In the case of a regression problem, it takes the average 
value of all the underlying trees. For classification it uses a majority vote. Random Forest offers more 
than just training many trees and aggregating their results.

First, it uses bagging (bootstrap aggregation)—each tree is trained on a subset of all available ob-
servations. Those are drawn randomly with replacement, so—unless specified otherwise—the total 
number of observations used for each tree is the same as the total in the training set. Even though a 
single tree might have high variance with respect to a particular dataset (due to bagging), the forest 
will have lower variance overall, without increasing the bias. Additionally, this approach can also re-
duce the effect of any outliers in the data as they will not be used in all of the trees. To add even more 
randomness, each tree only considers a subset of all features to create each split. We can control that 
number using a dedicated hyperparameter.

Thanks to those two mechanisms, the trees in the forest are not correlated with each other and are 
built independently. The latter allows for the parallelization of the tree-building step.

Random Forest provides a good trade-off between complexity and performance. Often—without any 
tuning—we can get much better performance than when using simpler algorithms, such as decision 
trees or linear/logistic regression. That is because Random Forest has a lower bias (due to its flexibility) 
and reduced variance (due to aggregating predictions of multiple models).

Gradient Boosted Trees
Gradient Boosted Trees is another type of ensemble model. The idea is to train many weak learners 
(shallow decision trees/stumps with high bias) and combine them to obtain a strong learner. In con-
trast to Random Forest, Gradient Boosted Trees is a sequential/iterative algorithm. In boosting, we 
start with the first weak learner, and each of the subsequent learners tries to learn from the mistakes 
of the previous ones. They do this by being fitted to the residuals (error terms) of the previous models.

 Some of the considered ensemble models offer additional functionalities in the fit meth-
od (as opposed to setting hyperparameters when instantiating the class). For example, 
when using the fit method of LightGBM we can pass in the names/indices of categori-
cal features. By doing so, the algorithm knows how to treat those features using its own 
approach, without the need for explicit one-hot encoding. Similarly, we could use a wide 
variety of available callbacks.
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The reason why we create an ensemble of weak learners instead of strong learners is that in the case 
of the strong learners, the errors/mislabeled data points would most likely be the noise in the data, 
so the overall model would end up overfitting to the training data.

The term gradient comes from the fact that the trees are built using gradient descent, which is an 
optimization algorithm. Without going into too much detail, it uses the gradient (slope) of the loss 
function to minimize the overall loss and achieve the best performance. The loss function represents 
the difference between the actual and predicted values. In practice, to perform the gradient descent 
procedure in Gradient Boosted Trees, we add such a tree to the model that follows the gradient. In 
other words, such a tree reduces the value of the loss function.

We can describe the boosting procedure using the following steps:

1.	 The process starts with a simple estimate (mean, median, and so on).
2.	 A tree is fitted to the error of that prediction.
3.	 The prediction is adjusted using the tree’s prediction. However, it is not fully adjusted, but only 

to a certain degree (based on a learning rate hyperparameter).
4.	 Another tree is fitted to the error of the updated prediction and the prediction is further ad-

justed as in the previous step.
5.	 The algorithm continues to iteratively reduce the error until a specified number of rounds (or 

another stopping criterion) is reached.
6.	 The final prediction is the sum of the initial prediction and all the adjustments (predictions 

of the error weighted with the learning rate).

XGBoost
Extreme Gradient Boosting (XGBoost) is an implementation of Gradient Boosted Trees that incorpo-
rates a series of improvements resulting in superior performance (both in terms of evaluation metrics 
and estimation time). Since being published, the algorithm has been successfully used to win many 
data science competitions. 

In this recipe, we only present a high-level overview of its distinguishable features. For a more detailed 
overview, please refer to the original paper (Chen et al. (2016)) or documentation. The key concepts 
of XGBoost are the following:

•	 XGBoost combines a pre-sorted algorithm with a histogram-based algorithm to calculate the 
best splits. This tackles a significant inefficiency of Gradient Boosted Trees, namely that the 
algorithm considers the potential loss for all possible splits when creating a new branch (es-
pecially important when considering hundreds or thousands of features).

 In contrast to Random Forest, Gradient Boosted Trees use all available data to train the 
models. However, we can use random sampling without replacement for each tree by using 
the subsample hyperparameter. Then, we are dealing with Stochastic Gradient Boosted 
Trees. Additionally, similarly to Random Forest, we can make the trees consider only a 
subset of features when making a split.
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•	 The algorithm uses the Newton-Raphson method to approximate the loss function, which 
allows us to use a wider variety of loss functions.

•	 XGBoost has an extra randomization parameter to reduce the correlation between the trees.
•	 XGBoost combines Lasso (L1) and Ridge (L2) regularization to prevent overfitting.
•	 It offers a more efficient approach to tree pruning.
•	 XGBoost has a feature called monotonic constraints—the algorithm sacrifices some accuracy 

and increases the training time to improve model interpretability.
•	 XGBoost does not take categorical features as input—we must use some kind of encoding for 

them.
•	 The algorithm can handle missing values in the data.

LightGBM
LightGBM, released by Microsoft, is another competition-winning implementation of Gradient Boosted 
Trees. Thanks to some improvements, LightGBM results in a similar performance to XGBoost, but 
with faster training time. Key features include the following:

•	 The difference in speed is caused by the approach to growing trees. In general, algorithms (such 
as XGBoost) use a level-wise (horizontal) approach. LightBGM, on the other hand, grows trees 
leaf-wise (vertically). The leaf-wise algorithm chooses the leaf with the maximum reduction in 
the loss function. Such algorithms tend to converge faster than the level-wise ones; however, 
they tend to be more prone to overfitting (especially with small datasets).

•	 LightGBM employs a technique called Gradient-based One-Side Sampling (GOSS) to filter out 
the data instances used for finding the best split value. Intuitively, observations with small 
gradients are already well trained, while those with large gradients have more room for im-
provement. GOSS retains instances with large gradients and additionally samples randomly 
from observations with small gradients.

•	 LightGBM uses Exclusive Feature Bundling (EFB) to take advantage of sparse datasets and 
bundles together features that are mutually exclusive (they never have values of zero at the 
same time). This leads to a reduction in the complexity (dimensionality) of the feature space.

•	 The algorithm uses histogram-based methods to bucket continuous feature values into discrete 
bins in order to speed up training and reduce memory usage.

There’s more...
In this recipe, we showed how to use selected ensemble classifiers to try to improve our ability to 
predict customers’ likelihood of defaulting their loan. To make things even more interesting, these 
models have dozens of hyperparameters to tune, which can significantly increase (or decrease) their 
performance.

 The leaf-wise algorithm was later added to XGBoost as well.  To make use of it, we need 
to set grow_policy to "lossguide".
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For brevity, we will not discuss the hyperparameter tuning of these models here. We refer you to the 
accompanying Jupyter notebook for a short introduction to tuning these models using a randomized 
grid search approach. Here, we only present a table containing the results. We can compare the per-
formance of the models with default settings versus their tuned counterparts.

Figure 14.5: Table comparing the performance of various classifiers

For the models calibrated using the randomized search (including the _rs suffix in the name), we 
used 100 random sets of hyperparameters. As the considered problem deals with imbalanced data 
(the minority class is ~20%), we look at recall for performance evaluation. 

It seems that the basic decision tree achieved the best recall score on the test set. This came at the 
cost of much lower precision than the more advanced models. That is why the F1 score (a harmonic 
mean of precision and recall) is the lowest for the decision tree. We can see that the default LightGBM 
model achieved the best F1 score on the test set.

The results by no means indicate that the more complex models are inferior—they might simply require 
more tuning or a different set of hyperparameters. For example, the ensemble models enforced the 
maximum depth of the tree (determined by the corresponding hyperparameter), while the decision 
tree had no such limit and it reached the depth of 37. The more advanced the model, the more effort 
it requires to “get it right.”

There are many different ensemble classifiers available to experiment with. Some of the possibilities 
include:

•	 AdaBoost—the first boosting algorithm.
•	 Extremely Randomized Trees—this algorithm offers improved randomness as compared to 

Random Forests. Similar to Random Forest, a random subset of features is considered when 
making a split. However, instead of looking for the most discriminative thresholds, the thresh-
olds are drawn at random for each feature. Then, the best of these random thresholds is picked 
as the splitting rule. Such an approach usually allows us to reduce the variance of the model, 
while slightly increasing its bias.

•	 CatBoost—another boosting algorithm (developed by Yandex) that puts a high emphasis on han-
dling categorical features and achieving high performance with little hyperparameter tuning.

•	 NGBoost—at a very high level, this model introduces uncertainty estimation into the gradient 
boosting by using the natural gradient.
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•	 Histogram-based gradient boosting—a variant of gradient boosted trees available in scikit-
learn and inspired by LightGBM. They accelerate the training procedure by discretizing (bin-
ning) the continuous features into a predetermined number of unique values.

See also
We present additional resources on the algorithms mentioned in this recipe:

•	 Breiman, L. 2001. “Random Forests.” Machine Learning 45(1): 5–32.
•	 Chen, T., & Guestrin, C. 2016, August. Xgboost: A scalable tree boosting system. In Proceedings 

of the 22nd international conference on knowledge discovery and data mining, 785–794. ACM.
•	 Duan, T., Anand, A., Ding, D. Y., Thai, K. K., Basu, S., Ng, A., & Schuler, A. 2020, November. 

Ngboost: Natural gradient boosting for probabilistic prediction. In International Conference on 
Machine Learning, 2690–2700. PMLR.

•	 Freund, Y., & Schapire, R. E. 1996, July. Experiments with a new boosting algorithm. In Inter-
national Conference on Machine Learning, 96: 148–156.

•	 Freund, Y., & Schapire, R. E. 1997. “A decision-theoretic generalization of on-line learning and 
an application to boosting.” Journal of Computer and System Sciences, 55(1), 119–139.

•	 Friedman, J. H. 2001. “Greedy function approximation: a gradient boosting machine.” Annals 
of Statistics, 29(5): 1189–1232.

•	 Friedman, J. H. 2002. “Stochastic gradient boosting.” Computational Statistics & Data Analysis, 
38(4): 367–378.

•	 Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. 2017. “Lightgbm: A highly 
efficient gradient boosting decision tree.” In Neural Information Processing Systems.

•	 Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. 2018. CatBoost: unbiased 
boosting with categorical features. In Neural information Processing Systems.

Exploring alternative approaches to encoding 
categorical features
In the previous chapter, we introduced one-hot encoding as the standard solution for encoding cate-
gorical features so that they can be understood by ML algorithms. To recap, one-hot encoding converts 
categorical variables into several binary columns, where a value of 1 indicates that the row belongs 
to a certain category, and a value of 0 indicates otherwise.

 While some algorithms have introduced certain features first, the other popular imple-
mentations of gradient boosted trees often receive those as well. An example might be the 
histogram-based approach to discretizing continuous features. While it was introduced in 
LightGBM, it was later added to XGBoost as well. The same goes for the leaf-wise approach 
to growing trees.
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The biggest drawback of that approach is the quickly expanding dimensionality of our dataset. For 
example, if we had a feature indicating from which of the US states the observation originates, one-hot 
encoding of this feature would result in the creation of 50 (or 49 if we dropped the reference value) 
new columns.

Some other issues with one-hot encoding include:

•	 Creating that many Boolean features introduces sparsity to the dataset, which decision trees 
don’t handle well.

•	 Decision trees’ splitting algorithm treats all the one-hot-encoded dummies as independent 
features. It means that when a tree makes a split using one of the dummy variables, the gain 
in purity per split is small. Thus, the tree is not likely to select one of the dummy variables 
closer to its root.

•	 Connected to the previous point, continuous features will have higher feature importance 
than one-hot encoding dummy variables, as a single dummy can only bring a fraction of its 
respective categorical feature’s total information into the model.

•	 Gradient boosted trees don’t handle high-cardinality features well, as the base learners have 
limited depth.

When dealing with a continuous variable, the splitting algorithm induces an ordering of the samples 
and can split that ordered list anywhere. A binary feature can only be split in one place, while a cat-
egorical feature with k unique categories can be split in (2𝑘𝑘)/2 − 1  ways.

We illustrate the advantage of the continuous features with an example. Assume that the splitting 
algorithm splits a continuous feature at a value of 10 into two groups: “below 10” and “10 and above.” 
In the next split, it can further split any of the two groups, for example, “below 6” and “6 and above.” 
That is not possible for a binary feature, as we can at most use it to split the groups once into “yes” 
or “no” groups. Figure 14.6 illustrates potential differences between decision trees created with or 
without one-hot encoding.

Figure 14.6: Example of a dense decision tree without one-hot encoding (on the left) and a sparse 
decision tree with one-hot encoding (on the right)
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Those drawbacks, among others, led to the development of a few alternative approaches to encoding 
categorical features. In this recipe, we introduce three of them.

The first one is called target encoding (also known as mean encoding). In this approach, the following 
transformation is applied to a categorical feature, depending on the type of the target variable:

•	 Categorical target—a feature is replaced with a blend of the posterior probability of the target 
given a certain category and the prior probability of the target over all the training data.

•	 Continuous target—a feature is replaced with a blend of the expected value of the target given 
a certain category and the expected value of the target over all the training data.

In practice, the simplest scenario assumes that each category in the feature is replaced with the mean 
of the target value for that category. Figure 14.7 illustrates this.

Figure 14.7: Example of target encoding 

Target encoding results in a more direct representation of the relationship between the categorical 
feature and the target, while not adding any new columns. That is why it is a very popular technique 
in data science competitions.

Unfortunately, it is not a silver bullet to encoding categorical features and comes with its disadvantages:

•	 The approach is very prone to overfitting. That is why it assumes blending/smoothing of the 
category mean with the global mean. We should be especially cautious when some categories 
are very infrequent.

•	 Connected to the risk of overfitting, we are effectively leaking target information into the 
features.

In practice, target encoding works quite well when we have high-cardinality features and are using 
some form of gradient boosted trees as our machine learning model.
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The second approach we cover is called Leave One Out Encoding (LOOE) and it is very similar to target 
encoding. It attempts to reduce overfitting by excluding the current row’s target value when calculating 
the average of the category. This way, the algorithm avoids row-wise leakage. Another consequence 
of this approach is that the same category in multiple observations can have a different value in the 
encoded column. Figure 14.8 illustrates this.

Figure 14.8: Example of Leave One Out Encoding 

With LOOE, the ML model is exposed not only to the same value for each encoded category (as in 
target encoding) but to a range of values. That is why it should learn to generalize better.

The last of the considered encodings is called Weight of Evidence (WoE) encoding. This one is espe-
cially interesting, as it originates from the credit scoring world, where it was employed to improve the 
probability of default estimates. It was used to separate customers who defaulted on the loan from 
those who paid it back successfully.

The weight of evidence indicates the predictive power of an independent variable in relation to the 
target. In other words, it measures how much the evidence supports or undermines a hypothesis. It 
is defined as the natural logarithm of the odds ratio:𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑙𝑙𝑙𝑙 (% 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎% 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ) 

 Weight of Evidence evolved from logistic regression. Another useful metric with the same 
origin as WoE is called Information Value (IV). It measures how much information a fea-
ture provides for the prediction. To put it a bit differently, it helps rank variables based 
on their importance in the model.
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Figure 14.9 illustrates the calculations.

Figure 14.9: Example of the WoE encoding 

The fact that the encoding originates from credit scoring does not mean that it is only usable in such 
cases. We can generalize the good customers as the non-event or negative class, and the bad customers 
as the event or positive class. One of the restrictions of the approach is that, in contrast to the previous 
two, it can only be used with a binary categorical target.

In this recipe, we show how to use those three encoders in practice using the default dataset we have 
already used before.

Getting ready
In this recipe, we use the pipeline we have used in the previous recipes. As the estimator, we use the 
Random Forest classifier. For your convenience, we reiterate all the required steps in the Jupyter 
notebook accompanying this chapter.

The Random Forest pipeline with one-hot encoded categorical features resulted in the test set’s recall 
of 0.3542. We will try to improve upon this score with alternative approaches to encoding categorical 
features.

How to do it…
Execute the following steps to fit the ML pipelines with various categorical encoders:

1.	 Import the libraries:

import category_encoders as ce
from sklearn.base import clone

 WoE was also historically used to encode categorical features as well. For example, in a 
credit scoring dataset, we could bin a continuous feature like age into discrete bins: 20–29, 
30–39, 40–49, and so on, and only then calculate the WoE for those categories. The number 
of bins chosen for the encoding depends on the use case and the feature’s distribution.
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2.	 Fit the pipeline using target encoding:

pipeline_target_enc = clone(rf_pipeline)
pipeline_target_enc.set_params(
    preprocessor__categorical__cat_encoding=ce.TargetEncoder()
)

pipeline_target_enc.fit(X_train, y_train)
target_enc_perf = performance_evaluation_report(
    pipeline_target_enc, X_test,
    y_test, labels=LABELS,
    show_plot=True,
    show_pr_curve=True
)
print(f"Recall: {target_enc_perf['recall']:.4f}")

Executing the snippet generates the following plot:

Figure 14.10: Performance evaluation of the pipeline with target encoding 

The recall obtained using this pipeline is equal to 0.3677. This improves the score by slightly 
over 1 p.p.

3.	 Fit the pipeline using Leave One Out Encoding:

pipeline_loo_enc = clone(rf_pipeline)
pipeline_loo_enc.set_params(
   preprocessor__categorical__cat_encoding=ce.LeaveOneOutEncoder()
)

pipeline_loo_enc.fit(X_train, y_train)
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loo_enc_perf = performance_evaluation_report(
    pipeline_loo_enc, X_test,
    y_test, labels=LABELS,
    show_plot=True,
    show_pr_curve=True
)
print(f"Recall: {loo_enc_perf['recall']:.4f}")

Executing the snippet generates the following plot:

Figure 14.11: Performance evaluation of the pipeline with Leave One Out Encoding 

The recall obtained using this pipeline is equal to 0.1462, which is significantly worse than 
the target encoding approach.

4.	 Fit the pipeline using Weight of Evidence encoding:

pipeline_woe_enc = clone(rf_pipeline)
pipeline_woe_enc.set_params(
    preprocessor__categorical__cat_encoding=ce.WOEEncoder()
)

pipeline_woe_enc.fit(X_train, y_train)
woe_enc_perf = performance_evaluation_report(
    pipeline_woe_enc, X_test,
    y_test, labels=LABELS,
    show_plot=True,
    show_pr_curve=True
)
print(f"Recall: {woe_enc_perf['recall']:.4f}")
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Executing the snippet generates the following plot:

Figure 14.12: Performance evaluation of the pipeline with Weight of Evidence  
encoding 

The recall obtained using this pipeline is equal to 0.3708, which is a small improvement over target 
encoding.

How it works…
First, we executed the code from the Getting ready section, that is, instantiated the pipeline with one-
hot encoding and Random Forest as the classifier.

After importing the libraries, we cloned the entire pipeline using the clone function. Then, 
we used the set_params method to replace the OneHotEncoder with TargetEncoder. Just as 
when tuning the hyperparameters of a pipeline, we had to use the same double underscore 
notation to access the particular element of the pipeline. The encoder was located under  
preprocessor__categorical__cat_encoding. Then, we fitted the pipeline using the fit method and 
printed the evaluation scores using the performance_evaluation_report helper function.

As we have mentioned in the introduction, target encoding is prone to overfitting. That is why instead of 
simply replacing the categories with the corresponding averages, the algorithm is capable of blending 
the posterior probabilities with the prior probability (global average). We can control the blending 
with two hyperparameters: min_samples_leaf and smoothing.

In Steps 3 and 4, we followed the very same steps as with target encoding, but we replaced the encoder 
with LeaveOneOutEncoder and WOEEncoder respectively.

Just as with target encoding, the other encoders use the target to build the encoding and are thus 
prone to overfitting. Fortunately, they also offer certain measures to prevent that from happening.

In the case of LOOE, we can add normally distributed noise to the encodings in order to reduce 
overfitting. We can control the standard deviation of the Normal distribution used for generating the 
noise with the sigma argument. It is worth mentioning that the random noise is added to the training 
data only, and the transformation of the test set is not impacted. Just by adding the random noise to 
our pipeline (sigma = 0.05), we can improve the measured recall score from 0.1462 to around 0.35 
(depending on random number generation).
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Similarly, we can add random noise for the WoE encoder. We control the noise with the randomized 
(Boolean flag) and sigma (standard deviation of the Normal distribution) arguments. Additionally, there 
is the regularization argument, which prevents errors caused by division by zero.

There’s more…
Encoding categorical variables is a very broad area of active research, and every now and then new 
approaches to it are being published. Before changing the topic, we would also like to discuss a couple 
of related concepts.

Handling data leakage with k-fold target encoding
We have already mentioned a few approaches to reducing the overfitting problem of the target encoder. 
A very popular solution among Kaggle practitioners is to use k-fold target encoding. The idea is similar 
to k-fold cross-validation and it allows us to use all the training data we have. We start by dividing 
the data into k folds—they can be stratified or purely random, depending on the use case. Then, we 
replace the observations present in the l-th fold with the target’s mean calculated using all the folds 
except the l-th one. This way, we are not leaking the target from the observations within the same fold.

Even more encoders
The category_encoders library offers almost 20 different encoding transformers for categorical fea-
tures. Aside from the ones we have already mentioned, you might want to explore the following:

•	 Ordinal encoding—very similar to label encoding; however, it ensures that the encoding retains 
the ordinal nature of the feature. For example, the hierarchy of bad < neutral < good is preserved.

•	 Count encoder (frequency encoder)—each category of a feature is mapped to the number of 
observations belonging to that category.

•	 Sum encoder—compares the mean of the target for a given category to the overall average of 
the target.

•	 Helmert encoder—compares the mean of a certain category to the mean of the subsequent 
levels. If we had categories [A, B, C], the algorithm would first compare A to B and C and then 
B to C alone. This kind of encoding is useful in situations in which the levels of the categorical 
feature are ordered, for example, from lowest to highest.

•	 Backward difference encoder—similar to the Helmert encoder, with the difference that it 
compares the mean of the current category to the mean of the previous one.

•	 M-estimate encoder—a simplified version of the target encoder, which has only one tunable 
parameter (responsible for the strength of regularization).

 An inquisitive reader might have noticed that the LOOE is a special case of k-fold target 
encoding, in which k is equal to the number of observations in the training dataset.
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•	 James-Stein encoder—a variant of target encoding that aims to improve the estimation of the 
category’s mean by shrinking it toward the central/global mean. Its single hyperparameter 
is responsible for the strength of shrinkage (this means the same as regularization in this 
context)—the bigger the value of the hyperparameter, the bigger the weight of the global 
mean (which might lead to underfitting). On the other hand, reducing the hyperparameter’s 
value might lead to overfitting. The best value is usually determined by cross-validation. The 
approach’s biggest disadvantage is that the James-Stein estimator is defined only for Normal 
distribution, which is not the case for any binary classification problem.

•	 Binary encoder—converts a category into binary digits and each one is provided a separate 
column. Thanks to this encoding, we generate far fewer columns than with OHE. To illustrate, 
for a categorical feature with 100 unique categories, binary encoding just needs to create 7 
features, instead of 100 in the case of OHE.

•	 Hashing encoder—uses a hashing function (often used in data encryption) to transform the 
categorical features. The outcome is similar to OHE, but with fewer features (we can control 
that with the encoder’s hyperparameters). It has two significant disadvantages. First, the encod-
ing results in information loss, as the algorithm transforms the full set of available categories 
into fewer features. The second issue is called collision and it occurs as we are transforming a 
potentially high number of categories into a smaller set of features. Then, different categories 
could be represented by the same hash values.

•	 Catboost encoder—an improved variant of Leave One Out Encoding, which aims to overcome 
the issues of target leakage.

See also
•	 Micci-Barreca, D. 2001. “A preprocessing scheme for high-cardinality categorical attributes 

in classification and prediction problems.” ACM SIGKDD Explorations Newsletter 3(1): 27–32.

Investigating different approaches to handling 
imbalanced data
A very common issue when working with classification tasks is that of class imbalance, that is, when 
one class is highly outnumbered in comparison to the second one (this can also be extended to multi-
class cases). In general, we are dealing with imbalance when the ratio of the two classes is not 1:1. In 
some cases, a delicate imbalance is not that big of a problem, but there are industries/problems in 
which we can encounter ratios of 100:1, 1000:1, or even more extreme.

Dealing with highly imbalanced classes can result in the poor performance of ML models. That is 
because most of the algorithms implicitly assume balanced distribution of classes. They do so by 
aiming to minimize the overall prediction error, to which the minority class by definition contributes 
very little. As a result, classifiers trained on imbalanced data are biased toward the majority class.
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One of the potential solutions to dealing with class imbalance is to resample the data. On a high level, 
we can either undersample the majority class, oversample the minority class, or combine the two 
approaches. However, that is just the general idea. There are many ways to approach resampling and 
we describe a few selected methods below.

Figure 14.13: Undersampling of the majority class and oversampling of the minority class

The simplest approach to undersampling is called random undersampling. In this approach, we un-
dersample the majority class, that is, draw random samples (by default, without replacement) from 
the majority class until the classes are balanced (with a ratio of 1:1 or any other desired ratio). The 
biggest issue of this method is the information loss caused by discarding vast amounts of data, often 
the majority of the entire training dataset. As a result, a model trained on undersampled data can 
achieve lower performance. Another possible implication is a biased classifier with an increased num-
ber of false positives, as the distribution of the training and test sets is not the same after resampling.

Analogically, the simplest approach to oversampling is called random oversampling. In this approach, 
we sample multiple times with replacement from the minority class, until the desired ratio is achieved. 
This method often outperforms random undersampling, as there is no information loss caused by 
discarding training data. However, random oversampling comes with the danger of overfitting, caused 
by replicating observations from the minority class.

Synthetic Minority Oversampling Technique (SMOTE) is a more advanced oversampling algorithm 
that creates new, synthetic observations from the minority class. This way, it overcomes the previously 
mentioned problem of overfitting.

To create the synthetic samples, the algorithm picks an observation from the minority class, identifies 
its k-nearest neighbors (using the k-NN algorithm), and then creates new observations on the lines 
connecting (interpolating) the observation to the nearest neighbors. Then, the process is repeated for 
other minority observations until the classes are balanced.

 When working with resampling techniques, we only resample the training data! The test 
data stays intact.
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Aside from reducing the problem of overfitting, SMOTE causes no loss of information, as it does not 
discard observations belonging to the majority class. However, SMOTE can accidentally introduce 
more noise to the data and cause overlapping of classes. This is because while creating the synthetic 
observations, it does not take into account the observations from the majority class. Additionally, the 
algorithm is not very effective for high-dimensional data (due to the curse of dimensionality). Lastly, 
the basic variant of SMOTE is only suitable for numerical features. However, SMOTE’s extensions 
(mentioned in the There’s more… section) can handle categorical features as well.

The last of the considered oversampling techniques is called Adaptive Synthetic Sampling (ADASYN) 
and it is a modification of the SMOTE algorithm. In ADASYN, the number of observations to be created 
for a certain minority point is determined by a density distribution (instead of a uniform weight for 
all points, as in SMOTE). This is how ADASYN’s adaptive nature enables it to generate more synthetic 
samples for observations that come from hard-to-learn neighborhoods. For example, a minority 
observation is hard to learn if there are many majority class observations with very similar feature 
values. It is easier to imagine that scenario in the case of only two features. Then, in a scatterplot, such 
a minority class observation might simply be surrounded by many of the majority class observations.

There are two additional elements worth mentioning:

•	 In contrast to SMOTE, the synthetic points are not limited to linear interpolation between two 
points. They can also lie on a plane created by three or more observations.

•	 After creating the synthetic observations, the algorithm adds a small random noise to increase 
the variance, thus making the samples more realistic.

Potential drawbacks of ADASYN include:

•	 A possible decrease in precision (more false positives) of the algorithm caused by its adaptabil-
ity. This means that the algorithm might generate more observations in the areas with high 
numbers of observations from the majority class. Such synthetic data might be very similar to 
those majority class observations, potentially resulting in more false positives.

•	 Struggling with sparsely distributed minority observations. Then, a neighborhood can contain 
only one or very few points.

Resampling is not the only potential solution to the problem of imbalanced classes. Another one is 
based on adjusting the class weights, thus putting more weight on the minority class. In the background, 
the class weights are incorporated into calculating the loss function. In practice, this means that mis-
classifying observations from the minority class increases the value of the loss function significantly 
more than in the case of misclassifying the observations from the majority class.

In this recipe, we show an example of a credit card fraud problem, where the fraudulent class is 
observed in only 0.17% of the entire sample. In such cases, gathering more data (especially of the 
fraudulent class) might simply not be feasible, and we need to resort to other techniques that can help 
us in improving the models’ performance.
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Getting ready
Before proceeding to the coding part, we provide a brief description of the dataset selected for this 
exercise. You can download the dataset from Kaggle (link in the See also section).

The dataset contains information about credit card transactions made over a period of two days in 
September 2013 by European cardholders. Due to confidentiality, almost all features (28 out of 30) 
were anonymized by using Principal Components Analysis (PCA). The only two features with clear 
interpretation are Time (seconds elapsed between each transaction and the first one in the dataset) 
and Amount (the transaction’s amount).

Lastly, the dataset is highly imbalanced  and the positive class is observed in 0.173% of all transactions. 
To be precise, out of 284,807 transactions, 492 were identified as fraudulent.

How to do it...
Execute the following steps to investigate different approaches to handling class imbalance:

1.	 Import the libraries:

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import RobustScaler

from imblearn.over_sampling import RandomOverSampler, SMOTE, ADASYN
from imblearn.under_sampling import RandomUnderSampler
from imblearn.ensemble import BalancedRandomForestClassifier

from chapter_14_utils import performance_evaluation_report

2.	 Load and prepare data:

RANDOM_STATE = 42

df = pd.read_csv("../Datasets/credit_card_fraud.csv")
X = df.copy().drop(columns=["Time"])
y = X.pop("Class")

X_train, X_test, y_train, y_test = train_test_split(
    X, y,
    test_size=0.2,
    stratify=y,
    random_state=RANDOM_STATE
)
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Using y.value_counts(normalize=True) we can confirm that the positive class is observed 
in 0.173% of the observations.

3.	 Scale the features using RobustScaler:

robust_scaler = RobustScaler()
X_train = robust_scaler.fit_transform(X_train)
X_test = robust_scaler.transform(X_test)

4.	 Train the baseline model:

rf = RandomForestClassifier(
    random_state=RANDOM_STATE, n_jobs=-1
)
rf.fit(X_train, y_train)

5.	 Undersample the training data and train a Random Forest classifier:

rus = RandomUnderSampler(random_state=RANDOM_STATE)
X_rus, y_rus = rus.fit_resample(X_train, y_train)

rf.fit(X_rus, y_rus)
rf_rus_perf = performance_evaluation_report(rf, X_test, y_test)

After random undersampling, the ratio of the classes is as follows: {0: 394, 1: 394}.

6.	 Oversample the training data and train a Random Forest classifier:

ros = RandomOverSampler(random_state=RANDOM_STATE)
X_ros, y_ros = ros.fit_resample(X_train, y_train)

rf.fit(X_ros, y_ros)
rf_ros_perf = performance_evaluation_report(rf, X_test, y_test)

After random oversampling, the ratio of the classes is as follows: {0: 227451, 1: 227451}.

7.	 Oversample the training data using SMOTE:

smote = SMOTE(random_state=RANDOM_STATE)
X_smote, y_smote = smote.fit_resample(X_train, y_train)

rf.fit(X_smote, y_smote)
rf_smote_perf = peformance_evaluation_report(
    rf, X_test, y_test, 
)

After oversampling with SMOTE, the ratio of the classes is as follows:  
{0: 227451, 1: 227451}.
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8.	 Oversample the training data using ADASYN:

adasyn = ADASYN(random_state=RANDOM_STATE)
X_adasyn, y_adasyn = adasyn.fit_resample(X_train, y_train)

rf.fit(X_adasyn, y_adasyn)
rf_adasyn_perf = performance_evaluation_report(
    rf, X_test, y_test, 
)

After oversampling with ADASYN, the ratio of the classes is as follows:  
{0: 227451, 1: 227449}.

9.	 Use sample weights in the Random Forest classifier:

rf_cw = RandomForestClassifier(random_state=RANDOM_STATE,
                               class_weight="balanced",
                               n_jobs=-1)
rf_cw.fit(X_train, y_train)

rf_cw_perf = performance_evaluation_report(
    rf_cw, X_test, y_test, 
)

10.	 Train the BalancedRandomForestClassifier:

balanced_rf = BalancedRandomForestClassifier(
    random_state=RANDOM_STATE
)

balanced_rf.fit(X_train, y_train)
balanced_rf_perf = performance_evaluation_report(
    balanced_rf, X_test, y_test,
)

11.	 Train the BalancedRandomForestClassifier with balanced classes:

balanced_rf_cw = BalancedRandomForestClassifier(
    random_state=RANDOM_STATE,
    class_weight="balanced",
    n_jobs=-1
)

balanced_rf_cw.fit(X_train, y_train)
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balanced_rf_cw_perf = performance_evaluation_report(
    balanced_rf_cw, X_test, y_test,
)

12.	 Combine the results in a DataFrame:

performance_results = {
    "random_forest": rf_perf,
    "undersampled rf": rf_rus_perf,
    "oversampled_rf": rf_ros_perf,
    "smote": rf_smote_perf,
    "adasyn": rf_adasyn_perf,
    "random_forest_cw": rf_cw_perf,
    "balanced_random_forest": balanced_rf_perf,
    "balanced_random_forest_cw": balanced_rf_cw_perf,
}                       
pd.DataFrame(performance_results).round(4).T

Executing the snippet prints the following table:

Figure 14.14: Performance evaluation metrics of the various approaches to dealing with 
imbalanced data

In Figure 14.14 we can see the performance evaluation of various approaches we have tried in this 
recipe. As we are dealing with a highly imbalanced problem (the positive class accounts for 0.17% of 
all the observations), we can clearly observe the case of the accuracy paradox. Many models have an 
accuracy of ≈99.9%, but they still fail to detect fraudulent cases, which are the most important ones.

Taking that into consideration, we compare the performance of the models using metrics that account 
for that. While looking at precision, the best performing approach is Random Forest with class weights. 
When considering recall as the most important metric, the best performing approach is either under-
sampling followed by a Random Forest model or a Balanced Random Forest model. In terms of the 
F1 score, the best approach seems to be the vanilla Random Forest model.

 The accuracy paradox refers to a case in which inspecting accuracy as the evaluation 
metric creates the impression of having a very good classifier (a score of 90%, or even 
99.9%), while in reality it simply reflects the distribution of the classes.
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It is also important to mention that no hyperparameter tuning was performed, which could potentially 
improve the performance of all of the approaches.

How it works...
After importing the libraries, we loaded the credit card fraud dataset from a CSV file. In the same 
step, we additionally dropped the Time feature, separated the target from the features using the pop 
method, and created an 80–20 stratified train-test split. It is crucial to remember to use stratification 
when dealing with imbalanced classes.

In this recipe, we only focused on working with imbalanced data. That is why we did not cover any 
EDA, feature engineering, and so on. As all the features were numerical, we did not have to carry out 
any special encoding. 

The only preprocessing step we did was to scale all the features using RobustScaler. While Random 
Forest does not require explicit feature scaling, some of the rebalancing approaches use k-NN under 
the hood. And for such distance-based algorithms, the scale does matter. We fitted the scaler using 
only the training data and then transformed both the training and test sets.

In Step 4, we fitted a vanilla Random Forest model, which we used as a benchmark for the more com-
plex approaches.

In Step 5, we used the RandomUnderSampler class from the imblearn library to randomly undersam-
ple the majority class in order to match the size of the minority sample. Conveniently, classes from 
imblearn follow scikit-learn's API style. That is why we had to first define the class with the ar-
guments (we only set the random_state). Then, we applied the fit_resample method to obtain the 
undersampled data. We reused the Random Forest object to train the model on the undersampled 
data and stored the results for later comparison.

Step 6 is analogical to Step 5, with the only difference being the use of the RandomOverSampler to ran-
domly oversample the minority class in order to match the size of the majority class.

In Step 7 and Step 8, we applied the SMOTE and ADASYN variants of oversampling. As the imblearn 
library makes it very easy to apply different sampling methods, we will not go deeper into the de-
scription of the process.

In Step 9, instead of resampling the training data, we used the class_weight hyperparameter of the 
RandomForestClassifier to account for the class imbalance. By passing “balanced" , the algorithm 
automatically assigns weights inversely proportional to class frequencies in the training data.

 In all the mentioned resampling methods, we can actually specify the desired ratio be-
tween classes by passing a float to the sampling_strategy argument. The number rep-
resents the desired ratio of the number of observations in the minority class over the 
number of observations in the majority class.
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The imblearn library also features some modified versions of popular classifiers. In Steps 10 and 11, 
we used a modified Random Forest classifier, that is, Balanced Random Forest. The difference is 
that in Balanced Random Forest the algorithm randomly undersamples each bootstrapped sample 
to balance the classes. In practical terms, its API is virtually the same as in the vanilla scikit-learn 
implementation (including the tunable hyperparameters).

In the last step, we combined all the results into a single DataFrame and displayed the results.

There’s more...
In this recipe, we presented only some of the available resampling methods. Below, we list a few more 
possibilities.

Undersampling:

•	 NearMiss—the name refers to a collection of undersampling approaches that are essentially 
heuristic rules based on the Nearest Neighbors algorithm. They base the selection of the ob-
servations from the majority class to keep on the distance between the observations from the 
majority and minority classes. The rest is removed in order to balance the classes. For example, 
the NearMiss-1 method selects observations from the majority class that have the smallest 
average distance to the three closest observations from the minority class.

•	 Edited Nearest Neighbors—this approach removes any majority class observation whose class 
is different from the class of at least two of its three nearest neighbors. The underlying idea is 
to remove the instances from the majority class that are near the boundary of classes.

•	 Tomek links—in this undersampling heuristic we first identify all the pairs of observations 
that are nearest to each other (they are the nearest neighbors) but belong to different classes. 
Such pairs are called Tomek links. Then, from those pairs, we remove the observations that 
belong to the majority class. The underlying idea is that by removing those observations from 
the Tomek link we increase the class separation.

Oversampling:

•	 SMOTE-NC (Synthetic Minority Oversampling Technique for Nominal and Continuous)—a 
variant of SMOTE suitable for a dataset containing both numerical and categorical features. 
The vanilla SMOTE can create illogical values for one-hot-encoded features.

•	 Borderline SMOTE—this variant of the SMOTE algorithm will create new, synthetic observa-
tions along the decision boundary between the two classes, as those are more prone to being 
misclassified.

There are different possible approaches to using the class_weight hyperparameter. 
Passing "balanced_subsample" results in a similar weights assignment as in 
"balanced"; however, the weights are computed based on the bootstrap sample for every 

tree. Alternatively, we can pass a dictionary containing the desired weights. One way 
of determining the weights can be by using the compute_class_weight function from  
sklearn.utils.class_weight.
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•	 SVM SMOTE—a variant of SMOTE in which an SVM algorithm is used to indicate which obser-
vations to use for generating new synthetic observations.

•	 K-means SMOTE—in this approach, we first apply k-means clustering to identify clusters with 
a high proportion of minority class observations. Then, the vanilla SMOTE is applied to the 
selected clusters and each of those clusters will have new synthetic observations.

Alternatively, we could combine the undersampling and oversampling approaches. The underlying 
idea is to first use an oversampling method to create duplicate or artificial observations and then use 
an undersampling method to reduce the noise or remove unnecessary observations.

For example, we could first oversample the data with SMOTE and then undersample it using random 
undersampling. imbalanced-learn offers two combined resamplers—SMOTE followed by Tomek 
links or Edited Nearest Neighbours.

In this recipe, we have only covered a small selection of the available approaches. Before changing 
topics, we wanted to mention some general notes on tackling problems with imbalanced classes:

•	 Do not apply under/oversampling on the test set.
•	 For evaluating problems with imbalanced data, use metrics that account for class imbalance, 

such as precision, recall, F1 score, Cohen’s kappa, or the PR-AUC.
•	 Use stratification when creating folds for cross-validation.
•	 Introduce under-/oversampling during cross-validation, not before. Doing so before leads to 

overestimating the model’s performance! 
•	 When creating pipelines with resampling using the imbalanced-learn library, we also need 

to use the imbalanced-learn variants of the pipeline. This is because the resamplers use the 
fit_resample method instead of the fit_transform required by scikit-learn's pipelines.

•	 Consider framing the problem differently. For example, instead of a classification task, we 
could treat it as an anomaly detection problem. Then, we could use different techniques, for 
example, isolation forest.

•	 Experiment with selecting a different probability threshold than the default 50% to potentially 
tune the performance. Instead of rebalancing the dataset, we can use the model trained using 
the imbalanced dataset to plot the false positive and false negative rates as a function of the 
decision threshold. Then, we can choose the threshold that results in the performance that 
best suits our needs.

 We use the decision threshold to determine over which probability or score (a classifier’s 
output) we consider that the given observation belongs to the positive class. By default, 
that is 0.5.
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See also
The dataset we have used in this recipe is available on Kaggle:

•	 https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

Additional resources are available here:

•	 Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. 2002. “SMOTE: synthetic minority 
oversampling technique.” Journal of artificial intelligence research 16: 321–357.

•	 Chawla, N. V. 2009. “Data mining for imbalanced datasets: An overview.” Data mining and 
knowledge discovery handbook: 875–886.

•	 Chen, C., Liaw, A., & Breiman, L. 2004. “Using random forest to learn imbalanced data.” Uni-
versity of California, Berkeley 110: 1–12.

•	 Elor, Y., & Averbuch-Elor, H. 2022. “To SMOTE, or not to SMOTE?.” arXiv preprint arXiv:2201.08528.
•	 Han, H., Wang, W. Y., & Mao, B. H. 2005, August. Borderline-SMOTE: a new over-sampling 

method in imbalanced data sets learning. In International conference on intelligent computing, 
878–887. Springer, Berlin, Heidelberg.

•	 He, H., Bai, Y., Garcia, E. A., & Li, S. 2008, June. ADASYN: Adaptive synthetic sampling approach 
for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE 
world congress on computational intelligence), 1322–1328. IEEE.

•	 Le Borgne, Y.-A., Siblini, W., Lebichot, B., & Bontempi, G. 2022. Reproducible Machine Learning 
for Credit Card Fraud Detection – Practical Handbook.

•	 Liu, F. T., Ting, K. M., & Zhou, Z. H. 2008, December. Isolation forest. In 2008 Eighth Ieee Inter-
national Conference On Data Mining, 413–422. IEEE.

•	 Mani, I., & Zhang, I. 2003, August. kNN approach to unbalanced data distributions: a case 
study involving information extraction. In Proceedings of workshop on learning from imbalanced 
datasets, 126: 1–7. ICML.

•	 Nguyen, H. M., Cooper, E. W., & Kamei, K. 2009, November. Borderline over-sampling for 
imbalanced data classification. In Proceedings: Fifth International Workshop on Computational 
Intelligence & Applications, 2009(1): 24–29. IEEE SMC Hiroshima Chapter.

•	 Pozzolo, A.D.et al. 2015. Calibrating Probability with Undersampling for Unbalanced Classifi-
cation, 2015 IEEE Symposium Series on Computational Intelligence.

•	 Tomek, I. (1976). Two modifications of CNN, IEEE Transactions on Systems Man and Commu-
nications, 6: 769-772.

•	 Wilson, D. L. (1972). “Asymptotic properties of nearest neighbor rules using edited data.” IEEE 
Transactions on Systems, Man, and Cybernetics 3: 408–421.

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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Leveraging the wisdom of the crowds with stacked 
ensembles
Stacking (stacked generalization) refers to a technique of creating ensembles of potentially heteroge-
neous machine learning models. The architecture of a stacking ensemble comprises at least two base 
models (known as level 0 models) and a meta-model (the level 1 model) that combines the predictions 
of the base models. The following figure illustrates an example with two base models.

Figure 14.15: High-level schema of a stacking ensemble with two base learners

The goal of stacking is to combine the capabilities of a range of well-performing models and obtain 
predictions that result in a potentially better performance than any single model in the ensemble. 
That is possible as the stacked ensemble tries to leverage the different strengths of the base models. 
Because of that, the base models should often be complex and diverse. For example, we could use 
linear models, decision trees, various kinds of ensembles, k-nearest neighbors, support vector ma-
chines, neural networks, and so on.

Stacking can be a bit more difficult to understand than the previously covered ensemble methods 
(bagging, boosting, and so on) as there are at least a few variants of stacking when it comes to splitting 
data, handling potential overfitting, and data leakage. In this recipe, we follow the approach used in 
the scikit-learn library.

The procedure used for creating a stacked ensemble can be described in three steps. We assume that 
we already have representative training and test datasets.

Step 1: Train level 0 models

The essence of this step is that each of the level 0 models is trained on the full training dataset and 
then those models are used to generate predictions.

Then, we have a few things to consider for our ensemble. First, we have to pick what kind of predic-
tions we want to use. For a regression problem, this is straightforward as we do not have any choice. 
However, when working with a classification problem we can use the predicted class or the predicted 
probability/score.

Second, we can either use only the predictions (whichever variant we picked before) as the features 
for the level 1 model or combine the original feature set with the predictions from the level 0 models. 
In practice, combining the features tends to work a bit better. Naturally, this heavily depends on the 
use case and the considered dataset.
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Step 2: Train the level 1 model

The level 1 model (or the meta-model) is often quite simple and ideally can provide a smooth inter-
pretation of the predictions made by the level 0 models. That is why linear models are often selected 
for this task.

In this step, the level 1 model is trained using the features from the previous step (either only the 
predictions or combined with the initial set of features) and some cross-validation scheme. The latter 
is used to select the meta-model’s hyperparameters and/or the set of base models to consider for the 
ensemble.

Figure 14.16: Low-level schema of a stacking ensemble with two base learners

In scikit-learn's approach to stacking, we assume that any of the base models could have a tendency 
to overfit, either due to the algorithm itself or due to some combination of its hyperparameters. But 
if that is the case, it should be offset by the other base models not suffering from the same problem. 
That is why cross-validation is applied to tune the meta-model and not the base models as well.

After the best hyperparameters/base learners are selected, the final estimator is trained on the full 
training dataset.

Step 3: Make predictions on unseen data

This step is the easiest one, as we are essentially fitting all the base models to the new observations 
to obtain the predictions, which are then used by the meta-model to create the stacked ensemble’s 
final predictions.

In this recipe, we create a stacked ensemble of models applied to the credit card fraud dataset.

 The term blending often refers to using a simple linear model as the level 1 model. This 
is because the predictions of the level 1 model are then a weighted average (or blending) 
of the predictions made by the level 0 models.
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How to do it...
Execute the following steps to create a stacked ensemble:

1.	 Import the libraries:

import pandas as pd
from sklearn.model_selection import (train_test_split,
                                     StratifiedKFold)
from sklearn.metrics import recall_score
from sklearn.preprocessing import RobustScaler

from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import StackingClassifier

2.	 Load and preprocess data:

RANDOM_STATE = 42

df = pd.read_csv("../Datasets/credit_card_fraud.csv")
X = df.copy().drop(columns=["Time"])
y = X.pop("Class")

X_train, X_test, y_train, y_test = train_test_split(
    X, y,
    test_size=0.2,
    stratify=y,
    random_state=RANDOM_STATE
)

robust_scaler = RobustScaler()
X_train = robust_scaler.fit_transform(X_train)
X_test = robust_scaler.transform(X_test)

3.	 Define a list of base models:

base_models = [
    ("dec_tree", DecisionTreeClassifier()),
    ("log_reg", LogisticRegression()),
    ("svc", SVC()),   
    ("naive_bayes", GaussianNB())
]
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4.	 Train the selected models and calculate the recall using the test set:

for model_tuple in base_models:
    clf = model_tuple[1]
    if "n_jobs" in clf.get_params().keys():
        clf.set_params(n_jobs=-1)
    clf.fit(X_train, y_train)
    recall = recall_score(y_test, clf.predict(X_test))
    print(f"{model_tuple[0]}'s recall score: {recall:.4f}")

Executing the snippet generates the following output:

dec_tree's recall score: 0.7551
log_reg's recall score: 0.6531
svc's recall score: 0.7041
naive_bayes's recall score: 0.8469

Out of the considered models, the Naive Bayes classifier achieved the best recall on the test set.

5.	 Define, fit, and evaluate the stacked ensemble:

cv_scheme = StratifiedKFold(n_splits=5,
                            shuffle=True,
                            random_state=RANDOM_STATE)
meta_model = LogisticRegression(random_state=RANDOM_STATE)

stack_clf = StackingClassifier(
    base_models,
    final_estimator=meta_model,
    cv=cv_scheme,
    n_jobs=-1
)
stack_clf.fit(X_train, y_train)

recall = recall_score(y_test, stack_clf.predict(X_test))
print(f"The stacked ensemble's recall score: {recall:.4f}")

Executing the snippet generates the following output:

The stacked ensemble's recall score: 0.7449

 In the accompanying Jupyter notebook, we specified the random state of all the 
models to which it is applicable. Here, we omitted that part for brevity.
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Our stacked ensemble resulted in a worse score than the best of the individual models. How-
ever, we can try to further improve the ensemble. For example, we can allow the ensemble 
to use the initial features for the meta-model and replace the logistic regression meta-model 
with a Random Forest classifier.

6.	 Improve the stacking ensemble with additional features and a more complex meta-model:

meta_model = RandomForestClassifier(random_state=RANDOM_STATE)
stack_clf = StackingClassifier(
    base_models,
    final_estimator=meta_model,
    cv=cv_scheme,
    passthrough=True,
    n_jobs=-1
)
stack_clf.fit(X_train, y_train)

The second stacked ensemble achieved a recall score of 0.8571, which is better than the best of the 
individual models.

How it works...
In Step  1, we imported the required libraries. Then, we loaded the credit card fraud dataset, separated 
the target from the features, dropped the Time feature, split the data into training and test sets (using 
a stratified split), and finally, scaled the data with RobustScaler. The transformation is not necessary 
for tree-based models, however; we use various classifiers (each with its own set of assumptions about 
the input data) as base models. For simplicity, we did not investigate different properties of the fea-
tures, such as normality. Please refer to the previous recipe for more details on those processing steps.

In Step 3, we defined a list of base learners for the stacked ensemble. We decided to use a few simple 
classifiers, such as a decision tree, a Naive Bayes classifier, a support vector classifier, and logistic 
regression. For brevity, we will not describe the properties of the selected classifiers here.

In Step 4, we iterated over the list of classifiers, fitted each model (with its default settings) to the 
training data, and calculated the recall score using the test set. Additionally, if the estimator had an 
n_jobs parameter, we set it to -1 to use all the available cores for computations. This way, we could 
speed up the model’s training, provided our machine has multiple cores/threads available. The goal of 
this step was to investigate the performance of the individual base models so that we could compare 
them to the stacked ensemble.

 When preparing a list of base learners, we can also provide the entire pipelines instead 
of just the estimators. This can come in handy when only some of the ML models require 
dedicated preprocessing of the features, such as scaling or encoding categorical variables.
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In Step 5, we first defined the meta-model (logistic regression) and the 5-fold stratified cross-val-
idation scheme. Then, we instantiated the StackingClassifier by providing the list of 
the base classifiers, together with the cross-validation scheme and the meta-model. In the  
scikit-learn implementation of stacking, the base learners are fitted using the entire training set. 
Then, in order to avoid overfitting and improve the model’s generalization, the meta-estimator uses 
the selected cross-validation scheme to train the model on the out-samples. To be precise, it uses 
cross_val_predict for this task.

In the last step, we tried to improve the performance of the stacked ensemble by modifying its two 
characteristics. First, we changed the level 1 model from logistic regression to a Random Forest clas-
sifier. Second, we allowed the level 1 model to use the features used by the level 0 base models. To do 
so, we set the passthrough argument to True while instantiating the StackingClassifier.

There’s more...
In order to get a better understanding of stacking, we can take a peek at the output of Step 1, which is 
the data being used to train the level 1 model. To get that data, we can use the transform method of 
a fitted StackedClassifier. Alternatively, we can use the familiar fit_transform method when the 
classifier was not fitted. In our case, we look into the stacked ensemble using both the predictions 
and original data as features:

level_0_names = [f"{model[0]}_pred" for model in base_models]

level_0_df = pd.DataFrame(
    stack_clf.transform(X_train),
    columns=level_0_names + list(X.columns)
)

level_0_df.head()

Executing the snippet generates the following table (abbreviated):

Figure 14.17: Preview of the input for the level 1 model in the stacking ensemble

 A possible shortcoming of this approach is that applying cross-validation only to the me-
ta-learner can result in overfitting of the base learners. Different libraries (mentioned in 
the There’s more… section) employ different approaches to cross-validation with stacked 
ensembles.
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We can see that the first four columns correspond to the predictions made by the base learners. Next 
to those, we can see the rest of the features, that is, those used by the base learners to generate their 
predictions.

It is also worth mentioning that when using the StackingClassifier we can use various outputs of 
the base models as inputs for the level 1 model. For example, we can either use the predicted prob-
abilities/scores or the predicted labels. Using the default settings of the stack_method argument, 
the classifier will try to use the following types of outputs (in that specific order): predict_proba, 
decision_function, and predict.

In this recipe, we presented a simple example of a stacked ensemble. There are multiple ways in which 
we could try to further improve it. Some of the possible extensions include:

•	 Adding more layers to the stacked ensemble
•	 Using more diverse models, such as k-NN, boosted trees, neural networks, and so on
•	 Tuning the hyperparameters of the base classifiers and/or the meta-model

There are also other libraries providing stacking functionalities:

•	 vecstack

•	 mlxtend 

•	 h2o 

These libraries also differ in the way they approach stacking, for example, how they split the data or 
how they handle potential overfitting and data leakage. Please refer to the respective documentation 
for more details.

See also
Additional resources are available here:

•	 Raschka, S. 2018. “MLxtend: Providing machine learning and data science utilities and ex-
tensions to Python’s scientific computing stack.” The Journal of Open Source Software 3(24): 638.

•	 Wolpert, D. H. 1992. “Stacked generalization”. Neural networks 5(2): 241–259.

 If we had used stack_method="predict", we would have seen four columns of zeros and 
ones corresponding to the models’ class predictions (using the default decision threshold 
of 0.5).

 The ensemble module of scikit-learn also contains a VotingClassifier, which can 
aggregate the predictions of multiple classifiers. VotingClassifier uses one of the two 
available voting schemes. The first one is hard, and it is simply the majority vote. The 
soft voting scheme uses the argmax of the sums of the predicted probabilities to predict 
the class label.
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Bayesian hyperparameter optimization
In the Tuning hyperparameters using grid search and cross-validation recipe in the previous chapter, we 
described how to use various flavors of grid search to find the best possible set of hyperparameters 
for our model. In this recipe, we introduce an alternative approach to finding the optimal set of hy-
perparameters, this time based on the Bayesian methodology.

The main motivation for the Bayesian approach is that both grid search and randomized search make 
uninformed choices, either through an exhaustive search over all combinations or through a random 
sample. This way, they spend a lot of time evaluating combinations that result in far from optimal 
performance, thus basically wasting time. That is why the Bayesian approach makes informed choices 
of the next set of hyperparameters to evaluate, this way reducing the time spent on finding the opti-
mal set. One could say that the Bayesian methods try to limit the time spent evaluating the objective 
function by spending more time on selecting the hyperparameters to investigate, which in the end is 
computationally cheaper.

A formalization of the Bayesian approach is Sequential Model-Based Optimization (SMBO). On a very 
high level, SMBO uses a surrogate model together with an acquisition function to iteratively (hence 

“sequential”) select the most promising hyperparameters in the search space in order to approximate 
the actual objective function.

In the context of Bayesian HPO, the true objective function is often the cross-validation error of a 
trained machine learning model. It can be computationally very expensive and can take hours (or even 
days) to calculate. That is why in SMBO we create a surrogate model, which is a probability model of 
the objective function built using its past evaluations. It maps the input values (hyperparameters) to 
a probability of a score on the true objective function. Hence, we can think of it as an approximation 
of the true objective function. In the approach we follow (the one used by the hyperopt library), the 
surrogate model is created using the Tree-Structured Parzen Estimator (TPE). Other possibilities 
include Gaussian processes or Random Forest regression.

In each iteration, we first fit the surrogate model to all observations of the target function we made so 
far. Then, we apply the acquisition function (such as Expected Improvement) to determine the next 
set of hyperparameters based on their expected utility. Intuitively, this approach uses the history of 
past evaluations to make the best possible selection for the next iteration. Values close to the ones 
that performed well in the past are more likely to improve the overall performance than those that 
historically performed poorly. The acquisition function also defines a balance between the exploration 
of new areas in the hyperparameter space and the exploitation of the areas that are already known 
to provide favorable results.
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The simplified steps of Bayesian optimization are:

1.	 Create the surrogate model of the true objective function.
2.	 Find a set of hyperparameters that performs best on the surrogate.
3.	 Use that set to evaluate the true objective function.
4.	 Update the surrogate, using the results from evaluating the true objective.
5.	 Repeat Steps 2–4, until reaching the stop criterion (the specified maximum number of iterations 

or amount of time).

From these steps, we see that the longer the algorithm runs, the closer the surrogate function ap-
proximates the true objective function. That is because with each iteration it is updated based on the 
evaluation of the true objective function, and thus with each run it is a bit “less wrong.”

As we have already mentioned, the biggest advantage of Bayesian HPO is that it decreases the time 
spent searching for the optimal set of parameters. That is especially significant when the number of 
parameters is high and evaluating the true objective is computationally expensive. However, it also 
comes with a few possible shortcomings:

•	 Some steps of the SMBO procedure cannot be executed in parallel, as the algorithm selects 
the set of hyperparameters sequentially based on past results.

•	 Choosing a proper distribution/scale for the hyperparameters can be tricky.
•	 Exploration versus exploitation bias—when the algorithm finds a local optimum, it might 

concentrate on hyperparameter values around it, instead of exploring potential new values 
located far away in the search space. Randomized search is not troubled by this issue, as it 
does not concentrate on any values.

•	 The values of hyperparameters are selected independently. For example, in Gradient Boosted 
Trees, it is recommended to jointly consider the learning rate and the number of estimators, 
in order to avoid overfitting and reduce computation time. TPE would not be able to discover 
this relationship. In cases where we know about such a relation, we can partially overcome 
this problem by using different choices to define the search space.

In this recipe, we use the Bayesian hyperparameter optimization to tune a LightGBM model. We chose 
this model as it provides a very good balance between performance and training time. We will be using 
the already familiar credit card fraud dataset, which is a highly imbalanced dataset.

 In this brief introduction, we presented a high-level overview of the methodology. However, 
there is much more ground to cover in terms of surrogate models, acquisition functions, 
and so on. That is why we refer to a list of papers in the See also section for a more in-
depth explanation.
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How to do it...
Execute the following steps to run Bayesian hyperparameter optimization of a LightGBM model:

1.	 Load the libraries:

import pandas as pd
import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.model_selection import (cross_val_score,
                                     StratifiedKFold)
from lightgbm import LGBMClassifier

from hyperopt import hp, fmin, tpe, STATUS_OK, Trials, space_eval
from hyperopt.pyll import scope
from hyperopt.pyll.stochastic import sample

from chapter_14_utils import performance_evaluation_report

2.	 Define parameters for later use:

N_FOLDS = 5
MAX_EVALS = 200
RANDOM_STATE = 42
EVAL_METRIC = "recall"

3.	 Load and prepare the data:

df = pd.read_csv("../Datasets/credit_card_fraud.csv")

X = df.copy().drop(columns=["Time"])
y = X.pop("Class")

X_train, X_test, y_train, y_test = train_test_split(
    X, y,
    test_size=0.2,
    stratify=y,
    random_state=RANDOM_STATE
)
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4.	 Train the benchmark LightGBM model with the default hyperparameters:

clf = LGBMClassifier(random_state=RANDOM_STATE)
clf.fit(X_train, y_train)

benchmark_perf = performance_evaluation_report(
    clf, X_test, y_test, 
    show_plot=True, 
    show_pr_curve=True
)
print(f'Recall: {benchmark_perf["recall"]:.4f}')

Executing the snippet generates the following plot:

Figure 14.18: Performance evaluation of the benchmark LightGBM model

Additionally, we learned that the benchmark’s recall score on the test set is equal to 0.4286.

5.	 Define the objective function:

def objective(params, n_folds=N_FOLDS, 
              random_state=RANDOM_STATE, 
              metric=EVAL_METRIC):
    
    model = LGBMClassifier(**params, random_state=random_state)
    k_fold = StratifiedKFold(n_folds, shuffle=True,
                             random_state=random_state)

    scores = cross_val_score(model, X_train, y_train,
                             cv=k_fold, scoring=metric)
    loss = -1 * scores.mean()
    
    return {"loss": loss, "params": params, "status": STATUS_OK}
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6.	 Define the search space:

search_space = {
    "n_estimators": hp.choice("n_estimators", [50, 100, 250, 500]),
    "boosting_type": hp.choice(
        "boosting_type", ["gbdt", "dart", "goss"]
    ),
    "is_unbalance": hp.choice("is_unbalance", [True, False]),
    "max_depth": scope.int(hp.uniform("max_depth", 3, 20)),
    "num_leaves": scope.int(hp.quniform("num_leaves", 5, 100, 1)),
    "min_child_samples": scope.int(
        hp.quniform("min_child_samples", 20, 500, 5)
    ),
    "colsample_bytree": hp.uniform("colsample_bytree", 0.3, 1.0),
    "learning_rate": hp.loguniform(
        "learning_rate", np.log(0.01), np.log(0.5)
    ),
    "reg_alpha": hp.uniform("reg_alpha", 0.0, 1.0),
    "reg_lambda": hp.uniform("reg_lambda", 0.0, 1.0),
}

We can generate a single draw from the sample space using the sample function:

sample(search_space)

Executing the snippet prints the following dictionary:

{'boosting_type': 'gbdt',
 'colsample_bytree': 0.5718346953027432,
 'is_unbalance': False,
 'learning_rate': 0.44862566076557925,
 'max_depth': 3,
 'min_child_samples': 75,
 'n_estimators': 250,
 'num_leaves': 96,
 'reg_alpha': 0.31830737977056545,
 'reg_lambda': 0.637449220342909}
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7.	 Find the best hyperparameters using Bayesian HPO:

trials = Trials()
best_set = fmin(fn=objective,
                space=search_space,
                algo=tpe.suggest,
                max_evals=MAX_EVALS,
                trials=trials,
                rstate=np.random.default_rng(RANDOM_STATE))

8.	 Inspect the best set of hyperparameters:

space_eval(search_space , best_set)

Executing the snippet prints the list of the best hyperparameters:

{'boosting_type': 'dart',
 'colsample_bytree': 0.8764301395665521,
 'is_unbalance': True,
 'learning_rate': 0.019245717855584647,
 'max_depth': 19,
 'min_child_samples': 160,
 'n_estimators': 50,
 'num_leaves': 16,
 'reg_alpha': 0.3902317904740905,
 'reg_lambda': 0.48349252432635764}

9.	 Fit a new model using the best hyperparameters:

tuned_lgbm = LGBMClassifier(
    **space_eval(search_space, best_set),
    random_state=RANDOM_STATE
)
tuned_lgbm.fit(X_train, y_train)

10.	 Evaluate the fitted model on the test set:

tuned_perf = performance_evaluation_report(
    tuned_lgbm, X_test, y_test, 
    show_plot=True, 
    show_pr_curve=True
)

print(f'Recall: {tuned_perf["recall"]:.4f}')
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Executing the snippet generates the following plot:

Figure 14.19: Performance evaluation of the tuned LightGBM model

We can see that the tuned model achieved better performance on the test set. To make it more concrete, 
its recall score was 0.8980, as compared to the benchmark value of 0.4286.

How it works...
After loading the required libraries, we defined a set of parameters that we used in this recipe: the 
number of folds for cross-validation, the maximum number of iterations in the optimization procedure, 
the random state, and the metric used for optimization.

In Step 3, we imported the dataset and created the training and test sets. We described a few prepro-
cessing steps in previous recipes, so please refer to those for more information. Then, we trained a 
benchmark LightGBM model using the default hyperparameters.

In Step 5, we defined the true objective function (the one for which the Bayesian optimization will 
create a surrogate). The function takes the set of hyperparameters as inputs and uses stratified 5-fold 
cross-validation to calculate the loss value to be minimized. In the case of fraud detection, we want 
to detect as much fraud as possible, even if it means creating more false positives. That is why we 
selected recall as the metric of interest. As the optimizer will minimize the function, we multiplied it 
by -1 to create a maximization problem. The function must return either a single value (the loss) or a 
dictionary with at least two key-value pairs:

•	 loss—The value of the true objective function.
•	 status—An indicator that the loss value was calculated correctly. It can be either  

STATUS_OK or STATUS_FAIL.

Additionally, we returned the set of hyperparameters used for evaluating the objective function. We 
will get back to it in the There’s more… section.

 While using LightGBM, we can actually define a few random seeds. There are separate 
ones used for bagging and selecting a subset of features for each tree. Also, there is a 
deterministic flag that we can specify. To make the results fully reproducible, we should 
also make sure those additional settings are correctly specified.
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In Step 6, we defined the hyperparameter grid. The search space is defined as a dictionary, but in 
comparison to the spaces defined for GridSearchCV, we used hyperopt's built-in functions, such as 
the following:

•	 hp.choice(label, list)—returns one of the indicated options.
•	 hp.uniform(label, lower_value, upper_value)—the uniform distribution between two values.
•	 hp.quniform(label, low, high, q)—the quantized (or discrete) uniform distribution 

between two values. In practice, it means that we obtain uniformly distributed, evenly spaced 
(determined by q) integers.

•	 hp.loguniform(label, low, high)—the logarithm of the returned value is uniformly distributed. 
In other words, the returned numbers are evenly distributed on a logarithmic scale. Such a 
distribution is useful for exploring values that vary over several orders of magnitude. For 
example, when tuning the learning rate we would like to test values such as 0.001, 0.01, 0.1, 
and 1, instead of a uniformly distributed set between 0 and 1.

•	 hp.randint(label, upper_value)—returns a random integer in the range  
[0, upper_value).

Bear in mind that in this setup we had to define the names (denoted as label in the snippets above) of 
the hyperparameters twice. Additionally, in some cases, we wanted to force the values to be integers 
using scope.int.

In Step 7, we ran the Bayesian optimization to find the best set of hyperparameters. First, we defined 
the Trials object, which was used for storing the history of the search. We could even use it to re-
sume a search or expand an already finished one, that is, increase the number of iterations using the 
already stored history. 

Second, we ran the optimization by passing the objective function, the search space, the surro-
gate model, the maximum number of iterations, and the trials object for storing the history. 
For more details on tuning the TPE algorithm, please refer to hyperopt's documentation. Addi-
tionally, we set the value of rstate, which is hyperopt's equivalent of random_state. We can eas-
ily store the trials object in a pickle file for later use. To do so, we can use the pickle.dump and  
pickle.load functions.

 We used the cross_val_score function to calculate the validation score. However, 
there are cases in which we might want to manually iterate over the folds created with 
StratifiedKFold. One such case would be to access more functionalities of the native 
API of LightGBM, for example, early stopping.

 After running the Bayesian HPO, the trials object contains a lot of interest-
ing and useful information. We can find the best set of hyperparameters under  
trials.best_trial, while trials.results contains all the explored sets of hyperpa-
rameters. We will be using this information in the There’s more… section.
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In Step 8, we inspected the best set of hyperparameters. Instead of just printing the dictionary, we had 
to use the space_eval function. This is because just by printing the dictionary we will see the indices 
of any categorical features instead of their names. As an example, by printing the best_set dictionary 
we could potentially see a 0 instead of 'gbdt' for the boosting_type hyperparameter.

In the last two steps, we trained a LightGBM classifier using the identified hyperparameters and eval-
uated its performance on the test set.

There’s more...
There are still quite a lot of interesting and useful things to mention about Bayesian hyperparameter 
optimization. We try to present those in the following subsections. For brevity’s sake, we do not present 
all the code here. For the complete code walk-through, please refer to the Jupyter notebook available 
in the book’s GitHub repository.

Conditional hyperparameter spaces
Conditional hyperparameter spaces can be useful when we would like to experiment with different 
machine learning models, each of those coming with completely separate hyperparameters. Alter-
natively, some hyperparameters are simply not compatible with others, and this should be accounted 
for while tuning the model.

In the case of LightGBM, an example could be the following pair: boosting_type and subsample/
subsample_freq. The boosting type "goss" is not compatible with subsampling, that is, selecting 
only a subsample of the training observations for each iteration. That is why we would like to set 
subsample to 1 when we are using GOSS, but tune it otherwise. subsample_freq is a complementary 
hyperparameter that determines how often (every n-th iteration) we should use subsampling. 

We define a conditional search space using hp.choice  in the following snippet:

conditional_search_space = {
    "boosting_type": hp.choice("boosting_type", [
        {"boosting_type": "gbdt",
         "subsample": hp.uniform("gdbt_subsample", 0.5, 1),
         "subsample_freq": scope.int(
            hp.uniform("gdbt_subsample_freq", 1, 20)
         )},
        {"boosting_type": "dart",
         "subsample": hp.uniform("dart_subsample", 0.5, 1),
         "subsample_freq": scope.int(
            hp.uniform("dart_subsample_freq", 1, 20)
         )},
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        {"boosting_type": "goss",
         "subsample": 1.0,
         "subsample_freq": 0},
    ]),
    "n_estimators": hp.choice("n_estimators", [50, 100, 250, 500]),
}

And an example of a draw from this space looks as follows:

{'boosting_type': {'boosting_type': 'dart',
  'subsample': 0.9301284507624732,
  'subsample_freq': 17},
 'n_estimators': 250}

There is one more step that we need to take before being able to use such a draw for our Bayesian 
HPO. As the search space is initially nested, we have to assign the drawn samples to the top-level key 
in the dictionary. We do so in the following snippet:

# draw from the search space
params = sample(conditional_search_space)

# retrieve the conditional parameters, set to default if missing
subsample = params["boosting_type"].get("subsample", 1.0)
subsample_freq = params["boosting_type"].get("subsample_freq", 0)

# fill in the params dict with the conditional values
params["boosting_type"] = params["boosting_type"]["boosting_type"]
params["subsample"] = subsample
params["subsample_freq"] = subsample_freq

params

The get method extracts the value of the requested key from the dictionary or returns the default 
value if the requested key does not exist.

Executing the snippet returns a properly formatted dictionary:

{'boosting_type': 'dart',
 'n_estimators': 250
 'subsample': 0.9301284507624732,
 'subsample_freq': 17}

Lastly, we should place the code cleaning up the dictionary in the objective function, which we then 
pass to the optimization routine.



Advanced Concepts for Machine Learning Projects590

In the Jupyter notebook, we have also tuned the LightGBM with the conditional search space. It 
achieved a recall score of 0.8980 on the test set, which is the same score as the model tuned without 
the conditional search space.

Figure 14.20: Performance evaluation of the LightGBM model tuned with the conditional search space

A deep dive into the explored hyperparameters
We have mentioned that hyperopt offers a wide range of distributions from which we could sample. 
It will be much easier to understand when we actually see what the distributions look like. First, we 
inspect the distribution of the learning rate. We have specified it as:

hp.loguniform("learning_rate", np.log(0.01), np.log(0.5))

In the following figure, we can see a kernel density estimate (KDE) plot of 10,000 random draws from 
the log-uniform distribution of the learning rate.
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Figure 14.21: Distribution of the learning rate

As intended, we can see that the distribution puts more weight on observations from several orders 
of magnitude.

The next distribution worth inspecting is the quantized uniform distribution that we have used for 
the min_child_samples hyperparameter. We defined it as:

scope.int(hp.quniform("min_child_samples", 20, 500, 5))
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In the following figure, we can see that the distribution reflects the assumptions we set for it, that is, 
the evenly spaced integers are uniformly distributed. In our case, we sampled every fifth integer. To 
keep the plot readable, we only displayed the first 20 bars. But the full distribution goes to 500, just 
as we have specified.

Figure 14.22: Distribution of the min_child_samples hyperparameter

So far, we have only looked at the information available in the search space. However, we can also 
derive much more information from the Trials object, which stores the entire history of the Bayes-
ian HPO procedure, that is, which hyperparameters were explored and what the resulting score was.

For this part, we use the Trials object containing the search history, using the search space without 
the conditional boosting_type tuning. In order to easily explore that data, we prepare a DataFrame 
containing the required information per iteration: the hyperparameters and the value of the loss 
function. We can extract the information from trials.results. This is the reason why we additionally 
passed the params object to the final dictionary while defining the objective function. 
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Initially, the hyperparameters are stored in one column as a dictionary. We can use the  
json_normalize function to break them up into separate columns:

from pandas.io.json import json_normalize
results_df = pd.DataFrame(trials.results)
params_df = json_normalize(results_df["params"])
results_df = pd.concat([results_df.drop("params", axis=1), params_df],
                       axis=1)
results_df["iteration"] = np.arange(len(results_df)) + 1
results_df.sort_values("loss")

Executing the snippet prints the following table:

Figure 14.23: A snippet of the DataFrame containing all the explored hyperparameter combinations 
and their corresponding losses

For brevity, we only printed a few of the available columns. Using this information, we can further 
explore the optimization that resulted in the best set of hyperparameters. For example, we can see 
that the best score was achieved in the 151st iteration (the first row of the DataFrame has an index of 
150 and indices in Python start with 0).

In the next figure, we have plotted the two distributions of the colsample_bytree hyperparameter: the 
one we defined as the prior for sampling, and the one that was actually sampled during the Bayesian 
optimization. Additionally, we plotted the evolution of the hyperparameter over iterations and added 
a regression line to indicate the direction of change. 

In the left plot, we can see that the posterior distribution of colsample_bytree was concentrated 
toward the right side, indicating the higher range of considered values. By inspecting the KDE plots 
it seems that there is a non-zero density for values above 1, which should not be allowed. 
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This is just the artifact from using the plotting method; in the Trials object we can confirm that 
not a single value above 1.0 was sampled during the optimization. In the right plot, the values of 
colsample_bytree seem to be scattered all over the allowed range. By looking at the regression line, 
it seems that there is a somewhat increasing trend.

Figure 14.24: Distribution of the colsample_bytree hyperparameter

Lastly, we can look at the evolution of the loss over iterations. The loss represents the negative of the 
average recall score (from a 5-fold cross-validation on the training set). The lowest value (corresponding 
to maximum average recall) of -0.90 occurred in the 151st iteration. With a few exceptions, the loss 
is quite stable in the -0.75 to -0.85 range.



Chapter 14 595

Figure 14.25: The evolution of the loss (average recall) over iterations. The best iteration is marked 
with a star

Other popular libraries for hyperparameter optimization
hyperopt is one of the most popular Python libraries for hyperparameter optimization. However, it 
is definitely not the only one. Below you can find a list of popular alternatives:

•	 optuna—a library offering vast hyperparameter tuning capabilities, including exhaustive Grid 
Search, Random Search, Bayesian HPO, and evolutionary algorithms.

•	 scikit-optimize—a library offering the BayesSearchCV class, which is a Bayesian drop-in 
replacement for scikit-learn's GridSearchCV.
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•	 hyperopt-sklearn—a spin-off library of hyperopt offering model selection among machine 
learning algorithms from scikit-learn. It allows you to search for the best option among pre-
processing steps and ML models, thus covering the entire scope of ML pipelines. The library 
covers almost all classifiers/regressors/preprocessing transformers available in scikit-learn.

•	 ray[tune]—Ray is an open-source, general-purpose distributed computing framework. We 
can use its tune module to run distributed hyperparameter tuning. It is also possible to com-
bine tune's distributed computing capabilities with other well-established libraries such as 
hyperopt or optuna.

•	 Tpot—TPOT is an AutoML tool that optimizes ML pipelines using genetic programming.
•	 bayesian-optimization—a library offering general-purpose Bayesian global optimization 

with Gaussian processes.
•	 smac—SMAC is a general tool for optimizing the parameters of arbitrary algorithms, including 

hyperparameter optimization of ML models.

See also
Additional resources are available here:

•	 Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B. 2011. Algorithms for hyper-parameter opti-
mization. In Advances in Neural Information Processing Systems: 2546–2554.

•	 Bergstra, J., Yamins, D., & Cox, D. D. 2013, June. Hyperopt: A Python library for optimizing the 
hyperparameters of machine learning algorithms. In Proceedings of the 12th Python in science 
conference: 13–20.
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•	 Snoek, J., Larochelle, H., & Adams, R. P. 2012. Practical Bayesian optimization of machine 
learning algorithms. Advances in Neural Information Processing Systems: 25.

Investigating feature importance
We have already spent quite some time creating the entire pipeline and tuning the models to achieve 
better performance. However, what is equally—or in some cases even more—important is the model’s 
interpretability. That means not only giving an accurate prediction but also being able to explain the 
why behind it. For example, we can look into the case of customer churn. Knowing what the actual 
predictors of the customers leaving are might be helpful in improving the overall service and poten-
tially making them stay longer.

In a financial setting, banks often use machine learning in order to predict a customer’s ability to re-
pay credit or a loan. In many cases, they are obliged to justify their reasoning, that is, if they decline 
a credit application, they need to know exactly why this customer’s application was not approved. In 
the case of very complicated models, this might be hard, or even impossible.

We can benefit in multiple ways by knowing the importance of our features:

•	 By understanding the model’s logic, we can theoretically verify its correctness (if a sensible 
feature is a good predictor), but also try to improve the model by focusing only on the import-
ant variables.

•	 We can use the feature importances to only keep the x most important features (contributing 
to a specified percentage of total importance), which can not only lead to better performance 
by removing potential noise but also to a shorter training time.

•	 In some real-life cases, it makes sense to sacrifice some accuracy (or any other performance 
metric) for the sake of interpretability.

In this recipe, we show how to calculate the feature importance on an example of a Random Forest 
classifier. However, most of the methods are model-agnostic. In other cases, there are often equivalent 
approaches (such as in the case of XGBoost and LightGBM). We mention some of those in the There’s 
more… section. We briefly present the three selected methods of calculating feature importance.

Mean Decrease in Impurity (MDI): The default feature importance used by Random Forest (in scikit-
learn), also known as the Gini importance. As we know, decision trees use a metric of impurity (Gini 
index/entropy/MSE) to create the best splits while growing. When training a decision tree, we can com-
pute how much each feature contributes to decreasing the weighted impurity. To calculate the feature 
importance for the entire forest, the algorithm averages the decrease in impurity over all the trees.

 It is also important to be aware that the more accurate (in terms of a specified perfor-
mance metric) the model is, the more reliable the feature importances are. That is why 
we investigate the importance of the features after tuning the models. Please note that 
we should also account for overfitting, as an overfitted model will not return reliable 
feature importances.
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Here are the advantages of this approach:

•	 Fast calculation
•	 Easy to retrieve

Here are the disadvantages of this approach:

•	 Biased—It tends to inflate the importance of continuous (numerical) features or high-cardinality 
categorical variables. This can sometimes lead to absurd cases, whereby an additional random 
variable (unrelated to the problem at hand) scores high in the feature importance ranking.

•	 Impurity-based importances are calculated on the basis of the training set and do not reflect 
the model’s ability to generalize to unseen data.

Drop-column feature importance: The idea behind this approach is very simple. We compare a model 
with all the features to a model with one of the features dropped for training and inference. We repeat 
this process for all the features.

Here is the advantage of this approach:

•	 Often considered the most accurate/reliable measure of feature importance

Here is the disadvantage of this approach:

•	 Potentially highest computation cost caused by retraining the model for each variant of the 
dataset

Permutation feature importance: This approach directly measures feature importance by observing 
how random reshuffling of each predictor influences the model’s performance. The permutation 
procedure breaks the relationship between the feature and the target. Hence, the drop in the model’s 
performance is indicative of how much the model is dependent on a particular feature. If the decrease 
in the performance after reshuffling a feature is small, then it was not a very important feature in the 
first place. Conversely, if the decrease in performance is significant, the feature can be considered 
an important one for the model.

The steps of the algorithm are:

1.	 Train the baseline model and record the score of interest.
2.	 Randomly permute (reshuffle) the values of one of the features, then use the entire dataset (with 

one reshuffled feature) to obtain predictions and record the score. The feature importance is 
the difference between the baseline score and the one from the permuted dataset.

3.	 Repeat the second step for all features.

 While working with impurity-based metrics, we should focus on the ranking of the vari-
ables (relative values) rather than the absolute values of the feature importances (which 
are also normalized to add up to 1).
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Here are the advantages of this approach:

•	 Model-agnostic
•	 Reasonably efficient—no need to retrain the model at every step
•	 Reshuffling preserves the distribution of the variables

Here are the disadvantages of this approach:

•	 Computationally more expensive than the default feature importances
•	 Is likely to produce unreliable importances when features are highly correlated (see Strobl et 

al. for a detailed explanation)

In this recipe, we will explore the feature importance using the credit card default dataset we have 
already explored in the Exploring ensemble classifiers recipe.

Getting ready
For this recipe, we use the fitted Random Forest pipeline (called rf_pipeline) from the Exploring 
ensemble classifiers recipe. Please refer to this step in the Jupyter notebook to see all the initial steps 
not included here to avoid repetition.

How to do it...
Execute the following steps to evaluate the feature importance of a Random Forest model:

1.	 Import the libraries:

import numpy as np
import pandas as pd
from sklearn.inspection import permutation_importance
from sklearn.metrics import recall_score
from sklearn.base import clone

2.	 Extract the classifier and preprocessor from the fitted pipeline:

rf_classifier = rf_pipeline.named_steps["classifier"]
preprocessor = rf_pipeline.named_steps["preprocessor"]

 For evaluating the performance, we can either use the training data or the validation/
test set. Using one of the latter two has the additional benefit of gaining insights into the 
model’s ability to generalize. For example, features that turn out to be important on the 
training set but not on the validation set might actually cause the model to overfit. For 
more discussion about the topic, please refer to the Interpretable Machine Learning book 
(referenced in the See also section).
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3.	 Recover feature names from the preprocessing transformer and transform the training/test sets:

feat_names = list(preprocessor.get_feature_names_out())

X_train_preprocessed = pd.DataFrame(
    preprocessor.transform(X_train),
    columns=feat_names
)
X_test_preprocessed = pd.DataFrame(
    preprocessor.transform(X_test),
    columns=feat_names
)

4.	 Extract the MDI feature importance and calculate the cumulative importance:

rf_feat_imp = pd.DataFrame(rf_classifier.feature_importances_,
                           index=feat_names,
                           columns=["mdi"])

rf_feat_imp["mdi_cumul"] = np.cumsum(
    rf_feat_imp
    .sort_values("mdi", ascending=False)
    .loc[:, "mdi"]
).loc[feat_names]

5.	 Define a function for plotting the top x features in terms of their importance:

def plot_most_important_features(feat_imp, title, 
                                 n_features=10, 
                                 bottom=False):   
    if bottom:
        indicator = "Bottom"
        feat_imp = feat_imp.sort_values(ascending=True)
    else:
        indicator = "Top"
        feat_imp = feat_imp.sort_values(ascending=False)
        
    ax = feat_imp.head(n_features).plot.barh()
    ax.invert_yaxis()
    ax.set(title=f"{title} ({indicator} {n_features})",
           xlabel="Importance",
           ylabel="Feature")
    
    return ax
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We use the function as follows:

plot_most_important_features(rf_feat_imp["mdi"],
                             title="MDI Importance")

Executing the snippet generates the following plot: 

Figure 14.26: Top 10 most important features using the MDI metric

The most important features are categorical features indicating the payment status 
from July and September. After four of those, we can see continuous features such as  
limit_balance, age, various bill statements, and previous payments.

6.	 Plot the cumulative importance of the features:

x_values = range(len(feat_names))

fig, ax = plt.subplots()
ax.plot(x_values, rf_feat_imp["mdi_cumul"].sort_values(), "b-")
ax.hlines(y=0.95, xmin=0, xmax=len(x_values),
          color="g", linestyles="dashed")
ax.set(title="Cumulative MDI Importance",
       xlabel="# Features",
       ylabel="Importance")
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Executing the snippet generates the following plot:

Figure 14.27: Cumulative MDI importance

The top 10 features account for 86.23% of the total importance, while the top 17 features ac-
count for 95% of the total importance.

7.	 Calculate and plot permutation importance using the training set:

perm_result_train = permutation_importance(
    rf_classifier, X_train_preprocessed, y_train,
    n_repeats=25, scoring="recall",
    random_state=42, n_jobs=-1
)

rf_feat_imp["perm_imp_train"] = (
    perm_result_train["importances_mean"]
)

plot_most_important_features(
    rf_feat_imp["perm_imp_train"],
    title="Permutation importance - training set"
)
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Executing the snippet generates the following plot:

Figure 14.28: Top 10 most important features according to permutation importance calcu-
lated on the training set

We can see that the set of the most important features was reshuffled in comparison 
to the MDI importance. The most important now is payment_status_sep_Unknown, 
which is an undefined label (not assigned a clear meaning in the original paper) in the  
payment_status_sep categorical feature. We can also see that age is not among the top 10 most 
important features determined using this approach.

8.	 Calculate and plot permutation importance using the test set:

perm_result_test = permutation_importance(
    rf_classifier, X_test_preprocessed, y_test,
    n_repeats=25, scoring="recall",
    random_state=42, n_jobs=-1
)

rf_feat_imp["perm_imp_test"] = (
    perm_result_test["importances_mean"]
)
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plot_most_important_features(
    rf_feat_imp["perm_imp_test"],
    title="Permutation importance - test set"
)

Executing the snippet generates the following plot:

Figure 14.29: Top 10 most important features according to permutation importance calcu-
lated on the test set

Looking at the figures, we can state that the same four features were selected as the most im-
portant ones using the training and test sets. The other ones were slightly reshuffled.

 If we notice that the feature importances calculated using the training and test 
sets are significantly different, we should investigate whether the model is over-
fitted. To solve that, we might want to apply some form of regularization. In this 
case, we could try increasing the value of the min_samples_leaf hyperparameter.
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9.	 Define a function for calculating the drop-column feature importance:

def drop_col_feat_imp(model, X, y, metric, random_state=42):
    model_clone = clone(model)
    model_clone.random_state = random_state
    model_clone.fit(X, y)
    benchmark_score = metric(y, model_clone.predict(X))
    
    importances = []
    
    for ind, col in enumerate(X.columns):
        print(f"Dropping {col} ({ind+1}/{len(X.columns)})")
        model_clone = clone(model)
        model_clone.random_state = random_state
        model_clone.fit(X.drop(col, axis=1), y)
        drop_col_score = metric(
            y, model_clone.predict(X.drop(col, axis=1))
        )
        importances.append(benchmark_score - drop_col_score)
    
    return importances

There are two things worth mentioning here:

•	 We fixed the random_state, as we are specifically interested in performance changes 
caused by removing a feature. Hence, we are controlling the source of variability during 
the estimation procedure.

•	 In this implementation, we use the training data for evaluation. We leave it as an ex-
ercise for the reader to modify the function to accept additional objects for evaluation.

10.	 Calculate and plot the drop-column feature importance:

rf_feat_imp["drop_column_imp"] = drop_col_feat_imp(
    rf_classifier.set_params(**{"n_jobs": -1}),
    X_train_preprocessed,
    y_train,
    metric=recall_score,
    random_state=42
)
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First, plot the top 10 most important features:

plot_most_important_features(
    rf_feat_imp["drop_column_imp"], 
    title="Drop column importance"
)

Executing the snippet generates the following plot:

Figure 14.30: Top 10 most important features according to drop-column feature importance

Using the drop-column feature importance (evaluated on the training data), the most import-
ant feature was payment_status_sep_Unknown. The same feature was identified as the most 
important one using permutation feature importance.

Then, plot the 10 least important features:

plot_most_important_features(
    rf_feat_imp["drop_column_imp"], 
    title="Drop column importance", 
    bottom=True
) 
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Executing the snippet generates the following plot:

Figure 14.31: The 10 least important features according to drop-column feature importance

In the case of drop-column feature importance, negative importance indicates that removing a given 
feature from the model actually improves the performance. That is true as long as the considered 
metric treats higher values as better.

We can use these results to remove features that have negative importance and thus potentially improve 
the model’s performance and/or reduce the training time.

How it works...
In Step 1, we imported the required libraries. Then, we extracted the classifier and the ColumnTransformer 
preprocessor from the pipeline. In this recipe, we worked with a tuned Random Forest classifier (using 
the hyperparameters determined in the Exploring ensemble classifiers recipe).

In Step 3, we first extracted the column names from the preprocessor using the get_feature_names_out 
method. Then, we prepared the training and test sets by applying the preprocessor’s transformations.



Advanced Concepts for Machine Learning Projects608

In Step 4, we extracted the MDI feature importances using the feature_importances_ attribute of the 
fitted Random Forest classifier. The values were automatically normalized so that they added up to 1. 
Additionally, we calculated the cumulative feature importance.

In Step 5, we defined a helper function to plot the most/least important features and plotted the top 
10 most important features, calculated using the mean decrease in impurity.

In Step 6, we plotted the cumulative importance of all the features. Using this plot, we could decide if 
we wanted to reduce the number of features in the model to account for a certain percentage of total 
importance. By doing so, we could potentially decrease the model’s training time.

In Step 7, we calculated the permutation feature importance using the permutation_importance 
function available in scikit-learn. We decided to use recall as the scoring metric and set the n_repeats 
argument to 25, so the algorithm reshuffled each feature 25 times. The output of the procedure is a 
dictionary containing three elements: the raw feature importances, the average value per feature, 
and the corresponding standard deviation. Additionally, while using permutation_importance we 
can evaluate multiple metrics at once by providing a list of selected metrics.

In Step 8, we calculated and evaluated the permutation feature importance, this time using the test set.

We have mentioned in the introduction that permutation importance can return unreliable scores 
when our dataset has correlated features, that is, the importance score will be spread across the cor-
related features. We could try the following approaches to overcome this issue:

•	 Permute groups of correlated features together. rfpimp offers such functionality in the 
importances function.

•	 We could use hierarchical clustering on the features’ Spearman’s rank correlations, pick a 
threshold, and then only keep a single feature from each of the identified clusters.

In Step 9, we defined a function for calculating the drop-column feature importance. First, we trained 
and evaluated the baseline model using all features. As the scoring metric, we chose recall. Then, we 
used the clone function of scikit-learn to create a copy of the model with the exact same speci-
fication as the baseline one. We then iteratively trained the model on a dataset without one feature, 
calculated the selected evaluation metric, and stored the difference in scores.

In Step 10, we applied the drop-column feature importance function and plotted the results, both the 
most and least important features.

 We decided to use the scikit-learn implementation of permutation feature importance. 
However, there are alternative options available, for example, in the rfpimp or eli5 li-
braries. The former also contains the drop-column feature importance.
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There’s more...
We have mentioned that the default feature importance of scikit-learn's Random Forest is the MDI/
Gini importance. It is also worth mentioning that the popular boosting algorithms (which we mentioned 
in the Exploring ensemble classifiers recipe) also adapted the feature_importances_ attribute of the 
fitted model. However, they use different metrics of feature importance, depending on the algorithm.

For XGBoost, we have the following possibilities:

•	 weight—measures the number of times a feature is used to split the data across all trees. 
Similar to the Gini importance, however, it does not take into account the number of samples.

•	 gain—measures the average gain of the feature when it is used in trees. Intuitively we can 
think of it as the Gini importance measure, where Gini impurity is replaced by the objective 
of the gradient boosting model.

•	 cover—measures the average coverage of the feature when it is used in trees. Coverage is 
defined as the number of samples affected by the split.

The cover method can overcome one of the potential issues of the weight approach—simply counting 
the number of splits may be misleading, as some splits might affect just a few observations, and are 
therefore not really relevant.

For LightGBM, we have the following possibilities:

•	 split—measures the number of times the feature is used in a model
•	 gain—measures the total gains of splits that use the feature

See also
Additional resources are available here:

•	 Altmann, A., Toloşi, L., Sander, O., & Lengauer, T. 2010. “Permutation importance: a corrected 
feature importance measure.” Bioinformatics, 26(10): 1340–1347.

•	 Louppe, G. 2014. “Understanding random forests: From theory to practice.” arXiv preprint 
arXiv:1407.7502.

•	 Molnar, C. 2020. Interpretable Machine Learning: https://christophm.github.io/
interpretable-ml-book/ 

•	 Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. 2009. The elements of statistical 
learning: data mining, inference, and prediction, 2: 1–758. New York: Springer.

•	 Hooker, G., Mentch, L., & Zhou, S. 2021. “Unrestricted permutation forces extrapolation: vari-
able importance requires at least one more model, or there is no free variable importance.” 
Statistics and Computing, 31(6): 1–16.

•	 Parr, T., Turgutlu, K., Csiszar, C., & Howard, J. 2018. Beware default random forest importances. 
March 26, 2018.  https://explained.ai/rf-importance/.

•	 Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., & Zeileis, A. 2008. “Conditional variable 
importance for random forests.” BMC Bioinformatics, 9(1): 307.

•	 Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. 2007. “Bias in random forest variable 
importance measures: Illustrations, sources and a solution.” BMC bioinformatics, 8(1): 1–21.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://explained.ai/rf-importance/
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Exploring feature selection techniques
In the previous recipe, we saw how to evaluate the importance of features used for training ML mod-
els. We can use that knowledge to carry out feature selection, that is, keeping only the most relevant 
features and discarding the rest.

Feature selection is a crucial part of any machine learning project. First, it allows us to remove features 
that are either completely irrelevant or are not contributing much to a model’s predictive capabilities. 
This can benefit us in multiple ways. Probably the most important benefit is that such unimportant 
features can actually negatively impact the performance of our model as they introduce noise and 
contribute to overfitting. As we have already established—garbage in, garbage out. Additionally, fewer fea-
tures can often be translated into a shorter training time and help us avoid the curse of dimensionality.

Second, we should follow Occam’s razor and keep our models simple and explainable. When we have 
a moderate number of features, it is easier to explain what is actually happening in the model. This 
can be crucial for the ML project’s adoption by the stakeholders.

We have already established the why of feature selection. Now it is time to explore the how. On a high 
level, feature selection methods can be grouped into three categories:

•	 Filter methods—a generic set of univariate methods that specify a certain statistical measure 
and then filter the features based on it. This group does not incorporate any specific ML al-
gorithm, hence it is characterized by (usually) lower computation time and is less prone to 
overfitting. A potential drawback of this group is that the methods evaluate the relationship 
between the target and each of the features individually. This can lead to them overlooking 
important relationships between the features. Examples include correlation, chi-squared test, 
analysis of variance (ANOVA), information gain, variance thresholding, and so on.

•	 Wrapper methods—this group of approaches considers feature selection a search problem, that 
is, it uses certain procedures to repeatedly evaluate a specific ML model with a different set of 
features to find the optimal set. It is characterized by the highest computational costs and the 
highest possibility of overfitting. Examples include forward selection, backward elimination, 
stepwise selection, recursive feature elimination, and so on.

•	 Embedded methods—this set of methods uses ML algorithms that have built-in feature se-
lection, for example, Lasso with its regularization or Random Forest. By using these implicit 
feature selection methods, the algorithms try to prevent overfitting. In terms of computational 
complexity, this method is usually somewhere between the filter and wrapper groups.

In this recipe, we will apply a selection of feature selection methods to the credit card fraud dataset. 
We believe it provides a good example, especially given a lot of the features are anonymized and we 
do not know the exact meaning behind them. Hence, it is also likely that some of them do not really 
contribute much to the model’s performance.
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Getting ready
In this recipe, we will be using the credit card fraud dataset that we introduced in the Investigating 
different approaches to handling imbalanced data recipe. For convenience, we have included all the 
necessary preparation steps in this section from the accompanying Jupyter notebook.

How to do it…
Execute the following steps to experiment with various feature selection methods:

1.	 Import the libraries:

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import recall_score
from sklearn.feature_selection import (RFE, RFECV, 
                                       SelectKBest, 
                                       SelectFromModel, 
                                       mutual_info_classif)
from sklearn.model_selection import StratifiedKFold

2.	 Train the benchmark model:

rf = RandomForestClassifier(random_state=RANDOM_STATE,
                            n_jobs=-1)
rf.fit(X_train, y_train)

recall_train = recall_score(y_train, rf.predict(X_train))
recall_test = recall_score(y_test, rf.predict(X_test))
print(f"Recall score training: {recall_train:.4f}")
print(f"Recall score test: {recall_test:.4f}")

Executing the snippet generates the following output:

Recall score training: 1.0000
Recall score test: 0.8265

Looking at the recall scores, the model is clearly overfitted to the training data. Normally, we 
should try to address this. However, to keep the exercise simple we assume that the model is 
good enough to proceed.

 Another interesting challenge to applying feature selection methods would be BNP Paribas 
Cardif Claims Management (the dataset is available at Kaggle—a link is provided in the See 
also section). Similar to the dataset used in this recipe, it contains 131 anonymized features.
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3.	 Select the best features using Mutual Information:

scores = []
n_features_list = list(range(2, len(X_train.columns)+1))

for n_feat in n_features_list:
    print(f"Keeping {n_feat} most important features")
    mi_selector = SelectKBest(mutual_info_classif, k=n_feat)
    X_train_new = mi_selector.fit_transform(X_train, y_train)
    X_test_new = mi_selector.transform(X_test)

    rf.fit(X_train_new, y_train)
    recall_scores = [
        recall_score(y_train, rf.predict(X_train_new)),
        recall_score(y_test, rf.predict(X_test_new))
    ]
    scores.append(recall_scores)

mi_scores_df = pd.DataFrame(
    scores,
    columns=["train_score", "test_score"],
    index=n_features_list
)

Using the next snippet, we plot the results:

(
    mi_scores_df["test_score"]
    .plot(kind="bar",
          title="Feature selection using Mutual Information",
          xlabel="# of features",
          ylabel="Recall (test set)")
)
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Executing the snippet generates the following plot:

Figure 14.32: Performance of the model depending on the number of selected features. 
Features are selected using the Mutual Information criterion

By inspecting the figure, we can see that we achieved the best recall score on the test set using 
8, 9, 10, and 12 features. As simplicity is desired, we decided to choose 8. Using the following 
snippet, we extract the names of the 8 most important features:

mi_selector = SelectKBest(mutual_info_classif, k=8)
mi_selector.fit(X_train, y_train)
print(f"Most importance features according to MI: {mi_selector.get_
feature_names_out()}")

Executing the snippet returns the following output:

Most importance features according to MI: ['V3' 'V4' 'V10' 'V11' 'V12' 
'V14' 'V16' 'V17']
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4.	 Select the best features using MDI feature importance, retrain the model, and evaluate its 
performance:

rf_selector = SelectFromModel(rf)
rf_selector.fit(X_train, y_train)

mdi_features = X_train.columns[rf_selector.get_support()]
rf.fit(X_train[mdi_features], y_train)
recall_train = recall_score(
    y_train, rf.predict(X_train[mdi_features])
)
recall_test = recall_score(y_test, rf.predict(X_test[mdi_features]))
print(f"Recall score training: {recall_train:.4f}")
print(f"Recall score test: {recall_test:.4f}")

Executing the snippet generates the following output:

Recall score training: 1.0000
Recall score test: 0.8367

Using the following snippet, we extract the threshold used for feature selection and the most 
relevant features:

print(f"MDI importance threshold: {rf_selector.threshold_:.4f}")
print(f"Most importance features according to MI: {rf_selector.get_
feature_names_out()}")

This generates the following output:

MDI importance threshold: 0.0345
Most importance features according to MDI: ['V10' 'V11' 'V12' 'V14' 'V16' 
'V17']

The threshold value corresponds to the average feature importance of the RF model.

Using a loop similar to the one in Step 3, we can generate a bar chart showing the model’s 
performance depending on the number of features kept in the model. We iteratively select 
the top k features based on the MDI. To avoid repetition, we do not include the code here (it is 
available in the accompanying Jupyter notebook). By analyzing the figure, we can see that the 
model achieved the best score with 10 features, which is more than in the previous approach.
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Figure 14.33: Performance of the model depending on the number of selected features. 
Features are selected using the Mean Decrease in Impurity feature importance

5.	 Select the best 10 features using Recursive Feature Elimination:

rfe = RFE(estimator=rf, n_features_to_select=10, verbose=1)
rfe.fit(X_train, y_train)

In order to avoid repetition, we present the most important features and the accompanying 
scores without the code, as it is almost identical to what we have covered in the previous steps:

Most importance features according to RFE: ['V4' 'V7' 'V9' 'V10' 'V11' 
'V12' 'V14' 'V16' 'V17' 'V26']
Recall score training: 1.0000
Recall score test: 0.8367
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6.	 Select the best features using Recursive Feature Elimination with cross-validation:

k_fold = StratifiedKFold(5, shuffle=True, random_state=42)

rfe_cv = RFECV(estimator=rf, step=1,
               cv=k_fold,
               min_features_to_select=5,
               scoring="recall",
               verbose=1, n_jobs=-1)
rfe_cv.fit(X_train, y_train)

Below we present the outcome of the feature selection:

Most importance features according to RFECV: ['V1' 'V4' 'V6' 'V7' 'V9' 
'V10' 'V11' 'V12' 'V14' 'V15' 'V16' 'V17' 'V18'
 'V20' 'V21' 'V26']
Recall score training: 1.0000
Recall score test: 0.8265

This approach resulted in the selection of 16 features. Overall, 6 features appeared in each of 
the considered approaches: V10, V11, V12, V14, V16, and V17.

Additionally, using the following snippet we can visualize the cross-validation scores, that 
is, what the average recall of the 5 folds was for each of the considered numbers of retained 
features. We had to add 5 to the index of the DataFrame, as we chose to retain a minimum of 
5 features in the RFECV procedure:

cv_results_df = pd.DataFrame(rfe_cv.cv_results_)
cv_results_df.index += 5

(
    cv_results_df["mean_test_score"]
    .plot(title="Average CV score over iterations",
          xlabel="# of features retained",
          ylabel="Avg. recall")
)
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Executing the snippet generates the following plot:

Figure 14.34: Average CV score for each step of the RFE procedure

Inspecting the figure confirms that the highest average recall was obtained using 16 features.

While evaluating the benefits of feature selection, we should consider two scenarios. In the more ob-
vious one, the performance of the model improves when we remove some of the features. This does 
not need any further explanation. The second scenario is more interesting. After removing features, 
we can end up with a very similar performance to the initial one or slightly worse. However, this does 
not necessarily mean that we have failed. Consider a case in which we removed ~60% of the features 
while keeping the same performance. This could already be a major improvement that—depending 
on the dataset and model—can potentially reduce the training time by hours or days. Additionally, 
such a model would be easier to interpret.
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How it works…
After importing the required libraries, we trained a benchmark Random Forest classifier and printed 
the recall score from the training and test sets.

In Step 3, we applied the first of the considered feature selection approaches. It was an example of 
the univariate filter category of feature selection techniques. As the statistical criterion, we used the 
Mutual Information score. To calculate the metric, we used the mutual_info_classif function from 
scikit-learn, which is capable of working with a categorical target and numerical features only. 
Hence, any categorical features need to be appropriately encoded beforehand. Fortunately, we only 
have continuous numerical features in this dataset.

Next, we combined the MI criterion with the SelectKBest class, which allows us to select the k best 
features determined by an arbitrary metric. Using this approach, we almost never know upfront how 
many features we would like to keep. Hence, we iterated over all the possible values (from 2 to 29, 
where the latter is the total number of features in the dataset). The SelectKBest class employs the 
familiar fit/transform approach. Within each iteration, we fitted the class to the training data (both 
features and the target are required for this step) and then transformed the training and test sets. The 
transformation resulted in keeping only the k most important features according to the MI criterion. 
Then, we once again fitted the Random Forest classifier using only the selected features and recorded 
the relevant recall scores.

scikit-learn allows us to easily use different metrics together with the SelectKBest class. For ex-
ample, we could use the following scoring functions:

•	 f_classif—the ANOVA F-value estimating the degree of linear dependency between two vari-
ables. The F statistic is calculated as the ratio of between-group variability to the within-group 
variability. In this case, the group is simply the class of the target. A potential drawback of this 
method is that it only accounts for linear relationships.

•	 chi2—the chi-squared statistics. This metric is only suitable for non-negative features such as 
Booleans or frequencies, or more generally, for categorical features. Intuitively, it evaluates if 
a feature is independent of the target. If that is the case, it is also uninformative when it comes 
to classifying the observations.

Aside from selecting the k best features, the feature_selection module of scikit-learn also offers 
classes that allow choosing features based on the percentile of the highest scores, a false positive rate 
test, an estimated false discovery rate, or a family-wise error rate.

 The Mutual Information (MI) score of two random variables is a measure of the mutual 
dependence between those variables. When the score is equal to zero, the two variables are 
independent. The higher the score, the higher the dependency between the variables. In 
general, calculating the MI requires knowledge of the probability distributions of each of 
the features, which we do not usually know. That is why the scikit-learn implementation 
uses a nonparametric approximation based on k-Nearest Neighbors distances. One of the 
advantages of using MI is that it can capture nonlinear relationships between the features.
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In Step 4, we explored an example of the embedded feature selection techniques. In this group, feature 
selection is performed as part of the model building phase. We used the SelectFromModel class to 
select the best features based on the model’s built-in feature importance metric (in this case, the MDI 
feature importance). When instantiating the class, we can provide the threshold argument to deter-
mine the threshold used to select the most relevant features. Features with weights/coefficients above 
that threshold would be kept in the model. We can also use the "mean" (default one) and "median" 
keywords to use the mean/median values of all feature importances as the threshold. We can also 
combine those keywords with scaling factors, for example, "1.5*mean". Using the max_features 
argument, we can determine the maximum number of features we allow to be selected.

In this step, we demonstrated two approaches to recovering the selected features. The first one is the 
get_support method, which returns a list with Boolean flags indicating whether the given feature 
was selected. The second one is the get_feature_names_out method, which directly returns the 
names of the selected features. While fitting the Random Forest classifier, we manually selected the 
columns of the training dataset. However, we could have also used the transform method of the fitted 
SelectFromModel class to automatically extract only the relevant features as a numpy array.

In Step 5, we used an example of the wrapper methods. Recursive Feature Elimination (RFE) is an 
algorithm that recursively trains an ML model, calculates the feature importances (via coef_ or 
feature_importances_), and drops the least important feature or features.

The process starts by training the model using all the features. Then, the least important feature or 
features are pruned from the dataset. Next, the model is trained again with the reduced feature set, 
and the least important features are again eliminated. The process is repeated until it reaches the de-
sired number of features. While instantiating the RFE class, we provided the Random Forest estimator 
together with the number of features to select. Additionally, we could provide the step argument, 
which determined how many features to eliminate during each iteration.

As we have mentioned before, we rarely know the optimal number of features upfront. That is why in 
Step 6 we try to account for that drawback. By combining RFE with cross-validation, we can automat-
ically determine the optimal number of features to keep using the RFE procedure. To do so, we used 
the RFECV class and provided some additional inputs. We had to specify the cross-validation scheme 
(5-fold stratified CV, as we are dealing with an imbalanced dataset), the scoring metric (recall), and 
the minimum number of features to retain. For the last argument, we arbitrarily chose 5.

 The SelectFromModel class works with any estimator that has either the  
feature_importances_ (for example, Random Forest,  XGBoost, LightGBM, and so on) 
or coef_ (for example, Linear Regression, Logistic Regression, and Lasso) attribute.

 RFE can be a computationally expensive algorithm to run, especially with a large fea-
ture set and cross-validation. Hence, it might be a good idea to apply some other feature 
selection technique before using RFE. For example, we could use the filtering approach 
and remove some of the correlated features.
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Lastly, to explore the CV scores in more depth, we accessed the cross-validation scores for each fold 
using the cv_results_ attribute of the fitted RFECV class.

There’s more…
Some of the other available approaches
We have already mentioned quite a few univariate filter methods. Some other notable ones include:

•	 Variance thresholding—this method simply removes features with variance lower than a spec-
ified threshold. Thus, it can be used to remove constant and quasi-constant features. The latter 
ones are those that have very little variability as almost all the values are identical. By definition, 
this method does not look at the target value, only at the features.

•	 Correlation-based—there are multiple ways to measure correlation, hence we will only focus on 
the general logic of this approach. First, we determine the correlation between the features and 
the target. We can choose a threshold above which we want to keep the features for modeling.

Then, we should also consider removing features that are highly correlated among themselves. 
We should identify such groups and then leave only one feature from each of the groups 
in our dataset. Alternatively, we could use the Variance Inflation Factor (VIF) to determine 
multicollinearity and drop features based on high VIF values. VIF is available in statsmodels.

There are also multivariate filter methods available. For example, Maximum Relevance Minimum 
Redundancy (MRMR) is a family of algorithms that attempts to identify a subset of features that have 
high relevance with respect to the target variable, while having a small redundancy with each other.

We could also explore the following wrapper techniques:

•	 Forward feature selection—we start with no features. We test each of the features separately 
and see which one most improves the model. We add that feature to our feature set. Then, we 
sequentially train models with a second feature added. Similarly, at this step, we again test 
all the remaining features individually. We select the best one and add it to the selected pool. 
We continue adding features one at a time until we reach a stopping criterion (max number 
of features or no further improvement). Traditionally, the feature to be added was based on 
the features’ p-values. However, modern libraries use the improvement on a cross-validated 
metric of choice as the selection criterion.

•	 Backward feature selection—similar to the previous approach, but we start with all the features 
in our set and sequentially remove one feature at a time until there is no further improvement 
(or all features are statistically significant). This method differs from RFE as it does not use the 
coefficients or feature importances to select the features to be removed. Instead, it optimizes 
for the performance improvement measured by the difference in the cross-validated score.

 We did not consider using correlation as a criterion in this recipe, as the features 
in the credit card fraud dataset are the outcomes of PCA. Hence, by definition they 
are orthogonal, that is, uncorrelated.
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•	 Exhaustive feature selection—simply speaking, in this brute-force approach we try all the 
possible combinations of the features. Naturally, this is the most computationally expensive 
of the wrapper techniques, as the number of feature combinations to be tested grows expo-
nentially with the number of features. For example, if we had 3 features, we would have to 
test 7 combinations. Assume we have features a, b, and c. We would have to test the following 
combinations: [a, b, c, ab, ac, bc, abc].

•	 Stepwise selection—a hybrid approach combining forward and backward feature selection. 
The process starts with zero features and adds them one by one using the lowest significant 
p-value. At each addition step, the procedure also checks if any of the current features are 
statistically insignificant. If that is the case, they are dropped from the feature set and the 
algorithm continues to the next addition step. The procedure allows the final model to have 
only statistically significant features.

The first two approaches are implemented in scikit-learn. Alternatively, you can find all four of 
them in the mlxtend library.

We should also mention a few things to keep in mind about the wrapper techniques presented above:

•	 The optimal number of features depends on the ML algorithm.
•	 Due to their iterative nature, they are able to detect certain interactions between the features.
•	 These methods usually provide the best performing subset of features for a given ML algorithm.
•	 They come at the highest computational cost, as they operate greedily and retrain the model 

multiple times.

As the last wrapper method, we will mention the Boruta algorithm. Without going into too much 
detail, it creates a set of shadow features (permuted duplicates of the original features) and selects 
features using a simple heuristic: a feature is useful if it is doing better than the best of the randomized 
features. The entire process is repeated multiple times before the algorithm returns the best set of 
features. The algorithm is compatible with ML models from the ensemble module of scikit-learn 
and algorithms such as XGBoost and LightGBM. For more details on the algorithm, please refer to the 
paper mentioned in the See also section. The Boruta algorithm is implemented in the boruta library.

Lastly, it is worth mentioning that we can also combine multiple feature selection approaches to 
improve their reliability. For example, we could select features using a few approaches and then 
ultimately select the ones that appeared in all or most of them.

Combining feature selection and hyperparameter tuning
As we have already established, we do not know the optimal number of features to keep in advance. 
Hence, we might want to combine feature selection with hyperparameter tuning and treat the number 
of features to keep as another hyperparameter. 
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We can easily do so using pipelines and GridSearchCV from scikit-learn :

from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV

pipeline = Pipeline(
   [
    ("selector", SelectKBest(mutual_info_classif)),
    ("model", rf)
   ]
)

param_grid = {
   "selector__k": [5, 10, 20, 29],
   "model__n_estimators": [10, 50, 100, 200]  
}

gs = GridSearchCV(
   estimator=pipeline,
   param_grid=param_grid,
   n_jobs=-1,
   scoring="recall",
   cv=k_fold,
   verbose=1
)

gs.fit(X_train, y_train)
print(f"Best hyperparameters: {gs.best_params_}")

Executing the snippet returns the best set of hyperparameters:

Best hyperparameters: {'model__n_estimators': 50, 'selector__k': 20}

One thing to keep in mind is that the features selected within various folds of the cross-validation can 
be different. Let’s consider an example of a 5-fold cross-validation procedure that keeps 3 features. It 
can happen that in some of the 5 cross-validation rounds, the 3 selected features might not overlap. 
However, they should not be too different, as we assume that the overall patterns in the data and the 
distribution of the features are very similar across folds.

 When combining filter feature selection methods with cross-validation, we should do the 
filtering within the cross-validation procedure. Otherwise, we are selecting the features 
using all the available observations and introducing bias.
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See also
Additional references on the topic:

•	 Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. 2020. “Benchmark for filter 
methods for feature selection in high-dimensional classification data.” Computational Statistics 
& Data Analysis, 143: 106839.

•	 Ding, C., & Peng, H. 2005. “Minimum redundancy feature selection from microarray gene 
expression data.” Journal of bioinformatics and computational biology, 3(2): 185–205.

•	 Kira, K., & Rendell, L. A. 1992. A practical approach to feature selection. In Machine learning 
proceedings, 1992: 249–256. Morgan Kaufmann.

•	 Kira, K., & Rendell, L. A. 1992, July. The feature selection problem: Traditional methods and 
a new algorithm. In Aaai, 2(1992a): 129-134.

•	 Kuhn, M., & Johnson, K. 2019. Feature engineering and selection: A practical approach for predictive 
models. CRC Press.

•	 Kursa M., & Rudnicki W. Sep. 2010. “Feature Selection with the Boruta Package” Journal of 
Statistical Software, 36(11): 1-13.

•	 Urbanowicz, RJ., et al. 2018. “Relief-based feature selection: Introduction and review.” Journal 
of biomedical informatics, 85: 189–203.

•	 Yu, L., & Liu, H. 2003. Feature selection for high-dimensional data: A fast correlation-based 
filter solution. In Proceedings of the 20th international conference on machine learning (ICML-03): 
856–863.

•	 Zhao, Z., Anand, R., & Wang, M. 2019, October. Maximum relevance and minimum redundancy 
feature selection methods for a marketing machine learning platform. In 2019 IEEE interna-
tional conference on data science and advanced analytics (DSAA): 442–452. IEEE.

You can find the additional dataset mentioned in the Getting ready section here:

•	 https://www.kaggle.com/competitions/bnp-paribas-cardif-claims-management

Exploring explainable AI techniques
In one of the previous recipes, we looked into feature importance as one of the means of getting a 
better understanding of how the models work under the hood. While this might be quite a simple 
task in the case of linear regression, it gets increasingly difficult with the complexity of the models.

One of the big trends in the ML/DL field is explainable AI (XAI). It refers to various techniques that 
allow us to better understand the predictions of black box models. While the current XAI approaches 
will not turn a black box model into a fully interpretable one (or a white box), they will definitely help 
us better understand why the model returns certain predictions for a given set of features.

Some of the benefits of having explainable AI models are as follows:

•	 Builds trust in the model—if the model’s reasoning (via its explanation) matches common 
sense or the beliefs of human experts, it can strengthen the trust in the model’s predictions

•	 Facilitates the model’s or project’s adoption by business stakeholders

https://www.kaggle.com/competitions/bnp-paribas-cardif-claims-management 
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•	 Gives insights useful for human decision-making by providing reasoning for the model’s de-
cision process

•	 Makes debugging easier
•	 Can steer the direction of future data gathering or feature engineering

Before mentioning the particular XAI techniques, it is worth clarifying the difference between inter-
pretability and explainability. Interpretability can be considered a stronger version of explainability. 
It offers a causality-based explanation of a model’s predictions. On the other hand, explainability is 
used to make sense of the predictions made by black box models, which cannot be interpretable. In 
particular, XAI techniques can be used to explain what is going on in the model’s prediction process, 
but they are unable to causally prove why a certain prediction has been made.

In this recipe, we cover three XAI techniques. See the There’s more… section for a reference to more 
of the available approaches.

The first technique is called Individual Conditional Expectation (ICE) and it is a local and model-ag-
nostic approach to explainability. The local part refers to the fact that this technique describes the 
impact of feature(s) at the observation level. ICE is most frequently presented in a plot and depicts 
how an observation’s prediction changes as a result of a change in a given feature’s value.

To obtain the ICE values for a single observation in our dataset and one of its features, we have to 
create multiple copies of that observation. In all of them, we keep the values of other features (except 
the considered one) constant, while replacing the value of the feature of interest with the values from 
a grid. Most commonly, the grid consists of all the distinct values of that feature in the entire dataset 
(for all observations). Then, we use the (black box) model to make predictions for each of the modified 
copies of the original observation. Those predictions are plotted as the ICE curve.

Advantages:

•	 It is easy to calculate and intuitive to understand what the curves represent.
•	 ICE can uncover heterogeneous relationships, that is, when a feature has a different direction 

of impact on the target, depending on the intervals of the explored feature’s values.

Disadvantages: 

•	 We can meaningfully display only one feature at a time.
•	 Plotting many ICE curves (for multiple observations) can make the plot overcrowded and hard 

to interpret.
•	 ICE assumes independence of features—when features are correlated, some points in the curve 

might actually be invalid data points (either very unlikely or simply impossible) according to 
the joint feature distribution.

The second approach is called the Partial Dependence Plot (PDP) and is heavily connected to ICE. It 
is also a model-agnostic method; however, it is a global one. It means that PDP describes the impact 
of feature(s) on the target in the context of the entire dataset.
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PDP presents the marginal effect of a feature on the prediction. Intuitively, we can think of partial 
dependence as a mapping of the expected response of the target as a function of the feature of interest. 
It can also show whether the relationship between the feature and the target is linear or nonlinear. In 
terms of calculating the PDP, it is simply the average of all the ICE curves.

Advantages:

•	 Similar to ICE, it is easy to calculate and intuitive to understand what the curves represent.
•	 If the feature of interest is not correlated with other features, the PDP then perfectly represents 

how the selected feature impacts the prediction (on average).
•	 The calculation for the PDPs has a causal interpretation (within the model)—by observing 

the changes in prediction caused by the changes to one of the features, we analyze the causal 
relationship between the two.

Disadvantages:

•	 PDPs also assume the independence of features.
•	 PDPs can obscure heterogenous relationships created by interactions. For example, we could 

observe a linear relationship between the target and a certain feature. However, the ICE curves 
might show that there are exceptions to that pattern, for example, where the target remains 
constant in some ranges of the feature.

•	 PDPs can be used to analyze, at most, two features at a time.

The last of the XAI techniques we cover in this recipe is called SHapley Additive exPlanations (SHAP). 
It is a model-agnostic framework for explaining predictions using a combination of game theory and 
local explanations.

The exact methodology and calculations involved in this method are outside of the scope of this 
book. We can briefly mention that Shapley values are a method used in game theory that involves a 
fair distribution of both gains and costs to players cooperating in a game. As each player contributes 
differently to the coalition, the Shapley value makes sure that each participant gets a fair share, de-
pending on how much they contributed.

We could compare it to the ML setting, in which features are the players, the cooperative game is 
creating the ML model’s prediction, and the payoff is the difference between the average prediction 
of the instance minus the average prediction of all instances. Hence, the interpretation of a Shapley 
value for a certain feature is as follows: the value of the feature contributed x to the prediction of this 
observation, compared to the average prediction for the dataset.

Having covered the Shapley values, it is time to explain what SHAP is. It is an approach to explaining 
the outputs of any ML/DL model. SHAP combines optimal credit allocation with local explanations, 
using Shapley values (originating from game theory) and their extensions.

SHAP offers the following:

•	 It is a computationally efficient and theoretically robust method of calculating Shapley values 
for ML models (ideally having trained the model only once).
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•	 KernelSHAP—an alternative, kernel-based estimation method for estimating Shapley values. 
It was inspired by local surrogate models.

•	 TreeSHAP—an efficient estimation method for tree-based models.
•	 Various global interpretation methods based on aggregations of Shapley values.

Advantages:

•	 Shapley values have a solid theoretical background (axioms of efficiency, symmetry, dummy, 
and additivity). Lundberg et al. (2017) explain minor discrepancies between those axioms in 
the context of Shapley values and their counterpart properties of the SHAP values, that is, local 
accuracy, missingness, and consistency.

•	 Thanks to the efficiency property, SHAP might be the only framework in which the prediction 
is fairly distributed among the feature values.

•	 SHAP offers global interpretability—it shows feature importance, feature dependence, inter-
actions, and an indication of whether a certain feature has a positive or negative impact on 
the model’s predictions.

•	 SHAP offers local interpretability—while many techniques only focus on aggregate explain-
ability, we can calculate SHAP values for each individual prediction to learn how features 
contribute to that particular prediction.

•	 SHAP can be used to explain a large variety of models, including linear models, tree-based 
models, and neural networks.

•	 TreeSHAP (the fast implementation for tree-based models) makes it feasible to use the approach 
for real-life use cases.

Disadvantages:

•	 Computation time—the number of possible combinations of the features increases exponen-
tially with the number of considered features, which in turn increases the time of calculating 
SHAP values. That is why we have to revert to approximations.

•	 Similar to permutation feature importance, SHAP values are sensitive to high correlations 
among features. If that is the case, the impact of such features on the model score can be split 
among those features in an arbitrary way, leading us to believe that they are less important 
than if their impacts remained undivided. Also, correlated features might result in using un-
realistic/impossible combinations of features.

•	 As Shapley values do not offer a prediction model (such as in the case of LIME), they cannot 
be used to make statements about how a change in the inputs corresponds to a change in the 
prediction. For example, we cannot state that “if the value of feature Y was higher by 50 units, 
then the predicted probability would increase by 1 percentage point.”

 To get a better understanding of SHAP, it is recommended to also get familiar with LIME. 
Please refer to the There’s more… section for a brief description.
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•	 KernelSHAP is slow and, similarly to other permutation-based interpretation methods, ignores 
dependencies between features.

Getting ready
In this recipe, we will be using the credit card fraud dataset that we introduced in the Investigating 
different approaches to handling imbalanced data recipe. For convenience, we have included all the 
necessary preparation steps in this section of the accompanying Jupyter notebook.

How to do it…
Execute the following steps to investigate various approaches to explaining the predictions of an 
XGBoost model trained on the credit card fraud dataset:

1.	 Import the libraries:

from xgboost import XGBClassifier
from sklearn.metrics import recall_score
from sklearn.inspection import (partial_dependence,
                                PartialDependenceDisplay)
import shap

2.	 Train the ML model:

xgb = XGBClassifier(random_state=RANDOM_STATE,
                    n_jobs=-1)
xgb.fit(X_train, y_train)

recall_train = recall_score(y_train, xgb.predict(X_train))
recall_test = recall_score(y_test, xgb.predict(X_test))
print(f"Recall score training: {recall_train:.4f}")
print(f"Recall score test: {recall_test:.4f}")

Executing the snippet generates the following output:

Recall score training: 1.0000
Recall score test: 0.8163

We can conclude that the model is overfitted to the training data and ideally we should try to 
fix that by, for example, using stronger regularization while training the XGBoost model. To 
keep the exercise concise, we assume that the model is good to go for further analysis.

 Similarly to investigating feature importance, we should first make sure that the 
model has satisfactory performance on the validation/test set before we start 
explaining its predictions.
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3.	 Plot the ICE curves:

PartialDependenceDisplay.from_estimator(
    xgb, X_train, features=["V4"], 
    kind="individual", 
    subsample=5000, 
    line_kw={"linewidth": 2},
    random_state=RANDOM_STATE
) 
plt.title("ICE curves of V4")

Executing the snippet generates the following plot:

Figure 14.35: The ICE plot of the V4 feature, created using 5,000 random samples from the 
training data

Figure 14.35 presents the ICE curves for the V4 feature, calculated using 5,000 random obser-
vations from the training data. In the plot, we can see that the vast majority of the observations 
are located around 0, while a few of the curves show quite a significant change in predicted 
probability.

The black marks at the bottom of the plot indicate the percentiles of the feature values. By 
default, the ICE plot and PDP are constrained to the 5th and 95th percentiles of the feature 
values; however, we can change this using the percentiles argument.
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A potential issue with the ICE curves is that it might be hard to see if the curves differ between 
observations, as they start at different predictions. A solution would be to center the curves 
at a certain point and display only the difference in the prediction compared to that point.

4.	 Plot the centered ICE curves:

PartialDependenceDisplay.from_estimator(
    xgb, X_train, features=["V4"], 
    kind="individual", 
    subsample=5000,
    centered=True,
    line_kw={"linewidth": 2},
    random_state=RANDOM_STATE
)
plt.title("Centered ICE curves of V4")

Executing the snippet generates the following plot:

Figure 14.36: The centered ICE plot of the V4 feature, created using 5,000 random samples 
from the training data

The interpretation of the centered ICE curves is only slightly different. Instead of looking at 
the impact of changing the value of a feature on the prediction, we look at the relative change 
in the prediction, as compared to the average prediction. This way, it is easier to analyze the 
direction of the change in the predicted value.
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5.	 Generate the Partial Dependence Plot:

PartialDependenceDisplay.from_estimator(
    xgb, X_train, 
    features=["V4"], 
    random_state=RANDOM_STATE
)
plt.title("Partial Dependence Plot of V4")

Executing the snippet generates the following plot:

Figure 14.37: The Partial Dependence Plot of the V4 feature, prepared using the training data

By analyzing the plot, on average there seems to be a very small increase in the predicted 
probability with the increase of the V4 feature.

Similar to the ICE curves, we can also center the PDP.
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To get some further insights, we can generate the PDP together with the ICE curves. We can 
do so using the following snippet:

PartialDependenceDisplay.from_estimator(
    xgb, X_train, features=["V4"], 
    kind="both", 
    subsample=5000, 
    ice_lines_kw={"linewidth": 2},
    pd_line_kw={"color": "red"},
    random_state=RANDOM_STATE
) 
plt.title("Partial Dependence Plot of V4, together with ICE curves")

Executing the snippet generates the following plot:

Figure 14.38: The Partial Dependence Plot of the V4 feature (prepared using the training 
data), together with the ICE curves



Advanced Concepts for Machine Learning Projects632

As we can see, the partial dependence (PD) line is almost horizontal at 0. Because of the differ-
ences in scale (please refer to Figure 14.37), the PD line is virtually meaningless in such a plot. 
To make the plot more readable or easier to interpret, we could try restricting the range of thy 
a-axis using the plt.ylim function. This way, we would focus on the area with the majority 
of the ICE curves, while neglecting the few ones that are far away from the bulk of the curves. 
However, we should keep in mind that those outlier curves are also important for the analysis.

6.	 Generate the individual PDPs of two features and a joint one:

fig, ax = plt.subplots(figsize=(20, 8))

PartialDependenceDisplay.from_estimator(
    xgb,
    X_train.sample(20000, random_state=RANDOM_STATE),
    features=["V4", "V8", ("V4", "V8")],
    centered=True,
    ax=ax
)
ax.set_title("Centered Partial Dependence Plots of V4 and V8")

Executing the snippet generates the following plot:

Figure 14.39: The centered Partial Dependence Plot of the V4 and V8 features, individually 
and jointly

By jointly plotting the PDPs of two features, we are able to visualize the interactions among 
them. By looking at Figure 14.39 we could draw a conclusion that the V4 feature is more im-
portant, as most of the lines visible in the rightmost plot are perpendicular to the V4 axis and 
parallel to the V8 axis. However, there is some shift in the decision lines determined by the V8 
feature, for example, around the 0.25 value.
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7.	 Instantiate an explainer and calculate the SHAP values:

explainer = shap.TreeExplainer(xgb)
shap_values = explainer.shap_values(X)
explainer_x = explainer(X)

The shap_values object is a 284807 by 29 numpy array containing the calculated SHAP values.

8.	 Generate the SHAP summary plot:

shap.summary_plot(shap_values, X)

Executing the snippet generates the following plot:

Figure 14.40: The summary plot calculated using SHAP values
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When looking at the summary plot, we should be aware of the following:

•	 Features are sorted by the sum of the SHAP value magnitudes (absolute values) across 
all observations.

•	 The color of the points shows if that feature had a high or low value for that observation.
•	 The horizontal location on the plot shows whether the effect of that feature’s value 

resulted in a higher or lower prediction.
•	 By default, the plots display the 20 most important features. We can adjust that using 

the max_display argument.
•	 Overlapping points are jittered in the y axis direction. Hence, we can get a sense of the 

distribution of the SHAP values per feature.
•	 An advantage of this type of plot over other feature importance metrics (for example, 

permutation importance) is that it contains more information that can help with un-
derstanding the global feature importance. For example, let’s assume that a feature 
is of medium importance. Using this plot, we could see if that medium importance 
corresponds to the feature values having a large effect on the prediction for a few 
observations, but in general no effect. Or maybe it had a medium-sized effect on all 
predictions.

Having discussed the overall considerations, let’s mention a few observations from Figure 14.40:

•	 Overall, high values of the V4 feature (the most important one) contributed to higher 
predictions, while lower values resulted in lower predictions (observation being less 
likely to be a fraudulent one).

•	 The overall effect of the V14 feature on the prediction was negative, but for quite a few 
observations with a low value of that feature, it resulted in a higher prediction.

Alternatively, we can present the same information using a bar chart. Then, we focus on the 
aggregate feature importance, while ignoring the insights into feature effects:

shap.summary_plot(shap_values, X, plot_type="bar")
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Executing the snippet generates the following plot:

Figure 14.41: The summary plot (bar chart) calculated using the SHAP values

Naturally, the order of the features (their importance) is the same as in Figure 14.40. We could 
use this plot as an alternative to the permutation feature importance. However, we should 
then keep in mind the underlying differences. Permutation feature importance is based on 
the decrease in model performance (measured using a metric of choice), while SHAP is based 
on the magnitude of feature attributions.
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9.	 Locate an observation belonging to the positive and negative classes:

negative_ind = y[y == 0].index[0]
positive_ind = y[y == 1].index[0]

10.	 Explain those observations:

shap.force_plot(
    explainer.expected_value,
    shap_values[negative_ind, :],
    X.iloc[negative_ind, :]
)

Executing the snippet generates the following plot:

Figure 14.42: An (abbreviated) force plot explaining an observation belonging to the neg-
ative class

In a nutshell, the force plot shows how features contribute to pushing the prediction from 
the base value (average prediction) to the actual prediction. As the plot contained much more 
information and it was too wide to fit the page, we only present the most relevant part. Please 
refer to the accompanying Jupyter notebook to inspect the full plot. 

Below are some of the observations we can make based on Figure 14.42:

•	 The base value (-8.589) is the average prediction of the entire dataset.
•	 f(x) = -13.37 is the prediction of this observation.
•	 We can interpret the arrows as the impact of given features on the prediction. The red 

arrows indicate an increase in the prediction. The blue arrows indicate a decrease in 
the prediction. The size of the arrows corresponds to the magnitude of the feature’s 
effect. The values by the feature names show the feature values.

•	 If we subtract the total length of the red arrows from the total length of the blue arrows, 
we will get the distance from the base value to the final prediction.

•	 As such, we can see that the biggest contributor to the decrease in the prediction 
(compared to the average prediction) was feature V14's value of -0.3112.

 We can get an even more concise representation of the summary chart using the 
following command: shap.plots.bar(explainer_x).
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We then follow the same step for the positive observation:

shap.force_plot(
    explainer.expected_value,
    shap_values[positive_ind, :],
    X.iloc[positive_ind, :]
)

Executing the snippet generates the following plot:

Figure 14.43: An (abbreviated) force plot explaining an observation belonging to the positive 
class

Compared to Figure 14.42, we can clearly see how outbalanced the blue features (negatively im-
pacting the prediction, labeled lower) are compared to the red ones (labeled higher). We can also 
see that both figures have the same base value, as this is the dataset’s average predicted value.

11.	 Create a waterfall plot for the positive observation:

shap.plots.waterfall(explainer(X)[positive_ind])

Executing the snippet generates the following plot:

Figure 14.44: A waterfall plot explaining an observation from the positive class
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Inspecting Figure 14.44 reveals many similarities to Figure 14.43, as both plots are explaining 
the very same observation using a slightly different visualization. Hence, most of the insights 
on interpreting the waterfall plot are the same as for the force plot. Some nuances include:

•	 The bottom of the plot starts at the baseline value (the model’s average prediction). 
Then, each row shows the positive or negative contribution of each feature that leads 
to the model’s final prediction for that particular observation.

•	 SHAP explains XGBoost classifiers in terms of their margin output. This means that 
the units on the x axis are log-odds units. A negative value implies probabilities lower 
than 0.5 that the observation was a fraudulent one.

•	 The least impactful features are collapsed into a joint term. We can control that using 
the max_display argument of the function.

12.	 Create a dependence plot of the V4 feature:

shap.dependence_plot("V4", shap_values, X)

Executing the snippet generates the following plot:

Figure 14.45: A dependence plot visualizing the dependence between the V4 and V12 features

Some things to know about a dependence plot:

•	 It is potentially the simplest global interpretation plot.
•	 This type of plot is an alternative to Partial Dependence Plots. While PDPs show the average 

effects, the SHAP dependence plot additionally shows the variance on the y axis. Hence it 
contains information about the distribution of effects.
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•	 The plot presents the feature’s value (x axis) vs. the SHAP value of that feature (y axis) across 
all the observations in the dataset. Each dot represents a single observation.

•	 Given we are explaining an XGBoost classification model, the unit of the y axis is the log odds 
of being a fraudulent case.

•	 The color corresponds to a second feature that may have an interaction effect with the feature 
we specified. It is automatically selected by the shap library. The documentation states that if 
an interaction effect is present between the two features, it will show up as a distinct vertical 
pattern of coloring. In other words, we should look out for clear vertical spreads between 
colors for the same values on the x axis.

To complete the analysis, we can mention a potential conclusion from Figure 14.45. Unfortunately, it 
will not be quite intuitive, as the features were anonymized.

For example, let’s look at observations with the value of feature V4 around 5. For those samples, ob-
servations with lower values of feature V12 are more likely to be fraudulent than the observations 
with higher values of the V12 feature.

How it works…
After importing the libraries, we trained an XGBoost model to detect credit card fraud.

In Step 3, we plotted the ICE curves using PartialDependenceDisplay class. We had to provide the fitted 
model, the dataset (we used the training set), and the feature(s) of interest. Additionally, we provided 
the subsample argument, which specified the number of random observations from the dataset for 
which the ICE curves were plotted. As the dataset has over 200,000 observations, we arbitrarily chose 
5,000 as a manageable number of curves to be plotted.

The from_estimator method of PartialDependenceDisplay also accepts the kind argument, which 
can take the following values:

•	 kind="individual"—the method will plot the ICE curves.
•	 kind="average"—the method will display the Partial Dependence Plot.
•	 kind="both"—the method will display both the PDP and ICE curves.

In Step 4, we plotted the same ICE curves; however, we centered them at the origin. We did so by set-
ting the centered argument to True. This effectively subtracts the average target value from the target 
vector and centers the target value at 0.

 We have mentioned that the grid used for calculating the ICE curves most frequently 
consists of all the unique values available in the dataset. scikit-learn by default creates 
an equally spaced grid, covering the range between the extreme values of the feature. We 
can customize the grid’s density using the grid_resolution argument.
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In Step 5, we plotted the Partial Dependence Plot, also using the  
PartialDependenceDisplay.from_estimator. As the PDP is the default value, we did not have to 
specify the kind argument. We also showed the outcome of plotting both the PDP and ICE curves 
in the same figure. As plotting the two-way PDP takes quite a bit of time, we sampled (without 
replacement) 20,000 observations from the training set.

In Step 6, we created a more complex figure using the same functionality of PartialDependenceDisplay. 
In one figure, we plotted the individual PD plots of two features (V4 and V8), and their joint (also called 
two-way) PD plot. To obtain the last one, we had to provide the two features of interest as a tuple. By 
specifying features=["V4", "V8", ("V4", "V8")], we indicated that we wanted to plot two individual 
PD plots and then a joint one for the two features. Naturally, there is no need to plot all 3 plots in the 
same figure. We could have used features=[("V4", "V8")] to create just the joint PDP.

In Step 7, we instantiated the explainer object, which is the primary class used to explain any ML/DL 
model using the shap library. To be more precise, we used the TreeExplainer class, as we were trying 
to explain an XGBoost model, that is, a tree-based model. Then, we calculated the SHAP values using 
the shap_values method of the instantiated explainer. To explain the model’s predictions, we used 
the entire dataset. At this point, we could have also decided to use the training or validation/test sets.

 One thing to keep in mind about PartialDependenceDisplay is that it treats categorical 
features as numeric.

 Partial Dependence Plots are also available in the pdpbox library.

Another interesting angle to explore would be to overlay two Partial Dependence Plots, 
calculated for the same feature but using different ML models. Then we could compare 
if the expected impact on the prediction is similar across different models.

 We have focused on plotting the ICE curves and the Partial Dependence line. However, 
we can also calculate those values without automatically plotting them. To do so, we can 
use the partial_dependence function. It returns a dictionary containing 3 elements: the 
values that create the evaluated grid, the predictions for all the points in the grid for all 
samples in the dataset (used for ICE curves), and the averaged values of the predictions 
for each point in the grid (used for the PDP).
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In Step 8, we started with global explanation approaches. We generated two variants of a summary 
plot using the shap.summary_plot function. The first one was a density scatterplot of SHAP values 
for each of the features. It combines the overall feature importance with feature effects. We can use 
that information to evaluate the impact each feature has on the model’s predictions (also on the ob-
servation level).

The second one was a bar chart, showing the average of the absolute SHAP values across the entire 
dataset. In both cases, we can use the plot to infer the feature importance calculated using SHAP values; 
however, the first plot provides additional information. To generate this plot, we had to additionally 
pass plot_type="bar" while calling the shap.summary_plot function.

After looking at the global explanations, we wanted to look into local ones. To make the analysis more 
interesting, we wanted to present the explanations for observations belonging to both the negative 
and positive classes. That is why in Step 9 we identified the indices of such observations.

In Step 10, we used shap.force_plot to explain observation-level predictions of both observations. 
While calling the function, we had to provide three inputs:

•	 The baseline value (the average prediction for the entire dataset), which is available in the 
explainer object (explainer.expected_value)

•	 The SHAP values for the particular observation
•	 The feature values of the particular observation

In Step 11, we also created an observation-level plot explaining the predictions; however, we used a 
slightly different representation. We created a waterfall plot (using the shap.plots.waterfall func-
tion) to explain the positive observation. The only thing worth mentioning is that the function expects 
a single row of an Explanation object as input.

In the last step, we created a SHAP dependence plot (a global-level explanation) using the  
shap.dependence_plot function. We had to provide the feature of interest, the SHAP values, and the 
feature values. As the considered feature, we selected the V4 one as it was identified as the most import-
ant one by the summary plot. The second feature (V12) was determined automatically by the library.

There’s more…
In this recipe, we have only provided a glimpse of the field of XAI. The field is constantly growing, as 
explainable methods are becoming more and more important for practitioners and businesses.

Another popular XAI technique is called LIME, which stands for Local Interpretable Model-Agnostic 
Explanations. It is an observation-level approach used for explaining the predictions of any model 
in an interpretable and faithful manner. To obtain the explanations, LIME locally approximates the 
selected hard-to-explain model with an interpretable one (such as linear models with regularization). 

By definition, SHAP values are very complicated to compute (an NP-hard class problem). 
However, thanks to the simplicity of linear models, we can read the SHAP values from a 
partial dependence plot. Please refer to shap's documentation for more information on 
this topic.
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The interpretable models are trained on small perturbations (with additional noise) of the original 
observations, thus providing a good local approximation.

Treeinterpreter is another observation-level XAI method useful for explaining Random Forest models. 
The idea is to use the underlying trees to explain how each feature contributes to the end result. The 
prediction is defined as the sum of each feature’s contributions and the average given by the initial 
node that is based on the entire training set. Using this approach, we can observe how the value of 
the prediction changes along the prediction path within the decision tree (after every split), combined 
with the information on which features caused the split, that is, a change in prediction.

Naturally, there are many more available approaches, for example:

•	 Ceteris-paribus profiles
•	 Break-down plots
•	 Accumulated Local Effects (ALE)
•	 Global surrogate models
•	 Counterfactual explanations
•	 Anchors 

We recommend investigating the following Python libraries focusing on AI explainability:

•	 shapash—compiles various visualizations from SHAP/LIME as an interactive dashboard in the 
form of a web app.

•	 explainerdashboard—prepares a dashboard web app that explains scikit-learn-compatible 
ML models. The dashboard covers model performance, feature importance, feature contri-
butions to individual predictions, a “what if” analysis, PDPs, SHAP values, visualization of 
individual decision trees, and more.

•	 dalex—the library covers various XAI methods, including variable importance, PDPs and ALE 
plots, breakdown and SHAP waterfall plots, and more.

•	 interpret—the InterpretML library was created by Microsoft. It covers popular explanation 
methods of black-box models (such as PDPs, SHAP, LIME, and so on) and allows you to train so-
called glass-box models, which are interpretable. For example, ExplainableBoostingClassifier 
is designed to be fully interpretable, but at the same time provides similar accuracy to the 
state-of-the-art algorithms.

•	 eli5—an explainability library that provides various global and local explanations. It also 
covers text explanation (powered by LIME) and permutation feature importance.

•	 alibi—a library focusing on model inspection and interpretation. It covers approaches such 
as anchors explanations, integrated gradients, counterfactual examples, the Contrastive Ex-
planation Method, and accumulated local effects.
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See also
Additional resources are available here:

•	 Biecek, P., & Burzykowski, T. 2021. Explanatory model analysis: Explore, explain and examine 
predictive models. Chapman and Hall/CRC.

•	 Friedman, J. H. 2001. “Greedy function approximation: a gradient boosting machine.” Annals 
of Statistics: 1189–1232.

•	 Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. 2015. “Peeking inside the black box: Visualizing 
statistical learning with plots of individual conditional expectation.” Journal of Computational 
and Graphical Statistics, 24(1): 44–65.

•	 Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. 2009. The Elements of Statistical 
Learning: Data Mining, Inference, and Prediction, 2: 1–758). New York: Springer.

•	 Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., ... & Lee, S. I. 2020. 
“From local explanations to global understanding with explainable AI for trees.” Nature Machine 
Intelligence, 2(1): 56–67.

•	 Lundberg, S. M., Erion, G. G., & Lee, S. I. 2018. “Consistent individualized feature attribution 
for tree ensembles.” arXiv preprint arXiv:1802.03888.

•	 Lundberg, S. M., & Lee, S. I. 2017. A unified approach to interpreting model predictions. Ad-
vances in Neural Information Processing Systems, 30.

•	 Molnar, C. 2020. Interpretable machine learning. https://christophm.github.io/
interpretable-ml-book/.

•	 Ribeiro, M.T., Singh, S., & Guestrin, C. 2016. “Why should I trust you?: Explaining the predictions 
of any classifier.” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. ACM. 

•	 Saabas, A. Interpreting random forests. http://blog.datadive.net/interpreting-random-
forests/.

Summary
In this chapter, we have covered a wide variety of useful concepts that can help with improving almost 
any ML or DL project. We started by exploring more complex classifiers (which also have their corre-
sponding variants for regression problems), considering alternative approaches to encoding categor-
ical features, creating stacked ensembles, and looking into possible solutions to class imbalance. We 
also showed how to use the Bayesian approach to hyperparameter tuning, in order to find an optimal 
set of hyperparameters faster than using the more popular yet uninformed grid search approaches.

We have also dived into the topic of feature importance and AI explainability. This way, we can better 
understand what is happening in the so-called black box models. This is crucial not only for the people 
working on the ML/DL project but also for any business stakeholders. Additionally, we can combine 
those insights with feature selection techniques to potentially further improve a model’s performance 
or reduce its training time.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
http://blog.datadive.net/interpreting-random-forests/
http://blog.datadive.net/interpreting-random-forests/
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Naturally, the data science field is constantly growing and more and more useful tools are becoming 
available every day. We cannot cover all of them, but below you can find a short list of libraries/tools 
that you might find useful in your projects:

•	 DagsHub—a platform similar to GitHub, but tailor-made for data scientists and machine learning 
practitioners. By integrating powerful open-source tools such as Git, DVC, MLFlow, and Label 
Studio and doing the DevOps heavy lifting for its users, you can easily build, manage and scale 
your ML project - all in one place.

•	 deepchecks—an open-source Python library for testing ML/DL models and data. We can use 
the library for various testing and validation needs throughout our projects; for example, we 
can verify our data’s integrity, inspect the features’ and target’s distributions, confirm valid 
data splits, and evaluate the performance of our models.

•	 DVC—an open-source version control system for ML projects. Using DVC (data version control), 
we can store the information about different versions of our data (be it tabular, images, or 
something else) and models in Git, while storing the actual data elsewhere (cloud storage like 
AWS, GCS, Google Drive, and so on). Using DVC, we can also create reproducible data pipelines, 
while storing the intermediate versions of the datasets along the way. And to make using it 
easier, DVC uses the same syntax as Git.

•	 MLFlow—an open-source platform for managing the ML life cycle. It covers aspects such as 
experimentation, reproducibility, deployment, and model registry.

•	 nannyML—an open-source Python library for post-deployment data science. We can use it 
to identify data drift (a change in the distribution of the features between the data used for 
training a model and inference in production) or to estimate the model’s performance in the 
absence of ground truth. The latter one can be especially interesting for projects in which the 
ground truth becomes available after a long period of time, for example, a loan default within 
multiple months from the moment of making the prediction.

•	 pycaret—an open-source, low-code Python library that automates a lot of the components of 
ML workflows. For example, we can train and tune dozens of machine learning models for a 
classification or regression task using as little as a few lines of code. It also contains separate 
modules for anomaly detection or time series forecasting.
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Deep Learning in Finance

In recent years, we have seen many spectacular successes achieved by means of deep learning tech-
niques. Deep neural networks have been successfully applied to tasks in which traditional machine 
learning algorithms could not succeed—large-scale image classification, autonomous driving, and 
superhuman performance when playing traditional games such as Go or classic video games (from 
Super Mario to StarCraft II). Almost yearly, we can observe the introduction of a new type of network 
that achieves state-of-the-art (SOTA) results and breaks some kind of performance record.

With the constant improvement in commercially available Graphics Processing Units (GPUs), the 
emergence of freely available processing power involving CPUs/GPUs (Google Colab, Kaggle, and so on), 
and the rapid development of different frameworks, deep learning continues to gain more and more 
attention among researchers and practitioners who want to apply the techniques to their business cases.

In this chapter, we are going to show two possible use cases of deep learning in the financial domain—
predicting credit card default (a classification task) and forecasting time series. Deep learning proves 
to deliver great results with sequential data such as speech, audio, and video. That is why it naturally 
fits into working with sequential data such as time series—both univariate and multivariate. Financial 
time series are known to be erratic and complex, hence the reason why it is such a challenge to model 
them. Deep learning approaches are especially apt for the task, as they make no assumptions about 
the distribution of the underlying data and can be quite robust to noise.

In this chapter, we present the following recipes:

•	 Exploring fastai’s Tabular Learner
•	 Exploring Google’s TabNet

 In the first edition of the book, we focused on the traditional NN architectures used for 
time series forecasting (CNN, RNN, LSTM, and GRU) and their implementation in PyTorch. 
In this book, we will be using more complex architectures with the help of dedicated 
Python libraries. Thanks to those, we do not have to recreate the logic of the NNs and we 
can focus on the forecasting challenges instead.
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•	 Time series forecasting with Amazon’s DeepAR 
•	 Time series forecasting with NeuralProphet

Exploring fastai’s Tabular Learner
Deep learning is not often associated with tabular or structured data, as this kind of data comes with 
some possible questions:

•	 How should we represent features in a way that can be understood by the neural networks? In 
tabular data, we often deal with numerical and categorical features, so we need to correctly 
represent both types of inputs.

•	 How do we use feature interactions, both between the features themselves and the target?
•	 How do we effectively sample the data? Tabular datasets tend to be smaller than typical datasets 

used for solving computer vision or NLP problems. There is no easy way to apply augmenta-
tion, such as random cropping or rotation in the case of images. Also, there is no general large 
dataset with some universal properties, based on which we could easily apply transfer learning.

•	 How do we interpret the predictions of a neural network?

That is why practitioners tend to use traditional machine learning approaches (often based on some 
kind of gradient-boosted trees) to approach tasks involving structured data. However, a potential benefit 
of using deep learning for structured data is the fact that it requires much less feature engineering 
and domain knowledge.

In this recipe, we present how to successfully use deep learning for tabular data. To do so, we use the 
popular fastai library, which is built on top of PyTorch.

Some of the benefits of working with the fastai library are:

•	 It provides a selection of APIs that greatly simplify working with Artificial Neural Networks 
(ANNs)—from loading and batching the data to training the model

•	 It incorporates a selection of empirically tested best approaches to using deep learning for 
various tasks, such as image classification, NLP, and tabular data (both classification and 
regression problems)

•	 It handles the data preprocessing automatically—we just need to define which operations we 
want to apply

What makes fastai stand out is the use of entity embedding (or embedding layers) for categorical data. 
By using it, the model can learn some potentially meaningful relationships between the observations 
of categorical features. You can think of embeddings as latent features. For each categorical column, 
there is a trainable embedding matrix and each unique value has a designated vector mapped to it. 
Thankfully, fastai does all of that for us. 
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Using entity embedding comes with quite a few advantages. First, it reduces memory usage and speeds 
up the training of neural networks as compared to using one-hot encoding. Second, it maps similar 
values close to each other in the embedding space, which reveals the intrinsic properties of the cat-
egorical variables. Third, the technique is especially useful for datasets with many high-cardinality 
features, when other approaches tend to result in overfitting.

In this recipe, we apply deep learning to a classification problem based on the credit card default dataset. 
We have already used this dataset in Chapter 13, Applied Machine Learning: Identifying Credit Default.

How to do it…
Execute the following steps to train a neural network to classify defaulting customers:

1.	 Import the libraries:

from fastai.tabular.all import *
from sklearn.model_selection import train_test_split
from chapter_15_utils import performance_evaluation_report_fastai
import pandas as pd

2.	 Load the dataset from a CSV file:

df = pd.read_csv("../Datasets/credit_card_default.csv",
                 na_values="")

3.	 Define the target, lists of categorical/numerical features, and preprocessing steps:

TARGET = "default_payment_next_month"

cat_features = list(df.select_dtypes("object").columns)
num_features = list(df.select_dtypes("number").columns)
num_features.remove(TARGET)

preprocessing = [FillMissing, Categorify, Normalize]

4.	 Define the splitter used to create training and validation sets:

splits = RandomSplitter(valid_pct=0.2, seed=42)(range_of(df))
splits

Executing the snippet generates the following previews of the datasets:

((#24000) [27362,16258,19716,9066,1258,23042,18939,24443,4328,4976...],
 (#6000) [7542,10109,19114,5209,9270,15555,12970,10207,13694,1745...])
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5.	 Create the TabularPandas dataset:

tabular_df = TabularPandas(
    df,
    procs=preprocessing,
    cat_names=cat_features,
    cont_names=num_features,
    y_names=TARGET,
    y_block=CategoryBlock(),
    splits=splits
)

PREVIEW_COLS = ["sex", "education", "marriage",
                "payment_status_sep", "age_na", "limit_bal",
                "age", "bill_statement_sep"]
tabular_df.xs.iloc[:5][PREVIEW_COLS]

Executing the snippet generates the following preview of the dataset:

Figure 15.1: The preview of the encoded dataset

We printed only a small selection of columns to keep the DataFrame readable. We can observe 
the following:

•	 The categorical columns are encoded using a label encoder
•	 The continuous columns are normalized
•	 The continuous column that had missing values (age) has an extra column with an 

encoding indicating whether the particular value was missing before imputation

6.	 Define a DataLoaders object from the TabularPandas dataset:

data_loader = tabular_df.dataloaders(bs=64, drop_last=True)
data_loader.show_batch()
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Executing the snippet generates the following preview of the batch:

Figure 15.2: The preview of a batch from the DataLoaders object

As we can see in Figure 15.2, the features here are in their original representation.

7.	 Define the metrics of choice and the tabular learner:

recall = Recall()
precision = Precision()
learn = tabular_learner(
    data_loader,
    [500, 200],
    metrics=[accuracy, recall, precision]
)
learn.model

Executing the snippet prints the schema of the model:

TabularModel(
  (embeds): ModuleList(
    (0): Embedding(3, 3)
    (1): Embedding(5, 4)
    (2): Embedding(4, 3)
    (3): Embedding(11, 6)
    (4): Embedding(11, 6)
    (5): Embedding(11, 6)
    (6): Embedding(11, 6)
    (7): Embedding(10, 6)
    (8): Embedding(10, 6)
    (9): Embedding(3, 3)
  )
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  (emb_drop): Dropout(p=0.0, inplace=False)
  (bn_cont): BatchNorm1d(14, eps=1e-05, momentum=0.1, affine=True, track_
running_stats=True)
  (layers): Sequential(
    (0): LinBnDrop(
      (0): Linear(in_features=63, out_features=500, bias=False)
      (1): ReLU(inplace=True)
      (2): BatchNorm1d(500, eps=1e-05, momentum=0.1, affine=True, track_
running_stats=True)
    )
    (1): LinBnDrop(
      (0): Linear(in_features=500, out_features=200, bias=False)
      (1): ReLU(inplace=True)
      (2): BatchNorm1d(200, eps=1e-05, momentum=0.1, affine=True, track_
running_stats=True)
    )
    (2): LinBnDrop(
      (0): Linear(in_features=200, out_features=2, bias=True)
    )
  )
)

To provide an interpretation of the embeddings, Embedding(11, 6) means that a categorical 
embedding was created with 11 input values and 6 output latent features.

8.	 Find the suggested learning rate:

learn.lr_find()

Executing the snippet generates the following plot:
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Figure 15.3: The suggested learning rate for our model

It also prints the following output with the exact value of the suggested learning rate:

SuggestedLRs(valley=0.0010000000474974513)

9.	 Train the tabular learner:

learn.fit(n_epoch=25, lr=1e-3, wd=0.2)

While the model is training, we can observe the updates of its performance after each epoch. 
We present a snippet below.

Figure 15.4: The first 10 epochs of the Tabular learner’s training
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In the first 10 epochs, the losses are still a bit erratic and increase/decrease over time. The 
same goes for the evaluation metrics.

10.	 Plot the losses:

learn.recorder.plot_loss()

Executing the snippet generates the following plot:

Figure 15.5: The training and validation loss over training time (batches)

We can observe that the validation loss plateaued a bit, with some bumps every now and then. 
It might mean that the model is a bit too complex for our data and we might want to reduce 
the size of the hidden layers.

11.	 Define the validation DataLoaders:

valid_data_loader = learn.dls.test_dl(df.loc[list(splits[1])])

12.	 Evaluate the performance on the validation set:

learn.validate(dl=valid_data_loader)

Executing the snippet generates the following output:

(#4)[0.424113571643829,0.8248333334922,0.36228482003129,0.66237482117310]

These are the metrics for the validation set: loss, accuracy, recall, and precision.
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13.	 Get predictions for the validation set:

preds, y_true = learn.get_preds(dl=valid_data_loader)

y_true contains the actual labels from the validation set. The preds object is a tensor containing 
the predicted probabilities. It looks as follows:

tensor([[0.8092, 0.1908],
        [0.9339, 0.0661],
        [0.8631, 0.1369],
        ...,
        [0.9249, 0.0751],
        [0.8556, 0.1444],
        [0.8670, 0.1330]])

To get the predicted classes from it, we can use the following command:

preds.argmax(dim=-1)

14.	 Inspect the performance evaluation metrics:

perf = performance_evaluation_report_fastai(
    learn, valid_data_loader, show_plot=True
)

Executing the snippet generates the following plot:

Figure 15.6: The performance evaluation of the Tabular learner’s prediction of the valida-
tion set
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The perf object is a dictionary containing various evaluation metrics. We have not presented it here 
for brevity, but we can also see that accuracy, precision, and recall have the same values as we saw 
in Step 12.

How it works…
In Step 2, we loaded the dataset into Python using the read_csv function. While doing so, we indicated 
which symbol represents the missing values.

In Step 3, we identified the dependent variable (the target), as well as both numerical and categorical 
features. To do so, we used the select_dtypes methods and indicated which data type we wanted to 
extract. We stored the features in lists. We also had to remove the dependent variable from the list 
containing the numerical features. Lastly, we created a list containing all the transformations we 
wanted to apply to the data. We selected the following:

•	 FillMissing: Missing values will be filled depending on the data type. In the case of categor-
ical variables, missing values become a separate category. In the case of continuous features, 
the missing values are filled using the median of the feature’s values (default approach), the 
mode, or with a constant value. Additionally, an extra column is added with a flag whether 
the value was missing or not.

•	 Categorify: Maps categorical features into their integer representation.
•	 Normalize: Features’ values are transformed such that they have zero mean and unit variance. 

This makes training neural networks easier.

It is important to note that the same transformations will be applied to both the training and validation 
sets. To prevent data leakage, the transformations are based solely on the training set.

In Step 4, we defined a split used for creating the training and validation sets. We used the RandomSplitter 
class, which does a stratified split under the hood. We indicated we wanted to split the data using the 
80-20 ratio. Additionally, after instantiating the splitter, we also had to use the range_of function, 
which returns a list containing all the indices of our DataFrame.

In Step 5, we created a TabularPandas dataset. It is a wrapper around a pandas DataFrame, which adds 
a few convenient utilities on top—it handles all the preprocessing and splitting. While instantiating the 
TabularPandas class, we provided the original DataFrame, a list containing all the preprocessing steps, 
the names of the target and the categorical/continuous features, and the splitter object we defined 
in Step 4. We also specified y_block=CategoryBlock(). We have to do so when we are working with a 
classification problem and the target was already encoded into a binary representation (a column of 
zeroes and ones). Otherwise, it might be confused with a regression problem.

We can easily convert a TabularPandas object into a regular pandas DataFrame. We can use the xs 
method to extract the features and the ys method to extract the target. Additionally, we can use the 
cats and conts methods to extract categorical and continuous features, respectively. If we use any 
of the four methods directly on the TabularPandas object, we will extract the entire dataset. Alter-
natively, we can use the train and valid accessors to extract only one of the sets. For example, to 
extract the validation set features from a TabularPandas object called tabular_df, we could use the 
following snippet:

tabular_df.valid.xs
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In Step 6, we converted the TabularPandas object into a DataLoaders object. To do so, we used the 
dataloaders method of the TabularPandas dataset. Additionally, we specified a batch size of 64 and 
that we wanted to drop the last incomplete batch. We displayed a sample batch using the show_batch 
method.

In Step 7, we defined the learner using tabular_learner. First, we instantiated additional metrics: 
precision and recall. When using fastai, metrics are expressed as classes (the name is spelled in 
uppercase) and we first need to instantiate them before passing them to the learner.

Then, we instantiated the learner. This is the place where we defined the network’s architecture. We 
decided to use a network with two hidden layers, with 500 and 200 neurons, respectively. Choosing the 
network’s architecture can often be considered more an art than science and may require a significant 
amount of trial and error. Another popular approach is to use an architecture that worked before for 
someone else, for example, based on academic papers, Kaggle competitions, blog articles, and so on. 
As for the metrics, we wanted to consider accuracy and the previously mentioned precision and recall.

As in the case of machine learning, it is crucial to prevent overfitting with neural networks. We want 
the networks to be able to generalize to new data. Some of the popular techniques used for tackling 
overfitting include the following:

•	 Weight decay: Each time the weights are updated, they are multiplied by a factor smaller than 
1 (a rule of thumb is to use values between 0.01 and 0.1).

•	 Dropout: While training the NN, some activations are randomly dropped for each mini-batch. 
Dropout can also be used for the concatenated vector of embeddings of categorical features.

•	 Batch normalization: This technique reduces overfitting by making sure that a small number 
of outlying inputs does have too much impact on the trained network.

Then, we inspected the model’s architecture. In the output, we first saw the categorical embeddings 
and the corresponding dropout, or in this case, the lack of it. Then, in the (layers) section, we saw 
the input layer (63 input and 500 output features), followed by the ReLU (Rectified Linear Unit) acti-
vation function, and batch normalization. Potential dropout is governed in the LinBnDrop layer. The 
same steps were repeated for the second hidden layer and then the last linear layer produced the 
class probabilities.

 We could have also created a DataLoaders object directly from a CSV file 
instead of converting a pandas DataFrame. To do so, we could use the  
TabularDataLoaders.from_csv functionality.

 fastai uses a rule to determine the embedding size. The rule was chosen empirically 
and it selects the lower of either 600, or 1.6 multiplied by the cardinality of a variable to 
the power of 0.56. To figure out the embedding size manually, you can use the get_emb_sz 
function. tabular_learner does it under the hood if the size was not specified manually.
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In Step 8, we tried to determine the “good” learning rate. fastai provides a helper method,  
lr_find, which facilitates the process. It begins to train the network while increasing the learning 
rate—it starts with a very low one and increases to a very large one. Then, it plots the losses against the 
learning rates and displays the suggested value. We should aim for a value that is before the minimum 
value, but where the loss still improves (decreases).

In Step 9, we trained the neural network using the fit method of the learner. We’ll briefly describe 
the training algorithm. The entire training set is divided into batches. For each batch, the network 
is used to make predictions, which are compared to the target values and used to calculate the error. 
Then, the error is used to update the weights in the network. An epoch is a complete run through all 
the batches, in other words, using the entire dataset for training. In our case, we trained the network 
for 25 epochs. We additionally specified the learning rate and weight decay. In Step 10, we plotted the 
training and validation loss over batches.

In Step 11, we defined a validation dataloader. To identify the indices of the validation set, we extracted 
them from the splitter. In the next step, we evaluated the performance of the neural network on the 
validation set using the validate method of the learner object. As input for the method, we passed 
the validation dataloader.

In Step 13, we used the get_preds method to obtain the validation set predictions. To obtain the pre-
dictions from the preds object, we had to use the argmax method.

Lastly, we used the slightly modified helper function (used in the previous chapters) to recover eval-
uation metrics such as precision and recall.

There’s more…
Some noteworthy features of fastai for tabular datasets include:

•	 Using callbacks while training neural networks. Callbacks are used to insert some custom code/
logic into the training loop at different times, for example, at the beginning of the epoch or at 
the beginning of the fitting process.

•	 fastai provides a helper function, add_datepart, which extracts a variety of features from 
columns containing dates (such as the purchase date). Some of the extracted features may 
include the day of the week, the day of the month, and a Boolean for the start/end of the 
month/quarter/year.

•	 We can use the predict method of a fitted tabular learner to predict the class directly for a 
single row of the source DataFrame.

 Without going into too much detail, by default fastai uses the (flattened) cross-entropy 
loss function (for classification tasks) and Adam (Adaptive Moment Estimation) as the 
optimizer. The reported training and validation losses come from the loss function and 
the evaluation metrics (such as recall) are not used in the training procedure.
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•	 Instead of the fit method, we can also use the fit_one_cycle method. This employs the 
super-convergence policy. The underlying idea is to train the network with a varying learning 
rate. It starts at low values, increases to the specified maximum, and goes back to low values 
again. This approach is considered to work better than choosing a single learning rate.

•	 As we were working with a relatively small dataset and a simple model, we could have quite 
easily trained the NN on a CPU. fastai naturally supports using GPUs. For more information 
on how to use a GPU, please see fastai's documentation.

•	 Using custom indices for training and validation sets. This feature comes in handy when we 
are, for example, dealing with class imbalance and want to make sure that both the training 
and validation sets contain a similar ratio of classes. We can use IndexSplitter in combina-
tion with scikit-learn's StratifiedKFold. We show an example of the implementation in 
the following snippet:

from sklearn.model_selection import StratifiedKFold

X = df.copy()
y = X.pop(TARGET)

strat_split = StratifiedKFold(
    n_splits=5, shuffle=True, random_state=42
)
train_ind, test_ind = next(strat_split.split(X, y))
ind_splits = IndexSplitter(valid_idx=list(test_ind))(range_of(df))

tabular_df = TabularPandas(
    df,
    procs=preprocessing,
    cat_names=cat_features,
    cont_names=num_features,
    y_names=TARGET,
    y_block=CategoryBlock(),
    splits=ind_splits
)

See also
For more information about fastai, we recommend the following:

•	 The fastai course website: https://course.fast.ai/.
•	 Howard, J., & Gugger, S. 2020. Deep Learning for Coders with fastai and PyTorch. O’Reilly Media. 

https://github.com/fastai/fastbook.

https://course.fast.ai/
https://github.com/fastai/fastbook
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Additional resources are available here:

•	 Guo, C., & Berkhahn, F. 2016. Entity Embeddings of Categorical Variables. arXiv preprint arX-
iv:1604.06737.

•	 Ioffe, S., & Szegedy, C. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing 
Internal Covariate Shift. arXiv preprint arXiv:1502.03167.

•	 Krogh, A., & Hertz, J. A. 1991. “A simple weight decay can improve generalization.” In Advances 
in neural information processing systems: 9950-957.

•	 Ryan, M. 2020. Deep Learning with Structured Data. Simon and Schuster.
•	 Shwartz-Ziv, R., & Armon, A. 2022. “Tabular data: Deep learning is not all you need”, Informa-

tion Fusion, 81: 84-90.
•	 Smith, L. N. 2018. A disciplined approach to neural network hyperparameters: Part 1 – learning rate, 

batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820.
•	 Smith, L. N., & Topin, N. 2019, May. Super-convergence: Very fast training of neural networks 

using large learning rates. In Artificial intelligence and machine learning for multi-domain oper-
ations applications (1100612). International Society for Optics and Photonics.

•	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014. “Dropout: 
a simple way to prevent neural networks from overfitting”, The Journal of Machine Learning 
Research, 15(1): 1929-1958.

Exploring Google’s TabNet
Another possible approach to modeling tabular data using neural networks is Google’s TabNet. As 
TabNet is a complex model, we will not describe its architecture in depth. For that, we refer you to 
the original paper (mentioned in the See also section). Instead, we provide a high-level overview of 
TabNet’s main features:

•	 TabNet uses raw tabular data without any preprocessing.
•	 The optimization procedure used in TabNet is based on gradient descent.
•	 TabNet combines the ability of neural networks to fit very complex functions and the feature 

selection properties of tree-based algorithms. By using sequential attention to choose features 
at each decision step, TabNet can focus on learning from only the most useful features.

•	 TabNet’s architecture employs two critical building blocks: a feature transformer and an at-
tentive transformer. The former processes the features into a more useful representation. The 
latter selects the most relevant features to process during the next step.

•	 TabNet also has another interesting component—a learnable mask of the input features. The 
mask should be sparse, that is, it should select a small set of features to solve the prediction 
task. In contrast to decision trees (and other tree-based models), the feature selection enabled 
by the mask allows for soft decisions. In practice, it means that a decision can be made on a 
larger range of values instead of a single threshold value.
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•	 TabNet’s feature selection is instance-wise, that is, different features can be selected for each 
observation (row) in the training data.

•	 TabNet is also quite unique as it uses a single deep learning architecture for both feature 
selection and reasoning.

•	 In contrast to the vast majority of deep learning models, TabNet is interpretable (to some extent). 
All of the design choices allow TabNet to offer both local and global interpretability. The local 
interpretability allows us to visualize the feature importances and how they are combined for 
a single row. The global one provides an aggregate measure of each feature’s contribution to 
the trained model (over the entire dataset).

In this recipe, we show how to apply TabNet (its PyTorch implementation) to the same credit card 
default dataset we covered in the previous example.

How to do it…
Execute the following steps to train a TabNet classifier using the credit card fraud dataset:

1.	 Import the libraries:

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import recall_score

from pytorch_tabnet.tab_model import TabNetClassifier
from pytorch_tabnet.metrics import Metric
import torch

import pandas as pd
import numpy as np

2.	 Load the dataset from a CSV file:

df = pd.read_csv("../Datasets/credit_card_default.csv",
                 na_values="")

3.	 Separate the target from the features and create lists with numerical/categorical features:

X = df.copy()
y = X.pop("default_payment_next_month")

cat_features = list(X.select_dtypes("object").columns)
num_features = list(X.select_dtypes("number").columns)
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4.	 Impute missing values in the categorical features, encode them using LabelEncoder, and store 
the number of unique categories per feature:

cat_dims = {}

for col in cat_features:
    label_encoder = LabelEncoder()
    X[col] = X[col].fillna("Missing")
    X[col] = label_encoder.fit_transform(X[col].values)
    cat_dims[col] = len(label_encoder.classes_)

cat_dims

Executing the snippet generates the following output:

{'sex': 3,
 'education': 5,
 'marriage': 4,
 'payment_status_sep': 10,
 'payment_status_aug': 10,
 'payment_status_jul': 10,
 'payment_status_jun': 10,
 'payment_status_may': 9,
 'payment_status_apr': 9}

Based on the EDA, we would assume that the sex feature takes two unique values. However, 
as we have imputed the missing values with the Missing category, there are three unique 
possibilities.

5.	 Create a train/valid/test split using the 70-15-15 split:

# create the initial split - training and temp
X_train, X_temp, y_train, y_temp = train_test_split(
    X, y,
    test_size=0.3,
    stratify=y,
    random_state=42
)
# create the valid and test sets
X_valid, X_test, y_valid, y_test = train_test_split(
    X_temp, y_temp,
    test_size=0.5,
    stratify=y_temp,
    random_state=42
)
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6.	 Impute the missing values in the numerical features across all the sets:

for col in num_features:
    imp_mean = X_train[col].mean()
    X_train[col] = X_train[col].fillna(imp_mean)
    X_valid[col] = X_valid[col].fillna(imp_mean)
    X_test[col] = X_test[col].fillna(imp_mean)

7.	 Prepare lists with the indices of categorical features and the number of unique categories:

features = X.columns.to_list()
cat_ind = [features.index(feat) for feat in cat_features]
cat_dims = list(cat_dims.values())

8.	 Define a custom recall metric:

class Recall(Metric):
    def __init__(self):
        self._name = "recall"
        self._maximize = True

    def __call__(self, y_true, y_score):
        y_pred = np.argmax(y_score, axis=1)
        return recall_score(y_true, y_pred)

9.	 Define TabNet’s parameters and instantiate the classifier:

tabnet_params = {
    "cat_idxs": cat_ind,
    "cat_dims": cat_dims,
    "optimizer_fn": torch.optim.Adam,
    "optimizer_params": dict(lr=2e-2),
    "scheduler_params": {
        "step_size":20,
        "gamma":0.9
    },
    "scheduler_fn": torch.optim.lr_scheduler.StepLR,
    "mask_type": "sparsemax",
    "seed": 42,
}

tabnet = TabNetClassifier(**tabnet_params)
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10.	 Train the TabNet classifier:

tabnet.fit(
    X_train=X_train.values,
    y_train=y_train.values,
    eval_set=[
        (X_train.values, y_train.values),
        (X_valid.values, y_valid.values)
    ],
    eval_name=["train", "valid"],
    eval_metric=["auc", Recall],
    max_epochs=200,
    patience=20,
    batch_size=1024,
    virtual_batch_size=128,
    weights=1,
)

Below we can see an abbreviated log from the training procedure:

epoch 0  | loss: 0.69867 | train_auc: 0.61461 | train_recall: 0.3789  | 
valid_auc: 0.62232 | valid_recall: 0.37286 |  0:00:01s
epoch 1  | loss: 0.62342 | train_auc: 0.70538 | train_recall: 0.51539 | 
valid_auc: 0.69053 | valid_recall: 0.48744 |  0:00:02s
epoch 2  | loss: 0.59902 | train_auc: 0.71777 | train_recall: 0.51625 | 
valid_auc: 0.71667 | valid_recall: 0.48643 |  0:00:03s
epoch 3  | loss: 0.59629 | train_auc: 0.73428 | train_recall: 0.5268  | 
valid_auc: 0.72767 | valid_recall: 0.49447 |  0:00:04s
…
epoch 42 | loss: 0.56028 | train_auc: 0.78509 | train_recall: 0.6028  | 
valid_auc: 0.76955 | valid_recall: 0.58191 |  0:00:47s
epoch 43 | loss: 0.56235 | train_auc: 0.7891  | train_recall: 0.55651 | 
valid_auc: 0.77126 | valid_recall: 0.5407  |  0:00:48s

Early stopping occurred at epoch 43 with best_epoch = 23 and best_valid_
recall = 0.6191
Best weights from best epoch are automatically used!

11.	 Prepare the history DataFrame and plot the scores over epochs:

history_df = pd.DataFrame(tabnet.history.history)

Then, we start by plotting the loss over epochs:

history_df["loss"].plot(title="Loss over epochs")
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Executing the snippet generates the following plot:

Figure 15.7: Training loss over epochs

Then, in a similar manner, we generated a plot showing the recall score over the epochs. For 
brevity, we have not included the code generating the plot.

Figure 15.8: Training and validation recall over epochs
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12.	 Create predictions for the test set and evaluate their performance:

y_pred = tabnet.predict(X_test.values)

print(f"Best validation score: {tabnet.best_cost:.4f}")
print(f"Test set score: {recall_score(y_test, y_pred):.4f}")

Executing the snippet generates the following output:

Best validation score: 0.6191
Test set score: 0.6275

As we can see, the test set performance is slightly better than the recall score calculated using 
the validation set.

13.	 Extract and plot the global feature importance:

tabnet_feat_imp = pd.Series(tabnet.feature_importances_,
                            index=X_train.columns)
(
    tabnet_feat_imp
    .nlargest(20)
    .sort_values()
    .plot(kind="barh",
          title="TabNet's feature importances")
)

Executing the snippet generates the following plot:
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Figure 15.9: Global feature importance values extracted from the fitted TabNet classifier

According to TabNet, the most important features for predicting defaults in October were the payment 
statuses in September, July, and May. Another important feature was the limit balance.

Two things are worth mentioning at this point. First, the most important features are similar to the 
ones we identified in the Investigating feature importance recipe in Chapter 14, Advanced Concepts for 
Machine Learning Projects. Second, the feature importance is on a feature level, not on a feature and 
category level, as we could have seen while using one-hot encoding on categorical features.
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How it works…
After importing the libraries, we loaded the dataset from a CSV file. Then, we separated the target from 
the features and extracted the names of the categorical and numerical features. We stored those as lists.

In Step 4, we carried out a few operations on the categorical features. First, we imputed any missing 
values with a new category—Missing. Then, we used scikit-learn's LabelEncoder to encode each of 
the categorical columns. While doing so, we populated a dictionary containing the number of unique 
categories (including the newly created one for the missing values) for each of the categorical features.

In Step 5, we created a training/validation/test split using the train_test_split function. We decided 
to use the 70-15-15 split for the sets. As the dataset is imbalanced (the minority class is observable in 
approximately 22% of observations), we used stratification while splitting the data.

In Step 6, we imputed the missing values for the numerical features. We filled in the missing values 
using the average value calculated over the training set.

In Step 7, we prepared two lists. The first one contained the numerical indices of the categorical 
features, while the second one contained the number of unique categories per categorical feature. 
It is crucial that the lists are aligned so that the indices of the features correspond to those features’ 
number of unique categories.

In Step 8, we created a custom recall metric. pytorch-tabnet offers a few metrics (for classification 
problems, those include accuracy, ROC AUC, and balanced accuracy), but we can easily define more. 
To create the custom metric, we did the following:

•	 We defined a class inheriting from the Metric class.
•	 In the __init__ method, we defined the name of the metric (as visible in the training logs) and 

indicated whether the goal is to maximize the metric. That is the case for recall.
•	 In the __call__ method, we calculated the value of recall using the recall_score function from 

scikit-learn. But first, we had to convert the array containing the predicted probabilities of 
each class into an object containing the predicted class. We did so using the np.argmax function.

In Step 9, we defined some of the hyperparameters of TabNet and instantiated the model.  
pytorch-tabnet offers a familiar scikit-learn API to train TabNet for either a classification or regres-
sion task. This way, we do not have to be familiar with PyTorch to train the model. First, we defined 
a dictionary containing the hyperparameters of the model.

In general, some of the hyperparameters are defined on the model level (passed to the class while 
instantiating it), while the other ones are defined on the fit level (passed to the model while using the 
fit method). At this point, we defined the model hyperparameters:

•	 The indices of the categorical features and the corresponding numbers of unique classes
•	 ADAM as the selected optimizer
•	 The learning rate scheduler
•	 The type of masking
•	 Random seed
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Among all of those, the learning rate scheduler might require a bit of clarification. As per Tab-
Net’s documentation, we used a stepwise decay for the learning rate. To do so, we specified  
torch.optim.lr_scheduler.StepLR as the scheduler function. Then, we provided a few more pa-
rameters. Initially, we set the learning rate to 0.02 in the optimizer_params. Then, we defined the 
stepwise decay parameters in scheduler_params. We specified that after every 20 epochs, we wanted 
to apply the decay rate of 0.9. In practice, it means that after 20 epochs, the learning rate will be 0.9 
times 0.02, which is equal to 0.018. The decay then continues after every 20 epochs.

Having done so, we instantiated the TabNetClassifier class using the specified hyperparameters. 
By default, TabNet uses a cross-entropy loss function for classification problems and the MSE for 
regression tasks.

In Step 10, we trained TabNetClassifier using its fit method. We provided quite a few parameters:

•	 Training data
•	 Evaluation sets—in this case, we used both the training and validation sets so that after each 

epoch we see the metrics calculated over both sets
•	 The names of the evaluation sets
•	 The metrics to be used for evaluation—we used the ROC AUC and the custom recall metric 

defined in Step 8
•	 The maximum number of epochs
•	 The patience parameter, which states that if we do not observe an improvement in the eval-

uation metrics over X consecutive epochs, the training will stop and we will use the weights 
from the best epoch for predictions

•	 The batch size and the virtual batch size (used for ghost batch normalization; please see the 
There’s more... section for more details)

•	 The weights parameter, which is only available for classification problems. It corresponds to 
sampling, which can be of great help when dealing with class imbalance. Setting it to 0 results 
in no sampling. Setting it to 1 turns on the sampling with the weights proportional to the inverse 
class occurrences. Lastly, we can provide a dictionary with custom weights for the classes.

One thing to note about TabNet’s training is that the dataset we provide must be numpy arrays instead 
of pandas DataFrames. That is why we used the values method to extract the arrays from the Data-
Frames. The need to use numpy arrays is also the reason why we had to define the numeric indices of 
the categorical features, instead of providing a list with feature names.

In Step 11, we extracted the training information from the history attribute of the fitted TabNet model. 
It contains the same information that was visible in the training log, that is, the loss, learning rate, 
and evaluation metrics over epochs. Then, we plotted the loss and recall over epochs.

 Compared to many neural network architectures, TabNet uses quite large batch sizes. The 
original paper suggests that we can use batch sizes of up to 10% of the total number of 
training observations. It is also recommended that the virtual batch size is smaller than 
the batch size and the latter can be evenly divided into the former.
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In Step 12, we created the predictions using the predict method. Similar to the training step, we also 
had to provide the input features as a numpy array. As in scikit-learn, the predict method returns 
the predicted class, while we could use the predict_proba method to get the class probabilities. We 
also calculated the recall score over the test set using the recall_score function from scikit-learn.

In the last step, we extracted the global feature importance values. Similar to scikit-learn models, 
they are stored under the feature_importances_ attribute of a fitted model. Then, we plotted the 20 
most important features. It is worth mentioning that the global feature importance values are nor-
malized and they sum up to 1.

There’s more…
Here are a few more interesting points about TabNet and its implementation in PyTorch:

•	 TabNet uses ghost batch normalization to train large batches of data and provide better gener-
alization at the same time. The idea behind the procedure is that we split the input batch into 
equal-sized sub-batches (determined by the virtual batch size parameter). Then, we apply the 
same batch normalization layer to those sub-batches.

•	 pytorch-tabnet allows us to apply custom data augmentation pipelines during training. Cur-
rently, the library offers using SMOTE for both classification and regression tasks.

•	 TabNet can be pre-trained as an unsupervised model, which can then lead to improved per-
formance. While pre-training, certain cells are deliberately masked and the model learns 
the relationships between these censored cells and the adjacent columns by predicting the 
missing (masked) values. We can then use those weights for a supervised task. By learning 
about the relationships between features, the unsupervised representation learning acts as an 
improved encoder model for the supervised learning task. When pre-training, we can decide 
what percentage of features is masked.

•	 TabNet uses sparsemax as the masking function. In general, sparsemax is a non-linear normal-
ization function with a sparser distribution than the popular softmax function. This function 
allows the neural network to more effectively select the important features. Additionally, the 
function employs sparsity regularization (its strength is determined by a hyperparameter) to 
penalize less sparse masks. The pytorch-tabnet library also contains the EntMax masking 
function.

•	 In the recipe, we have presented how to extract global feature importance. To extract the 
local ones, we can use the explain method of a fitted TabNet model. It returns two elements: 
a matrix containing the importance of each observation and feature, and the attention masks 
used by the model for feature selection.

See also
•	 Arik, S. Ö., & Pfister, T. 2021, May. Tabnet: Attentive interpretable tabular learning. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, 35(8): 6679-6687.
•	 The original repository containing TabNet’s implementation described in the abovementioned 

paper: https://github.com/google-research/google-research/tree/master/tabnet.

https://github.com/google-research/google-research/tree/master/tabnet
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Time series forecasting with Amazon’s DeepAR
We have already covered time series analysis and forecasting in Chapter 6, Time Series Analysis and 
Forecasting, and Chapter 7, Machine Learning-Based Approaches to Time Series Forecasting. This time, we 
will have a look at an example of a deep learning approach to time series forecasting. In this recipe, 
we cover Amazon’s DeepAR model. The model was originally developed as a tool for demand/sales 
forecasting at the scale of hundreds if not thousands of stock-keeping units (SKUs).

The architecture of DeepAR is beyond the scope of this book. Hence, we will only focus on some of 
the key characteristics of the model. Those are listed below:

•	 DeepAR creates a global model used for all the considered time series. It implements LSTM 
cells in an architecture that allows for training using hundreds or thousands of time series 
simultaneously. The model also uses an encoder-decoder setup, which is common in se-
quence-to-sequence models.

•	 DeepAR allows for using a set of covariates (external regressors) related to the target time series.
•	 The model requires minimal feature engineering. It automatically creates relevant time series 

features (depending on the granularity of the data, this might be the day of the month, day of the 
year, and so on) and it learns seasonal patterns from the provided covariates across time series.

•	 DeepAR offers probability forecasts based on Monte Carlo sampling—it calculates consistent 
quantile estimates.

•	 The model is able to create forecasts for time series with little historical data by learning from 
similar time series. This is a potential solution to the cold start problem.

•	 The model can use various likelihood functions.

In this recipe, we will train a DeepAR model using around 100 time series of daily stock prices from 
the years 2020 and 2021. Then, we will create 20-day-ahead forecasts covering the last 20 business 
days of 2021.

Before moving forward, we wanted to highlight that we are using time series of stock prices just for 
illustratory purposes. Deep learning models excel when trained on hundreds if not thousands of time 
series. We have selected stock prices as those are the easiest to download. As we have already men-
tioned, accurately forecasting stock prices, especially with a long forecast horizon, is very difficult if 
not simply impossible.

How to do it…
Execute the following steps to train the DeepAR model using stock prices as the input time series:

1.	 Import the libraries:

import pandas as pd
import torch
import yfinance as yf
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from random import sample, seed

import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_forecasting import DeepAR, TimeSeriesDataSet

2.	 Download the tickers of the S&P 500 constituents and sample 100 random tickers from the list:

df = pd.read_html(
    "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies"
)
df = df[0]

seed(44)
sampled_tickers = sample(df["Symbol"].to_list(), 100)

3.	 Download the historical stock prices of the selected stocks:

raw_df = yf.download(sampled_tickers,
                     start="2020-01-01",
                     end="2021-12-31")

4.	 Keep the adjusted close price and remove the stocks with missing values:

df = raw_df["Adj Close"]
df = df.loc[:, ~df.isna().any()]
selected_tickers = df.columns

After removing the stocks that have at least one missing value in the period of interest, we are 
left with 98 stocks.

5.	 Convert the data’s format from wide to long and add the time index:

df = df.reset_index(drop=False) 
 
df = ( 
    pd.melt(df, 
            id_vars=["Date"], 
            value_vars=selected_tickers, 
            value_name="price"
    ).rename(columns={"variable": "ticker"}) 
)
df["time_idx"] = df.groupby("ticker").cumcount() 
df
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Executing the snippet generates the following preview of the DataFrame:

Figure 15.10: The preview of the input DataFrame for the DeepAR model

6.	 Define constants used for setting up the model’s training:

MAX_ENCODER_LENGTH = 40
MAX_PRED_LENGTH = 20
BATCH_SIZE = 128
MAX_EPOCHS = 30
training_cutoff = df["time_idx"].max() - MAX_PRED_LENGTH

7.	 Define the training and validation datasets:

train_set = TimeSeriesDataSet(
    df[lambda x: x["time_idx"] <= training_cutoff],
    time_idx="time_idx",
    target="price",
    group_ids=["ticker"],
    time_varying_unknown_reals=["price"],
    max_encoder_length=MAX_ENCODER_LENGTH,
    max_prediction_length=MAX_PRED_LENGTH,
)

valid_set = TimeSeriesDataSet.from_dataset(
    train_set, df, min_prediction_idx=training_cutoff+1
)
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8.	 Get the dataloaders from the datasets:

train_dataloader = train_set.to_dataloader(
    train=True, batch_size=BATCH_SIZE
)
valid_dataloader = valid_set.to_dataloader(
    train=False, batch_size=BATCH_SIZE
)

9.	 Define the DeepAR model and find the suggested learning rate:

pl.seed_everything(42)

deep_ar = DeepAR.from_dataset(
    train_set,
    learning_rate=1e-2,
    hidden_size=30,
    rnn_layers=4
)

trainer = pl.Trainer(gradient_clip_val=1e-1)
res = trainer.tuner.lr_find(
    deep_ar,
    train_dataloaders=train_dataloader,
    val_dataloaders=valid_dataloader,
    min_lr=1e-5,
    max_lr=1e0,
    early_stop_threshold=100,
)

fig = res.plot(show=True, suggest=True)
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Executing the snippet generates the following plot, in which the red dot indicates the suggested 
learning rate.

Figure 15.11: The suggested learning rate for training the DeepAR model

10.	 Train the DeepAR model:

pl.seed_everything(42)

deep_ar.hparams.learning_rate = res.suggestion()

early_stop_callback = EarlyStopping(
    monitor="val_loss",
    min_delta=1e-4,
    patience=10
)
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trainer = pl.Trainer(
    max_epochs=MAX_EPOCHS,
    gradient_clip_val=0.1,
    callbacks=[early_stop_callback]
)

trainer.fit(
    deep_ar,
    train_dataloaders=train_dataloader,
    val_dataloaders=valid_dataloader,
)

11.	 Extract the best DeepAR model from a checkpoint:

best_model = DeepAR.load_from_checkpoint(
    trainer.checkpoint_callback.best_model_path
)

12.	 Create the predictions for the validation set and plot 5 of them:

raw_predictions, x = best_model.predict(
    valid_dataloader,
    mode="raw",
    return_x=True,
    n_samples=100
)

tickers = valid_set.x_to_index(x)["ticker"]

for idx in range(5):
    best_model.plot_prediction(
        x, raw_predictions, idx=idx, add_loss_to_title=True
    )
    plt.suptitle(f"Ticker: {tickers.iloc[idx]}")

In the snippet, we generated 100 predictions and plotted 5 of them for visual inspection. For 
brevity, we will only show two of them. But we highly encourage inspecting more plots to better 
understand the model’s performance.
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Figure 15.12: DeepAR’s forecast for the ABMD stock

Figure 15.13: DeepAR’s forecast for the ADM stock

The plots show the forecast for two stocks for the last 20 business days of 2021, together with the cor-
responding quantile estimates. While the forecasts do not perform that well, we can see that at the 
very least the actual values are within the provided quantile estimates. 
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We will not spend more time evaluating the performance of the model and its forecasts, as the main 
idea was to present how the DeepAR model works and how to use it to generate the forecasts. However, 
we will mention a few potential improvements. First, we could have trained for more epochs, as we 
did not look into the model’s convergence. We have used early stopping, but it was not triggered while 
training. Second, we have used quite a few arbitrary values to define the network’s architecture. In a 
real-life scenario, we should use a hyperparameter optimization routine of our choice to identify the 
best values for our task at hand.

How it works…
In Step 1, we imported the required libraries. To use the DeepAR model, we decided to use the PyTorch 
Forecasting library. It is a library built on top of PyTorch Lightning and allows us to easily use state-
of-the-art deep learning models for time series forecasting. The models can be trained using GPUs 
and we can also refer to TensorBoard for inspection of the training logs.

In Step 2, we downloaded the list containing the constituents of the S&P 500 index. Then, we randomly 
sampled 100 of those and stored the results in a list. We sampled the tickers to make the training faster. 
It would definitely be interesting, and beneficial to the model, to repeat the exercise with all of the stocks.

In Step 3, we downloaded the historical stock prices from the years 2020 and 2021 using the yfinance 
library. In the next step, we had to apply further preprocessing. We only kept the adjusted close prices 
and we removed the stocks with any missing values.

In Step 5, we continued with the preprocessing. We converted the DataFrame from a wide to a long 
format and then added the time index. The DeepAR implementation works with an integer time index 
instead of dates, hence we used the cumcount method combined with the groupby method to create 
the time index for each of the considered stocks.

In Step 6, we defined some of the constants used for the training procedure, for example, the max 
length of the encoder step, the number of observations we wanted to forecast into the future, the 
max number of training epochs, and so on. We also specified which time index cuts off the training 
from the validation.

In Step 7, we defined the training and validation datasets. We did so using the TimeSeriesDataSet 
class, the responsibilities of which include:

•	 The handling of variable transformations 
•	 The treatment of missing values 
•	 Storing information about static and time-varying variables (both known and unknown in 

the future) 
•	 Randomized subsampling

While defining the training dataset, we had to provide the training data (filtered using the previously 
defined cutoff point), the name of the columns containing the time index, the target, group IDs (in 
our case, these were the tickers), the encoder length, and the forecast horizon.
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In Step 8, we converted the datasets into dataloaders using the to_dataloader method of a 
TimeSeriesDataSet.

In Step 9, we defined the DeepAR model using the from_dataset method of the DeepAR class. This 
way, we did not have to repeat what we had already specified while creating the TimeSeriesDataSet 
objects. Additionally, we specified the learning rate, the size of the hidden layers, and the number of 
RNN layers. The latter two are the most important hyperparameters of the DeepAR model and they 
should be tuned using some HPO framework, for example, Hyperopt or Optuna. Then, we used Py-
Torch Lightning’s Trainer class to find the best learning rate for our model.

In Step 10, we trained the DeepAR model using the identified learning rate. Additionally, we specified 
the early stopping callback, which stops the training if there is no significant (defined by us) improve-
ment in the validation loss over 10 epochs.

In Step 11, we extracted the best model from a checkpoint. Then, we used the best model to create 
predictions using the predict method. We created predictions for 100 sequences available in the val-
idation dataloader. We indicated that we wanted to extract the raw predictions (this option returns a 
dictionary with the predictions and additional information such as the corresponding quantiles, and 
so on) and the inputs used for generating those predictions. Then, we plotted the predictions using 
the plot_prediction method of the fitted DeepAR model.

There’s more…
PyTorch Forecasting also allows us to easily train a DeepVAR model, which is the multivariate coun-
terpart of DeepAR. Originally, Salinas et al. (2019) called this model VEC-LSTM.

 Each sample generated from TimeSeriesDataSet is a subsequence of a full-time series. 
Each subsequence consists of the encoder and prediction timepoints for a given time 
series. TimeSeriesDataSet creates an index defining which subsequences exist and can 
be sampled from.

 By default, the DeepAR model uses the Gaussian loss function. We could use some of the 
alternatives, depending on the task at hand. Gaussian distribution is the preferred choice 
when dealing with real-valued data. We might want to use the negative-binomial likelihood 
for positive count data. Beta likelihood can be a good choice for data in the unit interval, 
while the Bernoulli likelihood is good for binary data.

 Both DeepAR and DeepVAR are also available in Amazon’s GluonTS library.
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In this section, we show how to adjust the code used for training the DeepAR model to train a DeepVAR 
model instead:

1.	 Import the libraries:

from pytorch_forecasting.metrics import 
MultivariateNormalDistributionLoss
import seaborn as sns
import numpy as np

2.	 Define the dataloaders again:

train_set = TimeSeriesDataSet(
    df[lambda x: x["time_idx"] <= training_cutoff],
    time_idx="time_idx",
    target="price",
    group_ids=["ticker"],
    static_categoricals=["ticker"],  
    time_varying_unknown_reals=["price"],
    max_encoder_length=MAX_ENCODER_LENGTH,
    max_prediction_length=MAX_PRED_LENGTH,
)
valid_set = TimeSeriesDataSet.from_dataset(
    train_set, df, min_prediction_idx=training_cutoff+1
)

train_dataloader = train_set.to_dataloader(
    train=True,
    batch_size=BATCH_SIZE,
    batch_sampler="synchronized"
)
valid_dataloader = valid_set.to_dataloader(
    train=False,
    batch_size=BATCH_SIZE,
    batch_sampler="synchronized"
)

There are two differences in this step. First, when we created the training dataset, we also 
specified the static_categoricals argument. Because we will forecast correlations, it is 
important to use series characteristics such as their tickers. Second, we also had to specify 
batch_sampler="synchronized" while creating the dataloaders. Using that option ensures 
that samples passed to the decoder are aligned in time.
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3.	 Define the DeepVAR model and find the learning rate:

pl.seed_everything(42)

deep_var = DeepAR.from_dataset(
    train_set,
    learning_rate=1e-2,
    hidden_size=30,
    rnn_layers=4,
    loss=MultivariateNormalDistributionLoss()
)

trainer = pl.Trainer(gradient_clip_val=1e-1)
res = trainer.tuner.lr_find(
    deep_var,
    train_dataloaders=train_dataloader,
    val_dataloaders=valid_dataloader,
    min_lr=1e-5,
    max_lr=1e0,
    early_stop_threshold=100,
)

The last difference between training DeepVAR and DeepAR models is that for the for-
mer, we use MultivariateNormalDistributionLoss as the loss, instead of the default 
NormalDistributionLoss.

4.	 Train the DeepVAR model using the selected learning rate:

pl.seed_everything(42)

deep_var.hparams.learning_rate = res.suggestion()

early_stop_callback = EarlyStopping(
    monitor="val_loss",
    min_delta=1e-4,
    patience=10
)

trainer = pl.Trainer(
    max_epochs=MAX_EPOCHS,
    gradient_clip_val=0.1,
    callbacks=[early_stop_callback]
)
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trainer.fit(
    deep_var,
    train_dataloaders=train_dataloader,
    val_dataloaders=valid_dataloader,
)

5.	 Extract the best DeepVAR model from a checkpoint:

best_model = DeepAR.load_from_checkpoint(
    trainer.checkpoint_callback.best_model_path
)

6.	 Extract the correlation matrix:

preds = best_model.predict(valid_dataloader,
                           mode=("raw", "prediction"),
                           n_samples=None)
                           
cov_matrix = (
    best_model
    .loss
    .map_x_to_distribution(preds)
    .base_dist
    .covariance_matrix
    .mean(0)
)

cov_diag_mult = (
    torch.diag(cov_matrix)[None] * torch.diag(cov_matrix)[None].T
)
corr_matrix = cov_matrix / torch.sqrt(cov_diag_mult)
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7.	 Plot the correlation matrix and the distribution of the correlations:

mask = np.triu(np.ones_like(corr_matrix, dtype=bool))

fif, ax = plt.subplots()

cmap = sns.diverging_palette(230, 20, as_cmap=True)

sns.heatmap(
    corr_matrix, mask=mask, cmap=cmap, 
    vmax=.3, center=0, square=True, 
    linewidths=.5, cbar_kws={"shrink": .5}
)

ax.set_title("Correlation matrix")

Executing the snippet generates the following plot:

Figure 15.14: Correlation matrix extracted from DeepVAR
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To get a better understanding of the distribution of correlations, we plot their histogram:

plt.hist(corr_matrix[corr_matrix < 1].numpy())

Executing the snippet generates the following plot:

Figure 15.15: The histogram presents the distribution of the extracted correlations

While investigating the histogram, bear in mind that we have created a histogram based on the cor-
relation matrix. This means that we have effectively counted each value twice.

See also
•	 Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. 2020. “DeepAR: Probabilistic forecast-

ing with autoregressive recurrent networks”, International Journal of Forecasting, 36(3): 1181-1191.
•	 Salinas, D., Bohlke-Schneider, M., Callot, L., Medico, R., & Gasthaus, J. 2019. High-dimen-

sional multivariate forecasting with low-rank Gaussian copula processes. Advances in neural 
information processing systems, 32.

Time series forecasting with NeuralProphet
In Chapter 7, Machine Learning-Based Approaches to Time Series Forecasting, we covered the Prophet 
algorithm created by Meta (formerly Facebook). In this recipe, we will look into an extension of that 
algorithm—NeuralProphet.
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As a brief refresher, the authors of Prophet highlighted good performance, interpretability, and ease 
of use as the model’s key advantages. The authors of NeuralProphet also had this in mind for their 
approach. They retained all the advantages of Prophet while adding new components that lead to 
improved accuracy and scalability.

The critique of the original Prophet algorithm included its rigid parametric structure (based on a 
generalized linear model) and the fact that it was a sort of “curve-fitter” that was not adaptive enough 
to fit the local patterns.

In the following points, we briefly mention the most relevant additions to NeuralProphet:

•	 NeuralProphet introduces the autoregressive terms to the Prophet specification.
•	 Autoregression is included by means of the AutoRegressive Network (AR-Net). AR-Net is a 

neural network trained to mimic the autoregressive process in a time series signal. While the 
inputs for the traditional AR models and AR-Net are the same, the latter is able to operate at 
a much larger scale than the former.

•	 NeuralProphet uses PyTorch as its backend, as opposed to Stan used by the Prophet algorithm. 
This results in faster training speed and some other benefits.

•	 Lagged regressors (features) are modeled using a feed-forward neural network.
•	 The algorithm can work with custom losses and metrics.
•	 The library uses regularization extensively and we are able to apply it to most of the model’s 

components: trend, seasonality, holidays, AR terms, etc. That is especially relevant for the 
AR terms, as with regularization we can use more lagged values without worrying about the 
rapidly increasing training time.

Actually, NeuralProphet supports a few configurations of the AR terms:

•	 Linear AR—a single-layer neural network without bias terms or activation functions. Essentially, 
it regresses a particular lag onto a particular forecast step. Its simplicity makes its interpre-
tation quite easy.

•	 Deep AR—in this form, the AR terms are modeled using a fully connected NN with a specified 
number of hidden layers and ReLU activation functions. At a cost of increased complexity, 
longer training time, and the loss of interpretability, this configuration often achieves higher 
forecast accuracy than its linear counterpart.

•	 Sparse AR—we can combine AR of high order (with more values at prior time steps) and the 
regularization term.

Each of the mentioned configurations can be applied to both the target and the covariates.

 Traditionally, time series models used lagged values of the time series to predict the future 
value. Prophet’s creators reframed time series forecasting as a curve-fitting problem and 
the algorithm tries to find the functional form of the trend.
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To recap, NeuralProphet is built from the following components:

•	 Trend
•	 Seasonality
•	 Holidays and special events
•	 Autoregression
•	 Lagged regression—lagged values of the covariates modeled internally using a feed-forward 

neural network
•	 Future regression—similar to events/holidays, these are the values of the regressors that we 

know in the future (either we know them as given or we have separate forecasts of those values)

In this recipe, we fit a few configurations of NeuralProphet to the time series of daily S&P 500 prices 
from the years 2010 to 2021. Similar to the previous recipe, we chose the time series of asset prices 
due to the data accessibility and its daily frequency. Trying to predict stock prices using ML/DL can 
be extremely hard if not impossible, so this exercise is just meant to illustrate the process of working 
with the NeuralProphet algorithm, rather than creating the most accurate predictions.

How to do it…
Execute the following steps to fit a few configurations of the NeuralProphet algorithm to the time 
series of daily S&P 500 prices:

1.	 Import the libraries:

import yfinance as yf
import pandas as pd
from neuralprophet import NeuralProphet
from neuralprophet.utils import set_random_seed

2.	 Download the historical prices of the S&P 500 index and prepare the DataFrame for modeling 
with NeuralProphet:

df = yf.download("^GSPC",
                 start="2010-01-01",
                 end="2021-12-31")
df = df[["Adj Close"]].reset_index(drop=False)
df.columns = ["ds", "y"]

3.	 Create the train/test split:

TEST_LENGTH = 60
df_train = df.iloc[:-TEST_LENGTH]
df_test = df.iloc[-TEST_LENGTH:]
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4.	 Train the default Prophet model and plot the evaluation metrics:

set_random_seed(42)
model = NeuralProphet(changepoints_range=0.95)
metrics = model.fit(df_train, freq="B")

(
    metrics
    .drop(columns=["RegLoss"])
    .plot(title="Evaluation metrics during training",
          subplots=True)
)

Executing the snippet generates the following plot:

Figure 15.16: The evaluation metrics over epochs during NeuralProphet’s training

5.	 Calculate the predictions and plot the fit:

pred_df = model.predict(df)

pred_df.plot(x="ds", y=["y", "yhat1"],
             title="S&P 500 - forecast vs ground truth")
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Executing the snippet generates the following plot:

Figure 15.17: NeuralProphet’s fit vs. the actual values of the entire time series

As we can see, the model’s fitted line follows the overall increasing trend (it even adjusts the 
growth speed over time), but it misses the extreme periods and is not following the changes 
on the local scale.

Additionally, we can zoom in on the period corresponding to the test set:

(
    pred_df
    .iloc[-TEST_LENGTH:]
    .plot(x="ds", y=["y", "yhat1"],
          title="S&P 500 - forecast vs ground truth")
)
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Executing the snippet generates the following plot:

Figure 15.18: NeuralProphet’s fit vs. the actual values in the test set

The conclusions from the plot are very similar to the ones we had in the case of the overall 
fit—the model follows the increasing trend but does not capture the local patterns.

6.	 Add the AR components to NeuralProphet:

set_random_seed(42)
model = NeuralProphet(
    changepoints_range=0.95,
    n_lags=10,
    ar_reg=1,
)
metrics = model.fit(df_train, freq="B")

pred_df = model.predict(df)
pred_df.plot(x="ds", y=["y", "yhat1"],
             title="S&P 500 - forecast vs ground truth")

To evaluate the performance of the test set, we can use the following command: 
model.test(df_test).
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Executing the snippet generates the following plot:

Figure 15.19: NeuralProphet’s fit vs. the actual values of the entire time series

The fit looks much better than the previous one. Again, we take a closer look at the test set:

(
    pred_df
    .iloc[-TEST_LENGTH:]
    .plot(x="ds", y=["y", "yhat1"],
          title="S&P 500 - forecast vs ground truth")
)
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Executing the snippet generates the following plot:

Figure 15.20: NeuralProphet’s fit vs. the actual values in the test set

We can see a familiar and concerning pattern—the forecast is lagging after the original series. 
By that, we mean that the forecast is very similar to one of the last known values. In other 
words, the line of the forecast is similar to the line of the ground truth, just shifted to the right 
by one or multiple periods.

7.	 Add the AR-Net to NeuralProphet:

set_random_seed(42)
model = NeuralProphet(
    changepoints_range=0.95,
    n_lags=10,
    ar_reg=1,
    num_hidden_layers=3,
    d_hidden=32,
)
metrics = model.fit(df_train, freq="B")
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pred_df = model.predict(df)
(
    pred_df
    .iloc[-TEST_LENGTH:]
    .plot(x="ds", y=["y", "yhat1"],
          title="S&P 500 - forecast vs ground truth")
)

Executing the snippet generates the following plot:

Figure 15.21: NeuralProphet’s fit vs. the actual values in the test set

We can see that the plot of the forecast looks better than the one we obtained without using 
AR-Net. While the patterns still look shifted by a period, they are not as overfitted as in the 
previous case.

8.	 Plot the components and parameters of the model:

model.plot_components(model.predict(df_train))
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Executing the snippet generates the following plots:

Figure 15.22: The components of the fitted NeuralProphet model (including AR-Net)
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In the plots, we can see a few patterns:

•	 An increasing trend with a few identified changepoints.
•	 A seasonal peak in late April and a seasonal dip in late September and early October.
•	 There are no surprising patterns during the weekdays. However, it is important to remember 

that we should not look at the values of the weekly seasonality for Saturday and Sunday. As 
we are working with daily data available only on business days, the predictions should also 
only be made for the business days, as the intra-week seasonality will not be well estimated 
for the weekends.

Then, we also plot the model’s parameters:

model.plot_parameters()

Executing the snippet generates the following plots:

Figure 15.23: The parameters of the fitted NeuralProphet model (including AR-Net)

 Looking at the yearly seasonality of the stock prices can reveal some interesting patterns. 
One of the more famous ones is the January effect, which concerns a possible seasonal 
increase in stock prices in that month. Generally, it is attributed to increased buying of 
assets, which follows price drops in December when investors tend to sell some of their 
assets for tax purposes.
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There is quite a lot of overlap in the components and parameters plots, hence we only focus on the 
new elements. First, we can look at the plot depicting the magnitudes of trend changes. We can con-
sider it together with the plot of the trend component in Figure 15.22. Then, we can see how the rate 
of change corresponds to the trend over the years. Second, it seems that lag 2 is the most relevant of 
the 10 considered lags.

How it works…
After importing the libraries, we downloaded the daily prices of the S&P 500 index from the years 2010 
to 2021. We only kept the adjusted close price and converted the DataFrame into a format recognized 
by both Prophet and NeuralProphet, that is, a DataFrame with a time column called ds and the target 
time series called y.

In Step 3, we set the test size as 60 and sliced the DataFrame into the training and test sets.

In Step 4, we instantiated the almost default NeuralProphet model. The only hyperparameter we 
tweaked was changepoints_range. We increased the value from the default of 0.9 to 0.95. It means 
that the model can identify the changepoints in the first 95% of data. The rest is left untouched in order 
to ensure a consistent final trend. We increased the default value as we will be focusing on relatively 
short-term predictions.

In Step 5, we calculated the predictions using the predict method and the entire time series as input. 
This way, we obtained the fitted values (in-sample fit) and the out-of-sample predictions for the test 
set. At this point, we could have also used the make_future_dataframe method, which is familiar 
from the original Prophet library.

In Step 6, we added the linear AR terms. We specified the number of lags to consider using the n_lags 
argument. Additionally, we added the regularization of the AR terms by setting ar_reg to 1. We could 
have specified the learning rate. However, when we do not provide a value, the library uses the learning 
rate range test to find the best value.

n Step 7, we extended the use of the AR terms from linear AR to AR-Net. We kept the oth-
er hyperparameters the same as in Step 6, but we specified how many hidden layers to use  
(num_hidden_layers) and what their size is (d_hidden).

 NeuralProphet also supports the use of the validation set while training the model. We 
can add it while calling the fit method.

When setting the regularization of the AR terms (this applies to all regularization in the 
library), a value of zero results in no regularization. Small values (for example, in the range 
of 0.001 to 1) result in weak regularization. In the case of the AR terms, this would mean 
that there will be more non-zero AR coefficients. Large values (for example, in the range 
of 1 to 100) will significantly limit the number of non-zero coefficients.
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In the last step, we plotted NeuralProphet’s components using the plot_components method and the 
model’s parameters using the plot_parameters method.

There’s more…
We have just covered the basics of using NeuralProphet. In this section, we mention a few more fea-
tures of the library.

Adding holidays and special events
One of the very popular features of the original Prophet algorithm that is also available in NeuralProph-
et is the possibility to easily add holidays and special dates. For example, when working in retail, we 
could add sports events (such as world championships, or the Super Bowl) or Black Friday, which is 
not an official holiday. In the following snippet, we add the US holidays to our model based on AR-Net:

set_random_seed(42)
model = NeuralProphet(
    changepoints_range=0.95,
    n_lags=10,
    ar_reg=1,
    num_hidden_layers=3,
    d_hidden=32,
)
model = model.add_country_holidays(
    "US", lower_window=-1, upper_window=1
)
metrics = model.fit(df_train, freq="B")

Additionally, we specify that the holidays also affect the surrounding days, that is, one day before 
and after the holiday. This functionality could be especially important if we consider lead-ups and 
draw-downs after certain dates. For example, in retail, we might want to specify a period leading up 
to Christmas, as that is the time when people usually buy gifts.

By inspecting the components plot, we can see the impact of the holidays over time.

Figure 15.24: The holidays component of the fitted NeuralProphet



Chapter 15 695

Additionally, we can inspect the parameters plot to gain more insights into the impact of the particular 
holidays (and the days around them).

In this case, we have added all US holidays at once. As a result, all the holidays also have the same 
range of surrounding days (one before and one after). However, we could manually create a Data-
Frame with custom holidays and specify the number of surrounding days on the specific event level, 
instead of globally.

Next-step forecast vs. multi-step forecast
There are two approaches to forecasting multiple steps into the future using NeuralProphet:

•	 We can recursively create one-step ahead forecasts. The process looks as follows: we predict 
a step ahead, add the predicted value to the data, and then forecast the next step. We repeat 
the procedure until we reach the desired forecast horizon.

•	 We can directly forecast multiple steps ahead.

By default, NeuralProphet will use the first approach. However, we can use the second one by speci-
fying the n_forecasts hyperparameter of the NeuralProphet class:

model = NeuralProphet(
    n_lags=10,
    n_forecasts=10,
    ar_reg=1,
    learning_rate=0.01
)
metrics = model.fit(df_train, freq="B")
pred_df = model.predict(df)
pred_df.tail()

Below we display only a part of the resulting DataFrame.

Figure 15.25: Preview of the DataFrame containing 10-step-ahead forecasts
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This time, the DataFrame will contain 10 predictions for each row: yhat1, yhat2, …, yhat10. To learn 
how to interpret the table, we can look at the last row presented in Figure 15.25. The yhat2 value cor-
responds to the prediction for 2021-12-30, made 2 days prior to that date. So the number after yhat 
indicates the age of the prediction (in this case, expressed in days).

Alternatively, we can shift this around. By specifying raw=True while calling the predict method, we 
obtain predictions made on the row’s date, instead of a prediction for that date:

pred_df = model.predict(df, raw=True, decompose=False)
pred_df.tail()

Executing the snippet generated the following preview of the DataFrame:

Figure 15.26: Preview of the DataFrame containing the first 5 of the 10-step-ahead forecasts

We can easily track some forecasts in both tables to see how the tables’ structures differ.

When plotting a multi-step-ahead forecast, we will see multiple lines—each originating from a differ-
ent date of the forecast:

pred_df = model.predict(df_test)
model.plot(pred_df)
ax = plt.gca()
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
ax.set_title("10-day ahead multi-step forecast")

Executing the snippet generates the following plot:
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Figure 15.27: 10-day-ahead multi-step forecast

The plot is quite hard to read due to the overlapping lines. We can highlight the forecast made for a 
certain step using the highlight_nth_step_ahead_of_each_forecast method. The following snippet 
illustrates how to do it:

model = model.highlight_nth_step_ahead_of_each_forecast(1)
model.plot(pred_df)
ax = plt.gca()
ax.set_title("Step 1 of the 10-day ahead multi-step forecast")



Deep Learning in Finance698

Executing the snippet generates the following plot:

Figure 15.28: Step 1 of the 10-day multi-step forecast

After analyzing Figure 15.28, we can conclude that the model is still struggling with the predictions 
and the forecasted values are very close to the last known values.

Other features
NeuralProphet also contains some other interesting features, including:

•	 Extensive cross-validation and benchmarking functionalities
•	 The components of the model such as holidays/events, seasonality, or future regressors do not 

need to be additive; they can also be multiplicative
•	 The default loss function is Huber loss, but we can change it to any of the other popular loss 

functions

See also
•	 Triebe, O., Laptev, N., & Rajagopal, R. 2019. Ar-net: A simple autoregressive neural network for 

time-series. arXiv preprint arXiv:1911.12436.
•	 Triebe, O., Hewamalage, H., Pilyugina, P., Laptev, N., Bergmeir, C., & Rajagopal, R. 2021. Neu-

ralprophet: Explainable forecasting at scale. arXiv preprint arXiv:2111.15397.
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Summary
In this chapter, we explored how we can use deep learning for both tabular and time series data. In-
stead of building the neural networks from scratch, we used modern Python libraries which handled 
most of the heavy lifting for us.

As we have already mentioned, deep learning is a rapidly developing field with new neural network 
architectures being published daily. Hence, it is difficult to scratch even just the tip of the iceberg 
in a single chapter. That is why we will now point you toward some of the popular and influential 
approaches/libraries that you might want to explore on your own.

Tabular data
Below we list some relevant papers and Python libraries that will definitely be good starting points 
for further exploration of the topic of using deep learning with tabular data.

Further reading:

•	 Huang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. 2020. Tabtransformer: Tabular data modeling 
using contextual embeddings. arXiv preprint arXiv:2012.06678.

•	 Popov, S., Morozov, S., & Babenko, A. 2019. Neural oblivious decision ensembles for deep learning 
on tabular data. arXiv preprint arXiv:1909.06312.

Libraries:

•	 pytorch_tabular—this library offers a framework for using deep learning models for tabular 
data. It provides models such as TabNet, TabTransformer, FT Transformer, and a feed-forward 
network with category embedding.

•	 pytorch-widedeep—a library based on Google’s Wide and Deep algorithm. It not only allows us 
to use deep learning with tabular data but also facilitates the combination of text and images 
with corresponding tabular data.

Time series
In this chapter, we have covered two deep learning-based approaches to time series forecasting—Deep-
AR and NeuralProphet. We highly recommend also looking into the following resources on analyzing 
and forecasting time series.

Further reading:

•	 Chen, Y., Kang, Y., Chen, Y., & Wang, Z. (2020). “Probabilistic forecasting with temporal con-
volutional neural network”, Neurocomputing, 399: 491-501.

•	 Gallicchio, C., Micheli, A., & Pedrelli, L. 2018. “Design of deep echo state networks”, Neural 
Networks, 108: 33-47.

•	 Kazemi, S. M., Goel, R., Eghbali, S., Ramanan, J., Sahota, J., Thakur, S., ... & Brubaker, M. 2019. 
Time2vec: Learning a vector representation of time. arXiv preprint arXiv:1907.05321.
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•	 Lea, C., Flynn, M. D., Vidal, R., Reiter, A., & Hager, G. D. 2017. Temporal convolutional networks 
for action segmentation and detection. In proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 156-165.

•	 Lim, B., Arık, S. Ö., Loeff, N., & Pfister, T. 2021. “Temporal fusion transformers for interpretable 
multi-horizon time series forecasting”, International Journal of Forecasting, 37(4): 1748-1764.

•	 Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. 2019. N-BEATS: Neural basis expansion 
analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437.

Libraries:

•	 tsai—this is a deep learning library built on top of PyTorch and fastai. It focuses on various 
time series-related tasks, including classification, regression, forecasting, and imputation. 
Aside from already traditional approaches such as LSTMs or GRUs, it implements a selection 
of state-of-the-art architectures such as ResNet, InceptionTime, TabTransformer, and Rocket.

•	 gluonts—a Python library for probabilistic time series modeling using deep learning. It con-
tains models such as DeepAR, DeepVAR, N-BEATS, Temporal Fusion Transformer, WaveNet, 
and many more.

•	 darts—a versatile library for time series forecasting using a variety of methods, from statis-
tical models such as ARIMA to deep neural networks. It contains implementations of models 
such as N-BEATS, Temporal Fusion Transformer, and temporal convolutional neural networks.

Other domains
In this chapter, we have focused on showing the applications of deep learning in tabular data and time 
series forecasting. However, there are many more use cases and recent developments. For example, 
FinBERT is a pre-trained NLP model used to analyze the sentiment of financial texts, such as earnings 
call transcripts.

On the other hand, we can use the recent developments in generative adversarial networks to gen-
erate synthetic data for our models. Below, we mention some interesting starting points for further 
exploration of the field of deep learning in a financial context.

Further reading:

•	 Araci, D. 2019. Finbert: Financial sentiment analysis with pre-trained language models. arXiv pre-
print arXiv:1908.10063.

•	 Cao, J., Chen, J., Hull, J., & Poulos, Z. 2021. “Deep hedging of derivatives using reinforcement 
learning”, The Journal of Financial Data Science, 3(1): 10-27.

•	 Xie, J., Girshick, R., & Farhadi, A. 2016, June. Unsupervised deep embedding for clustering 
analysis. In International conference on machine learning, 478-487. PMLR.

•	 Yoon, J., Jarrett, D., & Van der Schaar, M. 2019. Time-series generative adversarial networks. 
Advances in neural information processing systems, 32.
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Libraries:

•	 tensortrade—offers a reinforcement learning framework for training, evaluating, and de-
ploying trading agents.

•	 FinRL—an ecosystem consisting of various applications of reinforcement learning in the finan-
cial context. It covers state-of-the-art algorithms, financial applications such as crypto trading 
or high-frequency trading, and more.

•	 ydata-synthetic—a library useful for generating synthetic tabular and time series data with 
the use of state-of-the-art generative models, for example, TimeGAN.

•	 sdv—the name stands for Synthetic Data Vault and it is, as the name suggests, another library 
useful for generating synthetic data. It covers tabular, relational, and time series data.

•	 transformers—this is a Python library that allows us to access a range of pre-trained trans-
former models (for example, FinBERT). The company behind the library is called Hugging 
Face, and it offers a platform that enables its users to build, train, and deploy ML/DL models.

•	 autogluon—this library offers AutoML for tabular data, as well as text and images. It contains 
various state-of-the-art ML and DL models.
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drawbacks  153

non-systematic component
noise  144

O
Omega ratio  376
OneHotEncoder

categories, specifying for  504
one-hot encoding  499

issues  554
pandas, using  503
warning  505

Open, High, Low, and Close (OHLC)  4
prices  70

optimal portfolio
finding, with Hierarchical Risk Parity  406- 409

optimization, with scipy
used, for finding efficient frontier  389-395

oracle approximating shrinkage (OAS)  409
ordinal encoding  561
ordinary least squares (OLS)  176
Ornstein-Uhlenbeck process  94
outlier detection

with Hampel filter  81-84
with rolling statistics  77-80

outliers  77
identifying, with stock returns  84-86

oversampling methods
Borderline SMOTE  570
K-means SMOTE  571
SVM SMOTE  571
Synthetic Minority Oversampling Technique for 

Nominal and Continuous (SMOTE-NC)  570

P
pandas

using, for one-hot encoding  504
vectorized backtesting with  417-421

Partial Dependence Plot (PDP)
advantages  625
disadvantages  625

patterns
detecting, in time series with Hurst 

 exponent  94-98
Pearson’s correlation coefficient  484
permutation feature importance  598

pros and cons  599
Phillips-Perron (PP)  157
pipelines

benefits  519
building  520-523
custom transformers, adding  524-528
elements, accessing  528
used, for organizing projects  519, 520

Platform as a Service (PaaS)  142
point anomaly detection  78
portfolio rebalancing  291
Precision-Recall curve  513

analyzing  514-517
prices

converting, to returns  25-27
Principal Components Analysis (PCA)  565
probability density function (PDF)  100, 352
Proof of Concept (PoC)  504
Prophet  249

features  248
model, tuning  261
used, in forecasting  248- 258

PyCaret
features  272
URL  86
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using, for time series forecasting  262-272
pycoingecko library

reference link  23
pyfolio  447
PyPortfolioOpt  410

efficient frontier, obtaining  410- 412
Python libraries, on AI explainability

investigating  642
PyTorch Forecasting  677

Q
quantile plot  380
quantile-quantile (Q-Q) plot  100, 108
QuantLib

American options, pricing with  357-361
quantstats  377

pandas DataFrames/Series, enriching with new 
methods  380

quarter plot  62

R
Random Forest model

feature importance, evaluating  599-608
random oversampling  563
random search (randomized grid search)  530
random undersampling  563
random walk  94
realized volatility  32
Receiver Operating Characteristic (ROC)  511
Rectified Linear Unit (ReLU)  655
Recursive Feature Elimination (RFE)  619
reduced regression

time series, forecasting as  235-247
reduction process  235
relative strength index (RSI)  114, 433
rescaled range (R/S) analysis  98

returns
adjusting, for inflation  28-30
benefit  26
log returns  26
prices, converting to  25-28
simple returns  26

reversal patterns  124
RobustStatDetector  90
Rolling Sharpe ratio  378
rolling statistics

used, for outlier detection  77-80
rolling three-factor model

implementing  288-291
Root Mean Squared Error (RMSE)  216

S
seaborn  61
seasonal decomposition

approaches  152
seasonality  58
seasonal patterns

additional information, visualizing  61-63
visualizing  58-60

sequential attention  658
Sequential Least-Squares Programming 

(SLSQP) algorithm  394
Sequential Model-Based Optimization  

(SMBO)  580
serial correlation  102
SHapley Additive exPlanations (SHAP)  625, 626

advantages  626
disadvantages  626

Sharpe ratio  376
signal types  436
simple exponential smoothing (SES)  167
Simple Moving Average (SMA)  72, 115, 417

calculating  431, 432
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simple returns  26
calculating  27

Simplified Wrapper and Interface Generator 
(SWIG)  357

single imputation approaches  497
Singular Value Decomposition (SVD)  368
sizers

reference link  440
skew  377
sktime

advantages  247
documentation link  86

slippage  416
Sortino ratio  376
sparsemax  668
squared/absolute returns

autocorrelation values, small and  
decreasing  104-109

stacked ensemble
creating  573-579

stacking  573, 574
goal  573

stationarity  25
correcting, in time series  158-164
testing, in time series  152-158

STL decomposition  150, 151
advantages  149

stochastic differential equations (SDEs)  340
Stochastic Gradient Boosted Trees  550
stock-keeping units (SKUs)  669
stock price dynamics

simulating, with GBM  340-347
stock return’s volatility

modeling, with ARCH models  306-311
modeling, with GARCH models  312-315

Streamlit
documentation link  139

reference link  139
sign up page, reference link  139
Streamlit cloud, reference link  142
using, to build interactive web app for technical 

analysis  129-138
stylized facts  98

absence, of autocorrelation in returns  102-109
autocorrelation, small and decreasing in 

squared/absolute returns  104-109
investigating, of asset returns  98
leverage effect  105-109
non-Gaussian distribution of returns  99-108
volatility clustering  102, 109

successive halving
used, for performing faster search  536-538

sum encoder  561
surrogate model  580
symmetric MAPE (sMAPE)  245
Synthetic Minority Oversampling Technique for 

Nominal and Continuous (SMOTE-NC)  
570

Synthetic Minority Oversampling Technique 
(SMOTE)  563

systematic components
level  144
seasonality  144
trend  144

T
TabNet, Google

exploring  658- 668
features  658, 659
implementation, in PyTorch  668

Tabular Learner, fastai
exploring  646-656

tail ratio  377
TA-Lib  114, 119

reference link  129
URL  120
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tangency portfolio  387
target encoding  555
target orders  453
technical analysis (TA)  113

deploying  139-142
interactive web app, building with  

Streamlit  129-138
technical indicators

calculating  113-119
downloading  120-122

techniques, for tackling overfitting
batch normalization  655
dropout  655
weight decay  655

term frequency-inverse document frequency 
(TF-IDF)  523

test sets
data, splitting into  488-492

Three-Factor Model  284
tick bars  43
time bars

drawbacks  42
time-related features

creating  230-235
time series

changepoints, detecting  86-88
feature engineering, applying  220-230
forecasting as reduced regression  235-247
modeling, with ARIMA class models  176-189
modeling, with exponential smoothing 

methods  166-173
non-systematic components  144
patterns, detecting with Hurst exponent  94-98
stationarity, correcting  158-164
stationarity, testing for  152-158
systematic components  144
trends, detecting  92-94
validation methods  206-216

time series data
frequency, modifying of  31- 34
visualizing  52- 54

time series decomposition
goals  144
performing  146-148
references  152

time series forecast accuracy
evaluating, metrics  216

time series forecasting
NeuralProphet, using for  683-693
with Amazon’s DeepAR  669-677
with PyCaret  262-272

trade data
aggregating, ways  43-48

training sets
data, splitting into  488-492

transformations, applying to data
continuous variables, discretizing  524
numerical features, scaling  524
outliers, transforming/removing  524

transformers  519
treeinterpreter  642
tree-structured Parzen Estimator (TPE)  580
trends

detecting, in time series  92-94
Tukey’s fences  484

U
undersampling methods

Edited Nearest Neighbors  570
NearMiss  570
Tomek links  570

underwater plot  376
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V
validation methods

for time series  206- 216
validation set  490
valuation function

improving, with Monte Carlo  
simulations  351, 352

Value-at-Risk (VaR)  305
estimating, with Monte Carlo  363-369

Variance Inflation Factor (VIF)  620
variance targeting  336
variance thresholding  620
vectorized backtesting  417

transaction costs, accounting  422, 423
with pandas  417- 421

volatility clustering  102, 109
volatility forecasting

analytical approach  317
bootstrap forecasts  317
GARCH models, using  316-324
simulation-based forecasts  317

Volatility Index (VIX)  305
volatility trading  305
volume bars  43
volume-weighted average price (VWAP)  48

W
walk-forward validation  207

used, for calculating model performance  208
weak stationarity  153
Weight of Evidence (WoE) encoding  556
winsorization  81
wrapper techniques

backward feature selection  620
considerations  621
exhaustive feature selection  621

forward feature selection  620
stepwise selection  621

X
XGBoost

possibilities  609
predictions, explaining  627-641

Y
Yahoo Finance

data, obtaining from  2, 4
libraries  5
reference link  5
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