
Hariom Tatsat, Sahil Puri
 & Brad Lookabaugh

Machine Learning
& Data Science
Blueprints
for Finance
From Building Trading Strategies to
Robo-Advisors Using Python

Hariom Tatsat, Sahil Puri, and Brad Lookabaugh

Machine Learning and Data
Science Blueprints for Finance

From Building Trading Strategies to
Robo-Advisors Using Python

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07305-5

[LSCH]

Machine Learning and Data Science Blueprints for Finance
by Hariom Tatsat, Sahil Puri, and Brad Lookabaugh

Copyright © 2021 Hariom Tatsat, Sahil Puri, and Brad Lookabaugh. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Michelle Smith Indexer: WordCo Indexing Services, Inc.
Development Editor: Jeff Bleiel Interior Designer: David Futato
Production Editor: Christopher Faucher Cover Designer: Karen Montgomery
Copyeditor: Piper Editorial, LLC Illustrator: Kate Dullea
Proofreader: Arthur Johnson

October 2020: First Edition

Revision History for the First Edition
2020-09-29: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492073055 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Machine Learning and Data Science
Blueprints for Finance, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492073055

Table of Contents

Preface. ix

Part I. The Framework

1. Machine Learning in Finance: The Landscape. 1
Current and Future Machine Learning Applications in Finance 2

Algorithmic Trading 2
Portfolio Management and Robo-Advisors 2
Fraud Detection 3
Loans/Credit Card/Insurance Underwriting 3
Automation and Chatbots 3
Risk Management 4
Asset Price Prediction 4
Derivative Pricing 4
Sentiment Analysis 5
Trade Settlement 5
Money Laundering 5

Machine Learning, Deep Learning, Artificial Intelligence, and Data Science 5
Machine Learning Types 7

Supervised 7
Unsupervised 8
Reinforcement Learning 9

Natural Language Processing 10
Chapter Summary 11

iii

2. Developing a Machine Learning Model in Python. 13
Why Python? 13
Python Packages for Machine Learning 14

Python and Package Installation 15
Steps for Model Development in Python Ecosystem 15

Model Development Blueprint 16
Chapter Summary 29

3. Artificial Neural Networks. 31
ANNs: Architecture, Training, and Hyperparameters 32

Architecture 32
Training 34
Hyperparameters 36

Creating an Artificial Neural Network Model in Python 40
Installing Keras and Machine Learning Packages 40
Running an ANN Model Faster: GPU and Cloud Services 43

Chapter Summary 45

Part II. Supervised Learning

4. Supervised Learning: Models and Concepts. 49
Supervised Learning Models: An Overview 51

Linear Regression (Ordinary Least Squares) 52
Regularized Regression 55
Logistic Regression 57
Support Vector Machine 58
K-Nearest Neighbors 60
Linear Discriminant Analysis 62
Classification and Regression Trees 63
Ensemble Models 65
ANN-Based Models 71

Model Performance 73
Overfitting and Underfitting 73
Cross Validation 74
Evaluation Metrics 75

Model Selection 79
Factors for Model Selection 79
Model Trade-off 81

Chapter Summary 82

iv | Table of Contents

5. Supervised Learning: Regression (Including Time Series Models). 83
Time Series Models 86

Time Series Breakdown 87
Autocorrelation and Stationarity 88
Traditional Time Series Models (Including the ARIMA Model) 90
Deep Learning Approach to Time Series Modeling 92
Modifying Time Series Data for Supervised Learning Models 95

Case Study 1: Stock Price Prediction 95
Blueprint for Using Supervised Learning Models to Predict a Stock Price 97

Case Study 2: Derivative Pricing 114
Blueprint for Developing a Machine Learning Model for Derivative

Pricing 115
Case Study 3: Investor Risk Tolerance and Robo-Advisors 125

Blueprint for Modeling Investor Risk Tolerance and Enabling a Machine
Learning–Based Robo-Advisor 127

Case Study 4: Yield Curve Prediction 141
Blueprint for Using Supervised Learning Models to Predict the Yield

Curve 142
Chapter Summary 149
Exercises 150

6. Supervised Learning: Classification. 151
Case Study 1: Fraud Detection 153

Blueprint for Using Classification Models to Determine Whether a
Transaction Is Fraudulent 153

Case Study 2: Loan Default Probability 166
Blueprint for Creating a Machine Learning Model for Predicting Loan

Default Probability 167
Case Study 3: Bitcoin Trading Strategy 179

Blueprint for Using Classification-Based Models to Predict Whether to
Buy or Sell in the Bitcoin Market 180

Chapter Summary 190
Exercises 191

Part III. Unsupervised Learning

7. Unsupervised Learning: Dimensionality Reduction. 195
Dimensionality Reduction Techniques 197

Principal Component Analysis 198
Kernel Principal Component Analysis 201

Table of Contents | v

t-distributed Stochastic Neighbor Embedding 202
Case Study 1: Portfolio Management: Finding an Eigen Portfolio 202

Blueprint for Using Dimensionality Reduction for Asset Allocation 203
Case Study 2: Yield Curve Construction and Interest Rate Modeling 217

Blueprint for Using Dimensionality Reduction to Generate a Yield Curve 218
Case Study 3: Bitcoin Trading: Enhancing Speed and Accuracy 227

Blueprint for Using Dimensionality Reduction to Enhance a Trading
Strategy 228

Chapter Summary 236
Exercises 236

8. Unsupervised Learning: Clustering. 237
Clustering Techniques 239

k-means Clustering 239
Hierarchical Clustering 240
Affinity Propagation Clustering 242

Case Study 1: Clustering for Pairs Trading 243
Blueprint for Using Clustering to Select Pairs 244

Case Study 2: Portfolio Management: Clustering Investors 259
Blueprint for Using Clustering for Grouping Investors 260

Case Study 3: Hierarchical Risk Parity 267
Blueprint for Using Clustering to Implement Hierarchical Risk Parity 268

Chapter Summary 277
Exercises 277

Part IV. Reinforcement Learning and Natural Language Processing

9. Reinforcement Learning. 281
Reinforcement Learning—Theory and Concepts 283

RL Components 284
RL Modeling Framework 288
Reinforcement Learning Models 293
Key Challenges in Reinforcement Learning 298

Case Study 1: Reinforcement Learning–Based Trading Strategy 298
Blueprint for Creating a Reinforcement Learning–Based Trading Strategy 300

Case Study 2: Derivatives Hedging 316
Blueprint for Implementing a Reinforcement Learning–Based Hedging

Strategy 317
Case Study 3: Portfolio Allocation 334

vi | Table of Contents

Blueprint for Creating a Reinforcement Learning–Based Algorithm for
Portfolio Allocation 335

Chapter Summary 344
Exercises 345

10. Natural Language Processing. 347
Natural Language Processing: Python Packages 349

NLTK 349
TextBlob 349
spaCy 350

Natural Language Processing: Theory and Concepts 350
1. Preprocessing 351
2. Feature Representation 356
3. Inference 360

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies 362
Blueprint for Building a Trading Strategy Based on Sentiment Analysis 363

Case Study 2: Chatbot Digital Assistant 383
Blueprint for Creating a Custom Chatbot Using NLP 385

Case Study 3: Document Summarization 393
Blueprint for Using NLP for Document Summarization 394

Chapter Summary 400
Exercises 400

Index. 401

Table of Contents | vii

Preface

The value of machine learning (ML) in finance is becoming more apparent each day.
Machine learning is expected to become crucial to the functioning of financial mar‐
kets. Analysts, portfolio managers, traders, and chief investment officers should all be
familiar with ML techniques. For banks and other financial institutions striving to
improve financial analysis, streamline processes, and increase security, ML is becom‐
ing the technology of choice. The use of ML in institutions is an increasing trend, and
its potential for improving various systems can be observed in trading strategies,
pricing, and risk management.

Although machine learning is making significant inroads across all verticals of the
financial services industry, there is a gap between the ideas and the implementation
of machine learning algorithms. A plethora of material is available on the web in
these areas, yet very little is organized. Additionally, most of the literature is limited
to trading algorithms only. Machine Learning and Data Science Blueprints for Finance
fills this void and provides a machine learning toolbox customized for the financal
market that allows the readers to be part of the machine learning revolution. This
book is not limited to investing or trading strategies; it focuses on leveraging the art
and craft of building ML-driven algorithms that are crucial in the finance industry.

Implementing machine learning models in finance is easier than commonly believed.
There is also a misconception that big data is needed for building machine learning
models. The case studies in this book span almost all areas of machine learning and
aim to handle such misconceptions. This book not only will cover the theory and case
studies related to using ML in trading strategies but also will delve deep into other
critical “need-to-know” concepts such as portfolio management, derivative pricing,
fraud detection, corporate credit ratings, robo-advisor development, and chatbot
development. It will address real-life problems faced by practitioners and provide sci‐
entifically sound solutions supported by code and examples.

Preface | ix

The Python codebase for this book on GitHub will be useful and serve as a starting
point for industry practitioners working on their projects. The examples and case
studies shown in the book demonstrate techniques that can easily be applied to a
wide range of datasets. The futuristic case studies, such as reinforcement learning for
trading, building a robo-advisor, and using machine learning for instrument pricing,
inspire readers to think outside the box and motivate them to make the best of the
models and data available.

Who This Book Is For
The format of the book and the list of topics covered make it suitable for professio‐
nals working in hedge funds, investment and retail banks, and fintech firms. They
may have titles such as data scientist, data engineer, quantitative researcher, machine
learning architect, or software engineer. Additionally, the book will be useful for
those professionals working in support functions, such as compliance and risk.

Whether a quantitative trader in a hedge fund is looking for ideas in using reinforce‐
ment learning for trading cryptocurrency or an investment bank quant is looking for
machine learning–based techniques to improve the calibration speed of pricing mod‐
els, this book will add value. The theory, concepts, and codebase mentioned in the
book will be extremely useful at every step of the model development lifecycle, from
idea generation to model implementation. Readers can use the shared codebase and
test the proposed solutions themselves, allowing for a hands-on reader experience.
The readers should have a basic knowledge of statistics, machine learning, and
Python.

How This Book Is Organized
This book provides a comprehensive introduction to how machine learning and data
science can be used to design models across different areas in finance. It is organized
into four parts.

Part I: The Framework
The first part provides an overview of machine learning in finance and the building
blocks of machine learning implementation. These chapters serve as the foundation
for the case studies covering different machine learning types presented in the rest of
the book.

x | Preface

https://github.com/tatsath/fin-ml

The chapters under the first part are as follows:

Chapter 1, Machine Learning in Finance: The Landscape
This chapter provides an overview of applications of machine learning in finance
and provides a brief overview of several types of machine learning.

Chapter 2, Developing a Machine Learning Model in Python
This chapter looks at the Python-based ecosystem for machine learning. It also
cover the steps for machine learning model development in the Python frame‐
work.

Chapter 3, Artificial Neural Networks
Given that an artificial neural network (ANN) is a primary algorithm used across
all types of machine learning, this chapter looks at the details of ANNs, followed
by a detailed implementation of an ANN model using Python libraries.

Part II: Supervised Learning
The second part covers fundamental supervised learning algorithms and illustrates
specific applications and case studies.

The chapters under the second part are as follows:

Chapter 4, Supervised Learning: Models and Concepts
This chapter provides an introduction to supervised learning techniques (both
classification and regression). Given that a lot of models are common between
classification and regression, the details of those models are presented together
along with other concepts such as model selection and evaluation metrics for
classification and regression.

Chapter 5, Supervised Learning: Regression (Including Time Series Models)
Supervised learning-based regression models are the most commonly used
machine learning models in finance. This chapter covers the models from basic
linear regression to advance deep learning. The case studies covered in this sec‐
tion include models for stock price prediction, derivatives pricing, and portfolio
management.

Chapter 6, Supervised Learning: Classification
Classification is a subcategory of supervised learning in which the goal is to pre‐
dict the categorical class labels of new instances, based on past observations. This
section discusses several case studies based on classification–based techniques,
such as logistic regression, support vector machines, and random forests.

Preface | xi

Part III: Unsupervised Learning
The third part covers the fundamental unsupervised learning algorithms and offers
applications and case studies.

The chapters under the third part are as follows:

Chapter 7, Unsupervised Learning: Dimensionality Reduction
This chapter describes the essential techniques to reduce the number of features
in a dataset while retaining most of their useful and discriminatory information.
It also discusses the standard approach to dimensionality reduction via principal
component analysis and covers case studies in portfolio management, trading
strategy, and yield curve construction.

Chapter 8, Unsupervised Learning: Clustering
This chapter covers the algorithms and techniques related to clustering and iden‐
tifying groups of objects that share a degree of similarity. The case studies utiliz‐
ing clustering in trading strategies and portfolio management are covered in this
chapter.

Part IV: Reinforcement Learning and Natural Language Processing
The fourth part covers the reinforcement learning and natural language processing
(NLP) techniques.

The chapters under the fourth part are as follows:

Chapter 9, Reinforcement Learning
This chapter covers concepts and case studies on reinforcement learning, which
have great potential for application in the finance industry. Reinforcement learn‐
ing’s main idea of “maximizing the rewards” aligns perfectly with the core moti‐
vation of several areas within finance. Case studies related to trading strategies,
portfolio optimization, and derivatives hedging are covered in this chapter.

Chapter 10, Natural Language Processing
This chapter describes the techniques in natural language processing and dis‐
cusses the essential steps to transform textual data into meaningful representa‐
tions across several areas in finance. Case studies related to sentiment analysis,
chatbots, and document interpretation are covered.

xii | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

This element indicates a blueprint.

Using Code Presented in the Book
All code in this book (case studies and master template) is available at the GitHub
directory: https://github.com/tatsath/fin-ml. The code is hosted on a cloud platform,
so every case study can be run without installing a package on a local machine by
clicking https://mybinder.org/v2/gh/tatsath/fin-ml/master.

This book is here to help you get your job done. In general, if example code is offered,
you may use it in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For exam‐
ple, writing a program that uses several chunks of code from this book does not

Preface | xiii

https://github.com/tatsath/fin-ml
https://mybinder.org/v2/gh/tatsath/fin-ml/master

require permission. Selling or distributing examples from O’Reilly books does require
permission. Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: Machine Learning and
Data Science Blueprints for Finance by Hariom Tatsat, Sahil Puri, and Brad Looka‐
baugh (O’Reilly, 2021), 978-1-492-07305-5.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Python Libraries
The book uses Python 3.7. Installing the Conda package manager is recommended in
order to create a Conda environment to install the requisite libraries. Installation
instructions are available on the GitHub repo’s README file.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xiv | Preface

mailto:permissions@oreilly.com
https://github.com/tatsath/fin-ml
http://oreilly.com
http://oreilly.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/ML-and-data-science-
blueprints.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
We want to thank all those who helped to make this book a reality. Special thanks to
Jeff Bleiel for honest, insightful feedback, and for guiding us through the entire pro‐
cess. We are incredibly grateful to Juan Manuel Contreras, Chakri Cherukuri, and
Gregory Bronner, who took time out of their busy lives to review our book in so
much detail. The book benefited from their valuable feedback and suggestions. Many
thanks as well to O’Reilly’s fantastic staff, in particular Michelle Smith for believing in
this project and helping us define its scope.

Special Thanks from Hariom
I would like to thank my wife, Prachi, and my parents for their love and support. Spe‐
cial thanks to my father for encouraging me in all of my pursuits and being a contin‐
uous source of inspiration.

Special Thanks from Sahil
Thanks to my family, who always encouraged and supported me in all endeavors.

Special Thanks from Brad
Thank you to my wife, Megan, for her endless love and support.

Preface | xv

https://oreil.ly/ML-and-data-science-blueprints
https://oreil.ly/ML-and-data-science-blueprints
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

PART I

The Framework

CHAPTER 1

Machine Learning in Finance:
The Landscape

Machine learning promises to shake up large swathes of finance
—The Economist (2017)

There is a new wave of machine learning and data science in finance, and the related
applications will transform the industry over the next few decades.

Currently, most financial firms, including hedge funds, investment and retail banks,
and fintech firms, are adopting and investing heavily in machine learning. Going for‐
ward, financial institutions will need a growing number of machine learning and data
science experts.

Machine learning in finance has become more prominent recently due to the availa‐
bility of vast amounts of data and more affordable computing power. The use of data
science and machine learning is exploding exponentially across all areas of finance.

The success of machine learning in finance depends upon building efficient infra‐
structure, using the correct toolkit, and applying the right algorithms. The concepts
related to these building blocks of machine learning in finance are demonstrated and
utilized throughout this book.

In this chapter, we provide an introduction to the current and future application of
machine learning in finance, including a brief overview of different types of machine
learning. This chapter and the two that follow serve as the foundation for the case
studies presented in the rest of the book.

1

Current and Future Machine Learning Applications
in Finance
Let’s take a look at some promising machine learning applications in finance. The
case studies presented in this book cover all the applications mentioned here.

Algorithmic Trading
Algorithmic trading (or simply algo trading) is the use of algorithms to conduct trades
autonomously. With origins going back to the 1970s, algorithmic trading (sometimes
called Automated Trading Systems, which is arguably a more accurate description)
involves the use of automated preprogrammed trading instructions to make
extremely fast, objective trading decisions.

Machine learning stands to push algorithmic trading to new levels. Not only can
more advanced strategies be employed and adapted in real time, but machine learn‐
ing–based techniques can offer even more avenues for gaining special insight into
market movements. Most hedge funds and financial institutions do not openly dis‐
close their machine learning–based approaches to trading (for good reason), but
machine learning is playing an increasingly important role in calibrating trading
decisions in real time.

Portfolio Management and Robo-Advisors
Asset and wealth management firms are exploring potential artificial intelligence (AI)
solutions for improving their investment decisions and making use of their troves of
historical data.

One example of this is the use of robo-advisors, algorithms built to calibrate a finan‐
cial portfolio to the goals and risk tolerance of the user. Additionally, they provide
automated financial guidance and service to end investors and clients.

A user enters their financial goals (e.g., to retire at age 65 with $250,000 in savings),
age, income, and current financial assets. The advisor (the allocator) then spreads
investments across asset classes and financial instruments in order to reach the user’s
goals.

The system then calibrates to changes in the user’s goals and real-time changes in the
market, aiming always to find the best fit for the user’s original goals. Robo-advisors
have gained significant traction among consumers who do not need a human advisor
to feel comfortable investing.

2 | Chapter 1: Machine Learning in Finance: The Landscape

Fraud Detection
Fraud is a massive problem for financial institutions and one of the foremost reasons
to leverage machine learning in finance.

There is currently a significant data security risk due to high computing power, fre‐
quent internet use, and an increasing amount of company data being stored online.
While previous financial fraud detection systems depended heavily on complex and
robust sets of rules, modern fraud detection goes beyond following a checklist of risk
factors—it actively learns and calibrates to new potential (or real) security threats.

Machine learning is ideally suited to combating fraudulent financial transactions.
This is because machine learning systems can scan through vast datasets, detect
unusual activities, and flag them instantly. Given the incalculably high number of
ways that security can be breached, genuine machine learning systems will be an
absolute necessity in the days to come.

Loans/Credit Card/Insurance Underwriting
Underwriting could be described as a perfect job for machine learning in finance, and
indeed there is a great deal of worry in the industry that machines will replace a large
swath of underwriting positions that exist today.

Especially at large companies (big banks and publicly traded insurance firms),
machine learning algorithms can be trained on millions of examples of consumer
data and financial lending or insurance outcomes, such as whether a person defaulted
on their loan or mortgage.

Underlying financial trends can be assessed with algorithms and continuously ana‐
lyzed to detect trends that might influence lending and underwriting risk in the
future. Algorithms can perform automated tasks such as matching data records,
identifying exceptions, and calculating whether an applicant qualifies for a credit or
insurance product.

Automation and Chatbots
Automation is patently well suited to finance. It reduces the strain that repetitive,
low-value tasks put on human employees. It tackles the routine, everyday processes,
freeing up teams to finish their high-value work. In doing so, it drives enormous time
and cost savings.

Adding machine learning and AI into the automation mix adds another level of sup‐
port for employees. With access to relevant data, machine learning and AI can pro‐
vide an in-depth data analysis to support finance teams with difficult decisions. In
some cases, it may even be able to recommend the best course of action for employ‐
ees to approve and enact.

Current and Future Machine Learning Applications in Finance | 3

AI and automation in the financial sector can also learn to recognize errors, reducing
the time wasted between discovery and resolution. This means that human team
members are less likely to be delayed in providing their reports and are able to com‐
plete their work with fewer errors.

AI chatbots can be implemented to support finance and banking customers. With the
rise in popularity of live chat software in banking and finance businesses, chatbots are
the natural evolution.

Risk Management
Machine learning techniques are transforming how we approach risk management.
All aspects of understanding and controlling risk are being revolutionized through
the growth of solutions driven by machine learning. Examples range from deciding
how much a bank should lend a customer to improving compliance and reducing
model risk.

Asset Price Prediction
Asset price prediction is considered the most frequently discussed and most sophisti‐
cated area in finance. Predicting asset prices allows one to understand the factors that
drive the market and speculate asset performance. Traditionally, asset price predic‐
tion was performed by analyzing past financial reports and market performance to
determine what position to take for a specific security or asset class. However, with
a tremendous increase in the amount of financial data, the traditional approaches for
analysis and stock-selection strategies are being supplemented with ML-based
techniques.

Derivative Pricing
Recent machine learning successes, as well as the fast pace of innovation, indicate
that ML applications for derivatives pricing should become widely used in the com‐
ing years. The world of Black-Scholes models, volatility smiles, and Excel spreadsheet
models should wane as more advanced methods become readily available.

The classic derivative pricing models are built on several impractical assumptions to
reproduce the empirical relationship between the underlying input data (strike price,
time to maturity, option type) and the price of the derivatives observed in the market.
Machine learning methods do not rely on several assumptions; they just try to esti‐
mate a function between the input data and price, minimizing the difference between
the results of the model and the target.

The faster deployment times achieved with state-of-the-art ML tools are just one of
the advantages that will accelerate the use of machine learning in derivatives pricing.

4 | Chapter 1: Machine Learning in Finance: The Landscape

Sentiment Analysis
Sentiment analysis involves the perusal of enormous volumes of unstructured data,
such as videos, transcriptions, photos, audio files, social media posts, articles, and
business documents, to determine market sentiment. Sentiment analysis is crucial for
all businesses in today’s workplace and is an excellent example of machine learning in
finance.

The most common use of sentiment analysis in the financial sector is the analysis of
financial news—in particular, predicting the behaviors and possible trends of mar‐
kets. The stock market moves in response to myriad human-related factors, and the
hope is that machine learning will be able to replicate and enhance human intuition
about financial activity by discovering new trends and telling signals.

However, much of the future applications of machine learning will be in understand‐
ing social media, news trends, and other data sources related to predicting the senti‐
ments of customers toward market developments. It will not be limited to predicting
stock prices and trades.

Trade Settlement
Trade settlement is the process of transferring securities into the account of a buyer
and cash into the seller’s account following a transaction of a financial asset.

Despite the majority of trades being settled automatically, and with little or no inter‐
action by human beings, about 30% of trades need to be settled manually.

The use of machine learning not only can identify the reason for failed trades, but it
also can analyze why the trades were rejected, provide a solution, and predict which
trades may fail in the future. What usually would take a human being five to ten
minutes to fix, machine learning can do in a fraction of a second.

Money Laundering
A United Nations report estimates that the amount of money laundered worldwide
per year is 2%–5% of global GDP. Machine learning techniques can analyze internal,
publicly existing, and transactional data from a client’s broader network in an
attempt to spot money laundering signs.

Machine Learning, Deep Learning, Artificial Intelligence,
and Data Science
For the majority of people, the terms machine learning, deep learning, artificial intelli‐
gence, and data science are confusing. In fact, a lot of people use one term inter‐
changeably with the others.

Machine Learning, Deep Learning, Artificial Intelligence, and Data Science | 5

Figure 1-1 shows the relationships between AI, machine learning, deep learning and
data science. Machine learning is a subset of AI that consists of techniques that
enable computers to identify patterns in data and to deliver AI applications. Deep
learning, meanwhile, is a subset of machine learning that enables computers to solve
more complex problems.

Data science isn’t exactly a subset of machine learning, but it uses machine learning,
deep learning, and AI to analyze data and reach actionable conclusions. It combines
machine learning, deep learning and AI with other disciplines such as big data ana‐
lytics and cloud computing.

Figure 1-1. AI, machine learning, deep learning, and data science

The following is a summary of the details about artificial intelligence, machine learn‐
ing, deep learning, and data science:

Artificial intelligence
Artificial intelligence is the field of study by which a computer (and its systems)
develop the ability to successfully accomplish complex tasks that usually require
human intelligence. These tasks include, but are not limited to, visual perception,
speech recognition, decision making, and translation between languages. AI is
usually defined as the science of making computers do things that require intelli‐
gence when done by humans.

Machine learning
Machine learning is an application of artificial intelligence that provides the AI
system with the ability to automatically learn from the environment and apply
those lessons to make better decisions. There are a variety of algorithms that

6 | Chapter 1: Machine Learning in Finance: The Landscape

machine learning uses to iteratively learn, describe and improve data, spot pat‐
terns, and then perform actions on these patterns.

Deep learning
Deep learning is a subset of machine learning that involves the study of algo‐
rithms related to artificial neural networks that contain many blocks (or layers)
stacked on each other. The design of deep learning models is inspired by the bio‐
logical neural network of the human brain. It strives to analyze data with a logical
structure similar to how a human draws conclusions.

Data science
Data science is an interdisciplinary field similar to data mining that uses scien‐
tific methods, processes, and systems to extract knowledge or insights from data
in various forms, either structured or unstructured. Data science is different from
ML and AI because its goal is to gain insight into and understanding of the data
by using different scientific tools and techniques. However, there are several
tools and techniques common to both ML and data science, some of which are
demonstrated in this book.

Machine Learning Types
This section will outline all types of machine learning that are used in different case
studies presented in this book for various financial applications. The three types of
machine learning, as shown in Figure 1-2, are supervised learning, unsupervised
learning, and reinforcement learning.

Figure 1-2. Machine learning types

Supervised
The main goal in supervised learning is to train a model from labeled data that allows
us to make predictions about unseen or future data. Here, the term supervised refers
to a set of samples where the desired output signals (labels) are already known. There
are two types of supervised learning algorithms: classification and regression.

Machine Learning Types | 7

Classification
Classification is a subcategory of supervised learning in which the goal is to predict
the categorical class labels of new instances based on past observations.

Regression
Regression is another subcategory of supervised learning used in the prediction of
continuous outcomes. In regression, we are given a number of predictor (explana‐
tory) variables and a continuous response variable (outcome or target), and we try to
find a relationship between those variables that allows us to predict an outcome.

An example of regression versus classification is shown in Figure 1-3. The chart on
the left shows an example of regression. The continuous response variable is return,
and the observed values are plotted against the predicted outcomes. On the right, the
outcome is a categorical class label, whether the market is bull or bear, and is an
example of classification.

Figure 1-3. Regression versus classification

Unsupervised
Unsupervised learning is a type of machine learning used to draw inferences from
datasets consisting of input data without labeled responses. There are two types of
unsupervised learning: dimensionality reduction and clustering.

Dimensionality reduction
Dimensionality reduction is the process of reducing the number of features, or vari‐
ables, in a dataset while preserving information and overall model performance. It is
a common and powerful way to deal with datasets that have a large number of
dimensions.

8 | Chapter 1: Machine Learning in Finance: The Landscape

Figure 1-4 illustrates this concept, where the dimension of data is converted from two
dimensions (X1 and X2) to one dimension (Z1). Z1 conveys similar information
embedded in X1 and X2 and reduces the dimension of the data.

Figure 1-4. Dimensionality reduction

Clustering
Clustering is a subcategory of unsupervised learning techniques that allows us to dis‐
cover hidden structures in data. The goal of clustering is to find a natural grouping in
data so that items in the same cluster are more similar to each other than to those
from different clusters.

An example of clustering is shown in Figure 1-5, where we can see the entire data
clustered into two distinct groups by the clustering algorithm.

Figure 1-5. Clustering

Reinforcement Learning
Learning from experiences, and the associated rewards or punishments, is the core
concept behind reinforcement learning (RL). It is about taking suitable actions to
maximize reward in a particular situation. The learning system, called an agent, can
observe the environment, select and perform actions, and receive rewards (or penal‐
ties in the form of negative rewards) in return, as shown in Figure 1-6.

Reinforcement learning differs from supervised learning in this way: In supervised
learning, the training data has the answer key, so the model is trained with the correct
answers available. In reinforcement learning, there is no explicit answer. The learning

Machine Learning Types | 9

system (agent) decides what to do to perform the given task and learns whether that
was a correct action based on the reward. The algorithm determines the answer key
through its experience.

Figure 1-6. Reinforcement learning

The steps of the reinforcement learning are as follows:

1. First, the agent interacts with the environment by performing an action.
2. Then the agent receives a reward based on the action it performed.
3. Based on the reward, the agent receives an observation and understands whether

the action was good or bad. If the action was good—that is, if the agent received a
positive reward—then the agent will prefer performing that action. If the reward
was less favorable, the agent will try performing another action to receive a posi‐
tive reward. It is basically a trial-and-error learning process.

Natural Language Processing
Natural language processing (NLP) is a branch of AI that deals with the problems of
making a machine understand the structure and the meaning of natural language as
used by humans. Several techniques of machine learning and deep learning are used
within NLP.

NLP has many applications in the finance sectors in areas such as sentiment analysis,
chatbots, and document processing. A lot of information, such as sell side reports,
earnings calls, and newspaper headlines, is communicated via text message, making
NLP quite useful in the financial domain.

Given the extensive application of NLP algorithms based on machine learning in
finance, there is a separate chapter of this book (Chapter 10) dedicated to NLP and
related case studies.

10 | Chapter 1: Machine Learning in Finance: The Landscape

Chapter Summary
Machine learning is making significant inroads across all the verticals of the financial
services industry. This chapter covered different applications of machine learning in
finance, from algorithmic trading to robo-advisors. These applications will be cov‐
ered in the case studies later in this book.

Next Steps
In terms of the platforms used for machine learning, the Python ecosystem is grow‐
ing and is one of the most dominant programming languages for machine learning.
In the next chapter, we will learn about the model development steps, from data
preparation to model deployment in a Python-based framework.

Chapter Summary | 11

CHAPTER 2

Developing a Machine Learning
Model in Python

In terms of the platforms used for machine learning, there are many algorithms and
programming languages. However, the Python ecosystem is one of the most domi‐
nant and fastest-growing programming languages for machine learning.

Given the popularity and high adoption rate of Python, we will use it as the main
programming language throughout the book. This chapter provides an overview of a
Python-based machine learning framework. First, we will review the details of
Python-based packages used for machine learning, followed by the model develop‐
ment steps in the Python framework.

The steps of model development in Python presented in this chapter serve as the
foundation for the case studies presented in the rest of the book. The Python frame‐
work can also be leveraged while developing any machine learning–based model in
finance.

Why Python?
Some reasons for Python’s popularity are as follows:

• High-level syntax (compared to lower-level languages of C, Java, and C++).
Applications can be developed by writing fewer lines of code, making Python
attractive to beginners and advanced programmers alike.

• Efficient development lifecycle.
• Large collection of community-managed, open-source libraries.
• Strong portability.

13

The simplicity of Python has attracted many developers to create new libraries for
machine learning, leading to strong adoption of Python.

Python Packages for Machine Learning
The main Python packages used for machine learning are highlighted in Figure 2-1.

Figure 2-1. Python packages

Here is a brief summary of each of these packages:

NumPy
Provides support for large, multidimensional arrays as well as an extensive col‐
lection of mathematical functions.

Pandas
A library for data manipulation and analysis. Among other features, it offers data
structures to handle tables and the tools to manipulate them.

Matplotlib
A plotting library that allows the creation of 2D charts and plots.

SciPy
The combination of NumPy, Pandas, and Matplotlib is generally referred to as
SciPy. SciPy is an ecosystem of Python libraries for mathematics, science, and
engineering.

Scikit-learn (or sklearn)
A machine learning library offering a wide range of algorithms and utilities.

14 | Chapter 2: Developing a Machine Learning Model in Python

https://numpy.org
https://pandas.pydata.org
https://matplotlib.org
https://www.scipy.org
https://scikit-learn.org

StatsModels
A Python module that provides classes and functions for the estimation of many
different statistical models, as well as for conducting statistical tests and statistical
data exploration.

TensorFlow and Theano
Dataflow programming libraries that facilitate working with neural networks.

Keras
An artificial neural network library that can act as a simplified interface to
TensorFlow/Theano packages.

Seaborn
A data visualization library based on Matplotlib. It provides a high-level interface
for drawing attractive and informative statistical graphics.

pip and Conda
These are Python package managers. pip is a package manager that facilitates
installation, upgrade, and uninstallation of Python packages. Conda is a package
manager that handles Python packages as well as library dependencies outside of
the Python packages.

Python and Package Installation
There are different ways of installing Python. However, it is strongly recommended
that you install Python through Anaconda. Anaconda contains Python, SciPy, and
Scikit-learn.

After installing Anaconda, a Jupyter server can be started locally by opening the
machine’s terminal and typing in the following code:

$jupyter notebook

All code samples in this book use Python 3 and are presented in
Jupyter notebooks. Several Python packages, especially Scikit-learn
and Keras, are extensively used in the case studies.

Steps for Model Development in Python Ecosystem
Working through machine learning problems from end to end is critically important.
Applied machine learning will not come alive unless the steps from beginning to end
are well defined.

Figure 2-2 provides an outline of the simple seven-step machine learning project
template that can be used to jump-start any machine learning model in Python. The

Steps for Model Development in Python Ecosystem | 15

https://www.statsmodels.org
https://www.tensorflow.org
http://deeplearning.net/software/theano
https://keras.io
https://seaborn.pydata.org
https://pypi.org/project/pip
https://docs.conda.io/en/latest
https://www.anaconda.com

first few steps include exploratory data analysis and data preparation, which are typi‐
cal data science–based steps aimed at extracting meaning and insights from data.
These steps are followed by model evaluation, fine-tuning, and finalizing the model.

Figure 2-2. Model development steps

All the case studies in this book follow the standard seven-step
model development process. However, there are a few case studies
in which some of the steps are skipped, renamed, or reordered
based on the appropriateness and intuitiveness of the steps.

Model Development Blueprint
The following section covers the details of each model development step with sup‐
porting Python code.

1. Problem definition
The first step in any project is defining the problem. Powerful algorithms can be used
for solving the problem, but the results will be meaningless if the wrong problem is
solved.

The following framework should be used for defining the problem:

1. Describe the problem informally and formally. List assumptions and similar
problems.

2. List the motivation for solving the problem, the benefits a solution provides, and
how the solution will be used.

3. Describe how the problem would be solved using the domain knowledge.

16 | Chapter 2: Developing a Machine Learning Model in Python

2. Loading the data and packages
The second step gives you everything needed to start working on the problem. This
includes loading libraries, packages, and individual functions needed for the model
development.

2.1. Load libraries. A sample code for loading libraries is as follows:

Load libraries
import pandas as pd
from matplotlib import pyplot

The details of the libraries and modules for specific functionalities are defined further
in the individual case studies.

2.2. Load data. The following items should be checked and removed before loading
the data:

• Column headers
• Comments or special characters
• Delimiter

There are many ways of loading data. Some of the most common ways are as follows:

Load CSV files with Pandas

from pandas import read_csv
filename = 'xyz.csv'
data = read_csv(filename, names=names)

Load file from URL

from pandas import read_csv
url = 'https://goo.gl/vhm1eU'
names = ['age', 'class']
data = read_csv(url, names=names)

Load file using pandas_datareader

import pandas_datareader.data as web

ccy_tickers = ['DEXJPUS', 'DEXUSUK']
idx_tickers = ['SP500', 'DJIA', 'VIXCLS']

stk_data = web.DataReader(stk_tickers, 'yahoo')
ccy_data = web.DataReader(ccy_tickers, 'fred')
idx_data = web.DataReader(idx_tickers, 'fred')

Steps for Model Development in Python Ecosystem | 17

3. Exploratory data analysis
In this step, we look at the dataset.

3.1. Descriptive statistics. Understanding the dataset is one of the most important
steps of model development. The steps to understanding data include:

1. Viewing the raw data.
2. Reviewing the dimensions of the dataset.
3. Reviewing the data types of attributes.
4. Summarizing the distribution, descriptive statistics, and relationship among the

variables in the dataset.

These steps are demonstrated below using sample Python code:

Viewing the data

set_option('display.width', 100)
dataset.head(1)

Output

Age Sex Job Housing SavingAccounts CheckingAccount CreditAmount Duration Purpose Risk
0 67 male 2 own NaN little 1169 6 radio/TV good

Reviewing the dimensions of the dataset

dataset.shape

Output

(284807, 31)

The results show the dimension of the dataset and mean that the dataset has 284,807
rows and 31 columns.

Reviewing the data types of the attributes in the data

types
set_option('display.max_rows', 500)
dataset.dtypes

Summarizing the data using descriptive statistics

describe data
set_option('precision', 3)
dataset.describe()

18 | Chapter 2: Developing a Machine Learning Model in Python

Output

Age Job CreditAmount Duration
count 1000.000 1000.000 1000.000 1000.000

mean 35.546 1.904 3271.258 20.903

std 11.375 0.654 2822.737 12.059

min 19.000 0.000 250.000 4.000

25% 27.000 2.000 1365.500 12.000

50% 33.000 2.000 2319.500 18.000

75% 42.000 2.000 3972.250 24.000

max 75.000 3.000 18424.000 72.000

3.2. Data visualization. The fastest way to learn more about the data is to visualize it.
Visualization involves independently understanding each attribute of the dataset.

Some of the plot types are as follows:

Univariate plots
Histograms and density plots

Multivariate plots
Correlation matrix plot and scatterplot

The Python code for univariate plot types is illustrated with examples below:

Univariate plot: histogram

from matplotlib import pyplot
dataset.hist(sharex=False, sharey=False, xlabelsize=1, ylabelsize=1,\
figsize=(10,4))
pyplot.show()

Univariate plot: density plot

from matplotlib import pyplot
dataset.plot(kind='density', subplots=True, layout=(3,3), sharex=False,\
legend=True, fontsize=1, figsize=(10,4))
pyplot.show()

Steps for Model Development in Python Ecosystem | 19

Figure 2-3 illustrates the output.

Figure 2-3. Histogram (top) and density plot (bottom)

The Python code for multivariate plot types is illustrated with examples below:

Multivariate plot: correlation matrix plot

from matplotlib import pyplot
import seaborn as sns
correlation = dataset.corr()
pyplot.figure(figsize=(5,5))
pyplot.title('Correlation Matrix')
sns.heatmap(correlation, vmax=1, square=True,annot=True,cmap='cubehelix')

Multivariate plot: scatterplot matrix

from pandas.plotting import scatter_matrix
scatter_matrix(dataset)

Figure 2-4 illustrates the output.

20 | Chapter 2: Developing a Machine Learning Model in Python

Figure 2-4. Correlation (left) and scatterplot (right)

4. Data preparation
Data preparation is a preprocessing step in which data from one or more sources is
cleaned and transformed to improve its quality prior to its use.

4.1. Data cleaning. In machine learning modeling, incorrect data can be costly. Data
cleaning involves checking the following:

Validity
The data type, range, etc.

Accuracy
The degree to which the data is close to the true values.

Completeness
The degree to which all required data is known.

Uniformity
The degree to which the data is specified using the same unit of measure.

The different options for performing data cleaning include:

Dropping “NA” values within data
dataset.dropna(axis=0)

Filling “NA” with 0
dataset.fillna(0)

Filling NAs with the mean of the column
dataset['col'] = dataset['col'].fillna(dataset['col'].mean())

Steps for Model Development in Python Ecosystem | 21

1 Feature selection is more relevant for supervised learning models and is described in detail in the individual
case studies in Chapters 5 and 6.

2 Overfitting is covered in detail in Chapter 4.

4.2. Feature selection. The data features used to train the machine learning models
have a huge influence on the performance. Irrelevant or partially relevant features
can negatively impact model performance. Feature selection1 is a process in which
features in data that contribute most to the prediction variable or output are auto‐
matically selected.

The benefits of performing feature selection before modeling the data are:

Reduces overfitting2

Less redundant data means fewer opportunities for the model to make decisions
based on noise.

Improves performance
Less misleading data means improved modeling performance.

Reduces training time and memory footprint
Less data means faster training and lower memory footprint.

The following sample feature is an example demonstrating when the best two fea‐
tures are selected using the SelectKBest function under sklearn. The SelectKBest
function scores the features using an underlying function and then removes all but
the k highest scoring feature:

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
bestfeatures = SelectKBest(k=5)
fit = bestfeatures.fit(X,Y)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(X.columns)
featureScores = pd.concat([dfcolumns,dfscores],axis=1)
print(featureScores.nlargest(2,'Score')) #print 2 best features

Output

 Specs Score
2 Variable1 58262.490
3 Variable2 321.031

When features are irrelevant, they should be dropped. Dropping the irrelevant fea‐
tures is illustrated in the following sample code:

#dropping the old features
dataset.drop(['Feature1','Feature2','Feature3'],axis=1,inplace=True)

22 | Chapter 2: Developing a Machine Learning Model in Python

https://oreil.ly/JDo-F

4.3. Data transformation. Many machine learning algorithms make assumptions about
the data. It is a good practice to perform the data preparation in such a way that
exposes the data in the best possible manner to the machine learning algorithms. This
can be accomplished through data transformation.

The different data transformation approaches are as follows:

Rescaling
When data comprises attributes with varying scales, many machine learning
algorithms can benefit from rescaling all the attributes to the same scale.
Attributes are often rescaled in the range between zero and one. This is useful for
optimization algorithms used in the core of machine learning algorithms, and it
also helps to speed up the calculations in an algorithm:

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
rescaledX = pd.DataFrame(scaler.fit_transform(X))

Standardization
Standardization is a useful technique to transform attributes to a standard nor‐
mal distribution with a mean of zero and a standard deviation of one. It is most
suitable for techniques that assume the input variables represent a normal distri‐
bution:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(X)
StandardisedX = pd.DataFrame(scaler.fit_transform(X))

Normalization
Normalization refers to rescaling each observation (row) to have a length of one
(called a unit norm or a vector). This preprocessing method can be useful for
sparse datasets of attributes of varying scales when using algorithms that weight
input values:

from sklearn.preprocessing import Normalizer
scaler = Normalizer().fit(X)
NormalizedX = pd.DataFrame(scaler.fit_transform(X))

5. Evaluate models
Once we estimate the performance of our algorithm, we can retrain the final algo‐
rithm on the entire training dataset and get it ready for operational use. The best way
to do this is to evaluate the performance of the algorithm on a new dataset. Different
machine learning techniques require different evaluation metrics. Other than model
performance, several other factors such as simplicity, interpretability, and training
time are considered when selecting a model. The details regarding these factors are
covered in Chapter 4.

Steps for Model Development in Python Ecosystem | 23

https://oreil.ly/4a70f
https://oreil.ly/4a70f

5.1. Training and test split. The simplest method we can use to evaluate the perfor‐
mance of a machine learning algorithm is to use different training and testing data‐
sets. We can take our original dataset and split it into two parts: train the algorithm
on the first part, make predictions on the second part, and evaluate the predictions
against the expected results. The size of the split can depend on the size and specifics
of the dataset, although it is common to use 80% of the data for training and the
remaining 20% for testing. The differences in the training and test datasets can result
in meaningful differences in the estimate of accuracy. The data can easily be split into
the training and test sets using the train_test_split function available in sklearn:

split out validation dataset for the end
validation_size = 0.2
seed = 7
X_train, X_validation, Y_train, Y_validation =\
train_test_split(X, Y, test_size=validation_size, random_state=seed)

5.2. Identify evaluation metrics. Choosing which metric to use to evaluate machine
learning algorithms is very important. An important aspect of evaluation metrics is
the capability to discriminate among model results. Different types of evaluation
metrics used for different kinds of ML models are covered in detail across several
chapters of this book.

5.3. Compare models and algorithms. Selecting a machine learning model or algorithm
is both an art and a science. There is no one solution or approach that fits all. There
are several factors over and above the model performance that can impact the deci‐
sion to choose a machine learning algorithm.

Let’s understand the process of model comparison with a simple example. We define
two variables, X and Y, and try to build a model to predict Y using X. As a first step,
the data is divided into training and test split as mentioned in the preceding section:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
validation_size = 0.2
seed = 7
X = 2 - 3 * np.random.normal(0, 1, 20)
Y = X - 2 * (X ** 2) + 0.5 * (X ** 3) + np.exp(-X)+np.random.normal(-3, 3, 20)
transforming the data to include another axis
X = X[:, np.newaxis]
Y = Y[:, np.newaxis]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,\
test_size=validation_size, random_state=seed)

We have no idea which algorithms will do well on this problem. Let’s design our test
now. We will use two models—one linear regression and the second polynomial
regression to fit Y against X. We will evaluate algorithms using the Root Mean

24 | Chapter 2: Developing a Machine Learning Model in Python

3 It should be noted that the difference in RMSE is small in this case and may not replicate with a different split
of the train/test data.

4 Hyperparameters are the external characteristics of the model, can be considered the model’s settings, and are
not estimated based on data-like model parameters.

Squared Error (RMSE) metric, which is one of the measures of the model perfor‐
mance. RMSE will give a gross idea of how wrong all predictions are (zero is perfect):

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import PolynomialFeatures

model = LinearRegression()
model.fit(X_train, Y_train)
Y_pred = model.predict(X_train)

rmse_lin = np.sqrt(mean_squared_error(Y_train,Y_pred))
r2_lin = r2_score(Y_train,Y_pred)
print("RMSE for Linear Regression:", rmse_lin)

polynomial_features= PolynomialFeatures(degree=2)
x_poly = polynomial_features.fit_transform(X_train)

model = LinearRegression()
model.fit(x_poly, Y_train)
Y_poly_pred = model.predict(x_poly)

rmse = np.sqrt(mean_squared_error(Y_train,Y_poly_pred))
r2 = r2_score(Y_train,Y_poly_pred)
print("RMSE for Polynomial Regression:", rmse)

Output

RMSE for Linear Regression: 6.772942423315028
RMSE for Polynomial Regression: 6.420495127266883

We can see that the RMSE of the polynomial regression is slightly better than that of
the linear regression.3 With the former having the better fit, it is the preferred model
in this step.

6. Model tuning
Finding the best combination of hyperparameters of a model can be treated as a
search problem.4 This searching exercise is often known as model tuning and is one of
the most important steps of model development. It is achieved by searching for the
best parameters of the model by using techniques such as a grid search. In a grid
search, you create a grid of all possible hyperparameter combinations and train
the model using each one of them. Besides a grid search, there are several other

Steps for Model Development in Python Ecosystem | 25

techniques for model tuning, including randomized search, Bayesian optimization,
and hyperbrand.

In the case studies presented in this book, we focus primarily on grid search for
model tuning.

Continuing on from the preceding example, with the polynomial as the best model:
next, run a grid search for the model, refitting the polynomial regression with differ‐
ent degrees. We compare the RMSE results for all the models:

Deg= [1,2,3,6,10]
results=[]
names=[]
for deg in Deg:
 polynomial_features= PolynomialFeatures(degree=deg)
 x_poly = polynomial_features.fit_transform(X_train)

 model = LinearRegression()
 model.fit(x_poly, Y_train)
 Y_poly_pred = model.predict(x_poly)

 rmse = np.sqrt(mean_squared_error(Y_train,Y_poly_pred))
 r2 = r2_score(Y_train,Y_poly_pred)
 results.append(rmse)
 names.append(deg)
plt.plot(names, results,'o')
plt.suptitle('Algorithm Comparison')

Output

The RMSE decreases when the degree increases, and the lowest RMSE is for the
model with degree 10. However, models with degrees lower than 10 performed very
well, and the test set will be used to finalize the best model.

26 | Chapter 2: Developing a Machine Learning Model in Python

https://oreil.ly/ZGVPM

While the generic set of input parameters for each algorithm provides a starting point
for analysis, it may not have the optimal configurations for the particular dataset and
business problem.

7. Finalize the model
Here, we perform the final steps for selecting the model. First, we run predictions on
the test dataset with the trained model. Then we try to understand the model intu‐
ition and save it for further usage.

7.1. Performance on the test set. The model selected during the training steps is further
evaluated on the test set. The test set allows us to compare different models in an
unbiased way, by basing the comparisons in data that were not used in any part of the
training. The test results for the model developed in the previous step are shown in
the following example:

Deg= [1,2,3,6,8,10]
for deg in Deg:
 polynomial_features= PolynomialFeatures(degree=deg)
 x_poly = polynomial_features.fit_transform(X_train)
 model = LinearRegression()
 model.fit(x_poly, Y_train)
 x_poly_test = polynomial_features.fit_transform(X_test)
 Y_poly_pred_test = model.predict(x_poly_test)
 rmse = np.sqrt(mean_squared_error(Y_test,Y_poly_pred_test))
 r2 = r2_score(Y_test,Y_poly_pred_test)
 results_test.append(rmse)
 names_test.append(deg)
plt.plot(names_test, results_test,'o')
plt.suptitle('Algorithm Comparison')

Output

Steps for Model Development in Python Ecosystem | 27

In the training set we saw that the RMSE decreases with an increase in the degree of
polynomial model, and the polynomial of degree 10 had the lowest RMSE. However,
as shown in the preceding output for the polynomial of degree 10, although the train‐
ing set had the best results, the results in the test set are poor. For the polynomial of
degree 8, the RMSE in the test set is relatively higher. The polynomial of degree 6
shows the best result in the test set (although the difference is small compared to
other lower-degree polynomials in the test set) as well as good results in the training
set. For these reasons, this is the preferred model.

In addition to the model performance, there are several other factors to consider
when selecting a model, such as simplicity, interpretability, and training time. These
factors will be covered in the upcoming chapters.

7.2. Model/variable intuition. This step involves considering a holistic view of the
approach taken to solve the problem, including the model’s limitations as it relates to
the desired outcome, the variables used, and the selected model parameters. Details
on model and variable intuition regarding different types of machine learning models
are presented in the subsequent chapters and case studies.

7.3. Save/deploy. After finding an accurate machine learning model, it must be saved
and loaded in order to ensure its usage later.

Pickle is one of the packages for saving and loading a trained model in Python. Using
pickle operations, trained machine learning models can be saved in the serialized for‐
mat to a file. Later, this serialized file can be loaded to de-serialize the model for its
usage. The following sample code demonstrates how to save the model to a file and
load it to make predictions on new data:

Save Model Using Pickle
from pickle import dump
from pickle import load
save the model to disk
filename = 'finalized_model.sav'
dump(model, open(filename, 'wb'))
load the model from disk
loaded_model = load(filename)

In recent years, frameworks such as AutoML have been built to
automate the maximum number of steps in a machine learning
model development process. Such frameworks allow the model
developers to build ML models with high scale, efficiency, and pro‐
ductivity. Readers are encouraged to explore such frameworks.

28 | Chapter 2: Developing a Machine Learning Model in Python

https://oreil.ly/ChjFb

Chapter Summary
Given its popularity, rate of adoption, and flexibility, Python is often the preferred
language for machine learning development. There are many available Python pack‐
ages to perform numerous tasks, including data cleaning, visualization, and model
development. Some of these key packages are Scikit-learn and Keras.

The seven steps of model development mentioned in this chapter can be leveraged
while developing any machine learning–based model in finance.

Next Steps
In the next chapter, we will cover the key algorithm for machine learning—the artifi‐
cial neural network. The artificial neural network is another building block of
machine learning in finance and is used across all types of machine learning and deep
learning algorithms.

Chapter Summary | 29

CHAPTER 3

Artificial Neural Networks

There are many different types of models used in machine learning. However, one
class of machine learning models that stands out is artificial neural networks (ANNs).
Given that artificial neural networks are used across all machine learning types, this
chapter will cover the basics of ANNs.

ANNs are computing systems based on a collection of connected units or nodes
called artificial neurons, which loosely model the neurons in a biological brain. Each
connection, like the synapses in a biological brain, can transmit a signal from one
artificial neuron to another. An artificial neuron that receives a signal can process it
and then signal additional artificial neurons connected to it.

Deep learning involves the study of complex ANN-related algorithms. The complex‐
ity is attributed to elaborate patterns of how information flows throughout the
model. Deep learning has the ability to represent the world as a nested hierarchy of
concepts, with each concept defined in relation to a simpler concept. Deep learning
techniques are extensively used in reinforcement learning and natural language pro‐
cessing applications that we will look at in Chapters 9 and 10.

31

1 Readers are encouraged to refer to the book Deep Learning by Aaron Courville, Ian Goodfellow, and Yoshua
Bengio (MIT Press) for more details on ANN and deep learning.

2 Activation functions are described in detail later in this chapter.

We will review detailed terminology and processes used in the field of ANNs1 and
cover the following topics:

• Architecture of ANNs: Neurons and layers
• Training an ANN: Forward propagation, backpropagation and gradient descent
• Hyperparameters of ANNs: Number of layers and nodes, activation function,

loss function, learning rate, etc.
• Defining and training a deep neural network–based model in Python
• Improving the training speed of ANNs and deep learning models

ANNs: Architecture, Training, and Hyperparameters
ANNs contain multiple neurons arranged in layers. An ANN goes through a training
phase by comparing the modeled output to the desired output, where it learns to rec‐
ognize patterns in data. Let us go through the components of ANNs.

Architecture
An ANN architecture comprises neurons, layers, and weights.

Neurons
The building blocks for ANNs are neurons (also known as artificial neurons, nodes,
or perceptrons). Neurons have one or more inputs and one output. It is possible to
build a network of neurons to compute complex logical propositions. Activation
functions in these neurons create complicated, nonlinear functional mappings
between the inputs and the output.2

As shown in Figure 3-1, a neuron takes an input (x1, x2…xn), applies the learning
parameters to generate a weighted sum (z), and then passes that sum to an activation
function (f) that computes the output f(z).

32 | Chapter 3: Artificial Neural Networks

Figure 3-1. An artificial neuron

Layers
The output f(z) from a single neuron (as shown in Figure 3-1) will not be able to
model complex tasks. So, in order to handle more complex structures, we have multi‐
ple layers of such neurons. As we keep stacking neurons horizontally and vertically,
the class of functions we can get becomes increasing complex. Figure 3-2 shows an
architecture of an ANN with an input layer, an output layer, and a hidden layer.

Figure 3-2. Neural network architecture

Input layer. The input layer takes input from the dataset and is the exposed part of
the network. A neural network is often drawn with an input layer of one neuron per
input value (or column) in the dataset. The neurons in the input layer simply pass the
input value though to the next layer.

ANNs: Architecture, Training, and Hyperparameters | 33

Hidden layers. Layers after the input layer are called hidden layers because they are
not directly exposed to the input. The simplest network structure is to have a single
neuron in the hidden layer that directly outputs the value.

A multilayer ANN is capable of solving more complex machine learning–related
tasks due to its hidden layer(s). Given increases in computing power and efficient
libraries, neural networks with many layers can be constructed. ANNs with many
hidden layers (more than three) are known as deep neural networks. Multiple hidden
layers allow deep neural networks to learn features of the data in a so-called feature
hierarchy, because simple features recombine from one layer to the next to form
more complex features. ANNs with many layers pass input data (features) through
more mathematical operations than do ANNs with few layers and are therefore more
computationally intensive to train.

Output layer. The final layer is called the output layer; it is responsible for outputting
a value or vector of values that correspond to the format required to solve the
problem.

Neuron weights
A neuron weight represents the strength of the connection between units and
measures the influence the input will have on the output. If the weight from neuron
one to neuron two has greater magnitude, it means that neuron one has a greater
influence over neuron two. Weights near zero mean changing this input will not
change the output. Negative weights mean increasing this input will decrease the
output.

Training
Training a neural network basically means calibrating all of the weights in the ANN.
This optimization is performed using an iterative approach involving forward propa‐
gation and backpropagation steps.

Forward propagation
Forward propagation is a process of feeding input values to the neural network and
getting an output, which we call predicted value. When we feed the input values to the
neural network’s first layer, it goes without any operations. The second layer takes
values from the first layer and applies multiplication, addition, and activation opera‐
tions before passing this value to the next layer. The same process repeats for any
subsequent layers until an output value from the last layer is received.

34 | Chapter 3: Artificial Neural Networks

3 There are many available loss functions discussed in the next section. The nature of our problem dictates our
choice of loss function.

Backpropagation
After forward propagation, we get a predicted value from the ANN. Suppose the
desired output of a network is Y and the predicted value of the network from forward
propagation is Y′. The difference between the predicted output and the desired out‐
put (Y–Y′) is converted into the loss (or cost) function J(w), where w represents the
weights in ANN.3 The goal is to optimize the loss function (i.e., make the loss as small
as possible) over the training set.

The optimization method used is gradient descent. The goal of the gradient descent
method is to find the gradient of J(w) with respect to w at the current point and take a
small step in the direction of the negative gradient until the minimum value is
reached, as shown in Figure 3-3.

Figure 3-3. Gradient descent

In an ANN, the function J(w) is essentially a composition of multiple layers, as
explained in the preceding text. So, if layer one is represented as function p(), layer
two as q(), and layer three as r(), then the overall function is J(w)=r(q(p())). w consists
of all weights in all three layers. We want to find the gradient of J(w) with respect to
each component of w.

Skipping the mathematical details, the above essentially implies that the gradient of a
component w in the first layer would depend on the gradients in the second and third
layers. Similarly, the gradients in the second layer will depend on the gradients in the
third layer. Therefore, we start computing the derivatives in the reverse direction,
starting with the last layer, and use backpropagation to compute gradients of the pre‐
vious layer.

ANNs: Architecture, Training, and Hyperparameters | 35

Overall, in the process of backpropagation, the model error (difference between pre‐
dicted and desired output) is propagated back through the network, one layer at a
time, and the weights are updated according to the amount they contributed to the
error.

Almost all ANNs use gradient descent and backpropagation. Backpropagation is one
of the cleanest and most efficient ways to find the gradient.

Hyperparameters
Hyperparameters are the variables that are set before the training process, and they
cannot be learned during training. ANNs have a large number of hyperparameters,
which makes them quite flexible. However, this flexibility makes the model tuning
process difficult. Understanding the hyperparameters and the intuition behind them
helps give an idea of what values are reasonable for each hyperparameter so we can
restrict the search space. Let’s start with the number of hidden layers and nodes.

Number of hidden layers and nodes
More hidden layers or nodes per layer means more parameters in the ANN, allowing
the model to fit more complex functions. To have a trained network that generalizes
well, we need to pick an optimal number of hidden layers, as well as of the nodes in
each hidden layer. Too few nodes and layers will lead to high errors for the system, as
the predictive factors might be too complex for a small number of nodes to capture.
Too many nodes and layers will overfit to the training data and not generalize well.

There is no hard-and-fast rule to decide the number of layers and nodes.

The number of hidden layers primarily depends on the complexity of the task. Very
complex tasks, such as large image classification or speech recognition, typically
require networks with dozens of layers and a huge amount of training data. For the
majority of the problems, we can start with just one or two hidden layers and then
gradually ramp up the number of hidden layers until we start overfitting the training
set.

The number of hidden nodes should have a relationship to the number of input and
output nodes, the amount of training data available, and the complexity of the func‐
tion being modeled. As a rule of thumb, the number of hidden nodes in each layer
should be somewhere between the size of the input layer and the size of the output
layer, ideally the mean. The number of hidden nodes shouldn’t exceed twice the
number of input nodes in order to avoid overfitting.

Learning rate
When we train ANNs, we use many iterations of forward propagation and backpro‐
pagation to optimize the weights. At each iteration we calculate the derivative of the

36 | Chapter 3: Artificial Neural Networks

loss function with respect to each weight and subtract it from that weight. The learn‐
ing rate determines how quickly or slowly we want to update our weight (parameter)
values. This learning rate should be high enough so that it converges in a reasonable
amount of time. Yet it should be low enough so that it finds the minimum value of
the loss function.

Activation functions
Activation functions (as shown in Figure 3-1) refer to the functions used over the
weighted sum of inputs in ANNs to get the desired output. Activation functions
allow the network to combine the inputs in more complex ways, and they provide a
richer capability in the relationship they can model and the output they can produce.
They decide which neurons will be activated—that is, what information is passed to
further layers.

Without activation functions, ANNs lose a bulk of their representation learning
power. There are several activation functions. The most widely used are as follows:

Linear (identity) function
Represented by the equation of a straight line (i.e., f (x) = mx + c), where activa‐
tion is proportional to the input. If we have many layers, and all the layers are
linear in nature, then the final activation function of the last layer is the same as
the linear function of the first layer. The range of a linear function is –inf to +inf.

Sigmoid function
Refers to a function that is projected as an S-shaped graph (as shown in
Figure 3-4). It is represented by the mathematical equation f (x) = 1 / (1 + e –x)
and ranges from 0 to 1. A large positive input results in a large positive output; a
large negative input results in a large negative output. It is also referred to as
logistic activation function.

Tanh function
Similar to sigmoid activation function with a mathematical equation
Tanh (x) = 2Sigmoid(2x) – 1, where Sigmoid represents the sigmoid function
discussed above. The output of this function ranges from –1 to 1, with an equal
mass on both sides of the zero-axis, as shown in Figure 3-4.

ReLU function
ReLU stands for the Rectified Linear Unit and is represented as
f (x) = max(x, 0). So, if the input is a positive number, the function returns the
number itself, and if the input is a negative number, then the function returns
zero. It is the most commonly used function because of its simplicity.

ANNs: Architecture, Training, and Hyperparameters | 37

4 Deriving a regression or classification output by changing the activation function of the output layer is
described further in Chapter 4.

Figure 3-4 shows a summary of the activation functions discussed in this section.

Figure 3-4. Activation functions

There is no hard-and-fast rule for activation function selection. The decision com‐
pletely relies on the properties of the problem and the relationships being modeled.
We can try different activation functions and select the one that helps provide faster
convergence and a more efficient training process. The choice of activation function
in the output layer is strongly constrained by the type of problem that is modeled.4

Cost functions
Cost functions (also known as loss functions) are a measure of the ANN perfor‐
mance, measuring how well the ANN fits empirical data. The two most common cost
functions are:

Mean squared error (MSE)
This is the cost function used primarily for regression problems, where output is
a continuous value. MSE is measured as the average of the squared difference

38 | Chapter 3: Artificial Neural Networks

5 Refer to https://oreil.ly/FSt-8 for more details on optimization.

between predictions and actual observation. MSE is described further in
Chapter 4.

Cross-entropy (or log loss)
This cost function is used primarily for classification problems, where output is a
probability value between zero and one. Cross-entropy loss increases as the pre‐
dicted probability diverges from the actual label. A perfect model would have a
cross-entropy of zero.

Optimizers
Optimizers update the weight parameters to minimize the loss function.5 Cost func‐
tion acts as a guide to the terrain, telling the optimizer if it is moving in the right
direction to reach the global minimum. Some of the common optimizers are as
follows:

Momentum
The momentum optimizer looks at previous gradients in addition to the current
step. It will take larger steps if the previous updates and the current update move
the weights in the same direction (gaining momentum). It will take smaller steps
if the direction of the gradient is opposite. A clever way to visualize this is to
think of a ball rolling down a valley—it will gain momentum as it approaches the
valley bottom.

AdaGrad (Adaptive Gradient Algorithm)
AdaGrad adapts the learning rate to the parameters, performing smaller updates
for parameters associated with frequently occurring features, and larger updates
for parameters associated with infrequent features.

RMSProp
RMSProp stands for Root Mean Square Propagation. In RMSProp, the learning
rate gets adjusted automatically, and it chooses a different learning rate for each
parameter.

Adam (Adaptive Moment Estimation)
Adam combines the best properties of the AdaGrad and RMSProp algorithms to
provide an optimization and is one of the most popular gradient descent optimi‐
zation algorithms.

ANNs: Architecture, Training, and Hyperparameters | 39

https://oreil.ly/FSt-8

6 The steps and Python code related to implementing deep learning models using Keras, as demonstrated in
this section, are used in several case studies in the subsequent chapters.

Epoch
One round of updating the network for the entire training dataset is called an epoch.
A network may be trained for tens, hundreds, or many thousands of epochs depend‐
ing on the data size and computational constraints.

Batch size
The batch size is the number of training examples in one forward/backward pass. A
batch size of 32 means that 32 samples from the training dataset will be used to esti‐
mate the error gradient before the model weights are updated. The higher the batch
size, the more memory space is needed.

Creating an Artificial Neural Network Model in Python
In Chapter 2 we discussed the steps for end-to-end model development in Python. In
this section, we dig deeper into the steps involved in building an ANN-based model
in Python.

Our first step will be to look at Keras, the Python package specifically built for ANN
and deep learning.

Installing Keras and Machine Learning Packages
There are several Python libraries that allow building ANN and deep learning models
easily and quickly without getting into the details of underlying algorithms. Keras is
one of the most user-friendly packages that enables an efficient numerical computa‐
tion related to ANNs. Using Keras, complex deep learning models can be defined and
implemented in a few lines of code. We will primarily be using Keras packages for
implementing deep learning models in several of the book’s case studies.

Keras is simply a wrapper around more complex numerical computation engines
such as TensorFlow and Theano. In order to install Keras, TensorFlow or Theano
needs to be installed first.

This section describes the steps to define and compile an ANN-based model in Keras,
with a focus on the following steps.6

Importing the packages
Before you can start to build an ANN model, you need to import two modules from
the Keras package: Sequential and Dense:

40 | Chapter 3: Artificial Neural Networks

https://keras.io
https://www.tensorflow.org
https://oreil.ly/-XFJP

from Keras.models import Sequential
from Keras.layers import Dense
import numpy as np

Loading data

This example makes use of the random module of NumPy to quickly generate some
data and labels to be used by ANN that we build in the next step. Specifically, an
array with size (1000,10) is first constructed. Next, we create a labels array that con‐
sists of zeros and ones with a size (1000,1):

data = np.random.random((1000,10))
Y = np.random.randint(2,size= (1000,1))
model = Sequential()

Model construction—defining the neural network architecture
A quick way to get started is to use the Keras Sequential model, which is a linear stack
of layers. We create a Sequential model and add layers one at a time until the network
topology is finalized. The first thing to get right is to ensure the input layer has the
right number of inputs. We can specify this when creating the first layer. We then
select a dense or fully connected layer to indicate that we are dealing with an input
layer by using the argument input_dim.

We add a layer to the model with the add() function, and the number of nodes in
each layer is specified. Finally, another dense layer is added as an output layer.

The architecture for the model shown in Figure 3-5 is as follows:

• The model expects rows of data with 10 variables (input_dim_=10 argument).
• The first hidden layer has 32 nodes and uses the relu activation function.
• The second hidden layer has 32 nodes and uses the relu activation function.
• The output layer has one node and uses the sigmoid activation function.

Creating an Artificial Neural Network Model in Python | 41

7 A detailed discussion of the evaluation metrics for classification models is presented in Chapter 4.

Figure 3-5. An ANN architecture

The Python code for the network in Figure 3-5 is shown below:

model = Sequential()
model.add(Dense(32, input_dim=10, activation= 'relu'))
model.add(Dense(32, activation= 'relu'))
model.add(Dense(1, activation= 'sigmoid'))

Compiling the model

With the model constructed, it can be compiled with the help of the compile() func‐
tion. Compiling the model leverages the efficient numerical libraries in the Theano or
TensorFlow packages. When compiling, it is important to specify the additional
properties required when training the network. Training a network means finding
the best set of weights to make predictions for the problem at hand. So we must spec‐
ify the loss function used to evaluate a set of weights, the optimizer used to search
through different weights for the network, and any optional metrics we would like to
collect and report during training.

In the following example, we use cross-entropy loss function, which is defined in
Keras as binary_crossentropy. We will also use the adam optimizer, which is the
default option. Finally, because it is a classification problem, we will collect and
report the classification accuracy as the metric.7 The Python code follows:

model.compile(loss= 'binary_crossentropy' , optimizer= 'adam' , \
 metrics=['accuracy'])

42 | Chapter 3: Artificial Neural Networks

Fitting the model
With our model defined and compiled, it is time to execute it on data. We can train
or fit our model on our loaded data by calling the fit() function on the model.

The training process will run for a fixed number of iterations (epochs) through the
dataset, specified using the nb_epoch argument. We can also set the number of
instances that are evaluated before a weight update in the network is performed. This
is set using the batch_size argument. For this problem we will run a small number
of epochs (10) and use a relatively small batch size of 32. Again, these can be chosen
experimentally through trial and error. The Python code follows:

model.fit(data, Y, nb_epoch=10, batch_size=32)

Evaluating the model
We have trained our neural network on the entire dataset and can evaluate the per‐
formance of the network on the same dataset. This will give us an idea of how well we
have modeled the dataset (e.g., training accuracy) but will not provide insight on how
well the algorithm will perform on new data. For this, we separate the data into train‐
ing and test datasets. The model is evaluated on the training dataset using the evalua
tion() function. This will generate a prediction for each input and output pair and
collect scores, including the average loss and any metrics configured, such as accu‐
racy. The Python code follows:

scores = model.evaluate(X_test, Y_test)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

Running an ANN Model Faster: GPU and Cloud Services
For training ANNs (especially deep neural networks with many layers), a large
amount of computation power is required. Available CPUs, or Central Processing
Units, are responsible for processing and executing instructions on a local machine.
Since CPUs are limited in the number of cores and take up the job sequentially, they
cannot do rapid matrix computations for the large number of matrices required for
training deep learning models. Hence, the training of deep learning models can be
extremely slow on the CPUs.

The following alternatives are useful for running ANNs that generally require a sig‐
nificant amount of time to run on a CPU:

• Running notebooks locally on a GPU.
• Running notebooks on Kaggle Kernels or Google Colaboratory.
• Using Amazon Web Services.

Creating an Artificial Neural Network Model in Python | 43

GPU
A GPU is composed of hundreds of cores that can handle thousands of threads
simultaneously. Running ANNs and deep learning models can be accelerated by the
use of GPUs.

GPUs are particularly adept at processing complex matrix operations. The GPU cores
are highly specialized, and they massively accelerate processes such as deep learning
training by offloading the processing from CPUs to the cores in the GPU subsystem.

All the Python packages related to machine learning, including Tensorflow, Theano,
and Keras, can be configured for the use of GPUs.

Cloud services such as Kaggle and Google Colab
If you have a GPU-enabled computer, you can run ANNs locally. If you do not, we
recommend you use a service such as Kaggle Kernels, Google Colab, or AWS:

Kaggle
A popular data science website owned by Google that hosts Jupyter service and is
also referred to as Kaggle Kernels. Kaggle Kernels are free to use and come with
the most frequently used packages preinstalled. You can connect a kernel to any
dataset hosted on Kaggle, or alternatively, you can just upload a new dataset on
the fly.

Google Colaboratory
A free Jupyter Notebook environment provided by Google where you can use
free GPUs. The features of Google Colaboratory are the same as Kaggle.

Amazon Web Services (AWS)
AWS Deep Learning provides an infrastructure to accelerate deep learning in the
cloud, at any scale. You can quickly launch AWS server instances preinstalled
with popular deep learning frameworks and interfaces to train sophisticated, cus‐
tom AI models, experiment with new algorithms, or learn new skills and techni‐
ques. These web servers can run longer than Kaggle Kernels. So for big projects,
it might be worth using an AWS instead of a kernel.

44 | Chapter 3: Artificial Neural Networks

https://www.kaggle.com
https://oreil.ly/keqHk
https://oreil.ly/gU84O

Chapter Summary
ANNs comprise a family of algorithms used across all types of machine learning.
These models are inspired by the biological neural networks containing neurons and
layers of neurons that constitute animal brains. ANNs with many layers are referred
to as deep neural networks. Several steps, including forward propagation and back‐
propagation, are required for training these ANNs. Python packages such as Keras
make the training of these ANNs possible in a few lines of code. The training of these
deep neural networks require more computational power, and CPUs alone might not
be enough. Alternatives include using a GPU or cloud service such as Kaggle Kernels,
Google Colaboratory, or Amazon Web Services for training deep neural networks.

Next Steps
As a next step, we will be going into the details of the machine learning concepts for
supervised learning, followed by case studies using the concepts covered in this
chapter.

Chapter Summary | 45

PART II

Supervised Learning

CHAPTER 4

Supervised Learning: Models and Concepts

Supervised learning is an area of machine learning where the chosen algorithm tries
to fit a target using the given input. A set of training data that contains labels is sup‐
plied to the algorithm. Based on a massive set of data, the algorithm will learn a rule
that it uses to predict the labels for new observations. In other words, supervised
learning algorithms are provided with historical data and asked to find the relation‐
ship that has the best predictive power.

There are two varieties of supervised learning algorithms: regression and classifica‐
tion algorithms. Regression-based supervised learning methods try to predict outputs
based on input variables. Classification-based supervised learning methods identify
which category a set of data items belongs to. Classification algorithms are
probability-based, meaning the outcome is the category for which the algorithm finds
the highest probability that the dataset belongs to it. Regression algorithms, in con‐
trast, estimate the outcome of problems that have an infinite number of solutions
(continuous set of possible outcomes).

In the context of finance, supervised learning models represent one of the most-used
class of machine learning models. Many algorithms that are widely applied in algo‐
rithmic trading rely on supervised learning models because they can be efficiently
trained, they are relatively robust to noisy financial data, and they have strong links
to the theory of finance.

Regression-based algorithms have been leveraged by academic and industry research‐
ers to develop numerous asset pricing models. These models are used to predict
returns over various time periods and to identify significant factors that drive asset
returns. There are many other use cases of regression-based supervised learning in
portfolio management and derivatives pricing.

49

Classification-based algorithms, on the other hand, have been leveraged across many
areas within finance that require predicting a categorical response. These include
fraud detection, default prediction, credit scoring, directional forecast of asset price
movement, and Buy/Sell recommendations. There are many other use cases of
classification-based supervised learning in portfolio management and algorithmic
trading.

Many use cases of regression-based and classification-based supervised machine
learning are presented in Chapters 5 and 6.

Python and its libraries provide methods and ways to implement these supervised
learning models in few lines of code. Some of these libraries were covered in Chap‐
ter 2. With easy-to-use machine learning libraries like Scikit-learn and Keras, it is
straightforward to fit different machine learning models on a given predictive model‐
ing dataset.

In this chapter, we present a high-level overview of supervised learning models. For a
thorough coverage of the topics, the reader is referred to Hands-On Machine Learn‐
ing with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, by Aurélien Géron
(O’Reilly).

The following topics are covered in this chapter:

• Basic concepts of supervised learning models (both regression and classification).
• How to implement different supervised learning models in Python.
• How to tune the models and identify the optimal parameters of the models using

grid search.
• Overfitting versus underfitting and bias versus variance.
• Strengths and weaknesses of several supervised learning models.
• How to use ensemble models, ANN, and deep learning models for both regres‐

sion and classification.
• How to select a model on the basis of several factors, including model

performance.
• Evaluation metrics for classification and regression models.
• How to perform cross validation.

50 | Chapter 4: Supervised Learning: Models and Concepts

Supervised Learning Models: An Overview
Classification predictive modeling problems are different from regression predictive
modeling problems, as classification is the task of predicting a discrete class label and
regression is the task of predicting a continuous quantity. However, both share the
same concept of utilizing known variables to make predictions, and there is a signifi‐
cant overlap between the two models. Hence, the models for classification and regres‐
sion are presented together in this chapter. Figure 4-1 summarizes the list of the
models commonly used for classification and regression.

Some models can be used for both classification and regression with small modifica‐
tions. These are K-nearest neighbors, decision trees, support vector, ensemble bag‐
ging/boosting methods, and ANNs (including deep neural networks), as shown in
Figure 4-1. However, some models, such as linear regression and logistic regression,
cannot (or cannot easily) be used for both problem types.

Figure 4-1. Models for regression and classification

This section contains the following details about the models:

• Theory of the models.
• Implementation in Scikit-learn or Keras.
• Grid search for different models.
• Pros and cons of the models.

Supervised Learning Models: An Overview | 51

In finance, a key focus is on models that extract signals from previ‐
ously observed data in order to predict future values for the same
time series. This family of time series models predicts continuous
output and is more aligned with the supervised regression models.
Time series models are covered separately in the supervised regres‐
sion chapter (Chapter 5).

Linear Regression (Ordinary Least Squares)
Linear regression (Ordinary Least Squares Regression or OLS Regression) is perhaps
one of the most well-known and best-understood algorithms in statistics and
machine learning. Linear regression is a linear model, e.g., a model that assumes a
linear relationship between the input variables (x) and the single output variable (y).
The goal of linear regression is to train a linear model to predict a new y given a pre‐
viously unseen x with as little error as possible.

Our model will be a function that predicts y given x1, x2...xi:

y = β0 + β1x1 + ... + βi xi

where, β0 is called intercept and β1...βi are the coefficient of the regression.

Implementation in Python
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X, Y)

In the following section, we cover the training of a linear regression model and grid
search of the model. However, the overall concepts and related approaches are appli‐
cable to all other supervised learning models.

Training a model
As we mentioned in Chapter 3, training a model basically means retrieving the model
parameters by minimizing the cost (loss) function. The two steps for training a linear
regression model are:

Define a cost function (or loss function)
Measures how inaccurate the model’s predictions are. The sum of squared residu‐
als (RSS) as defined in Equation 4-1 measures the squared sum of the difference
between the actual and predicted value and is the cost function for linear
regression.

52 | Chapter 4: Supervised Learning: Models and Concepts

Equation 4-1. Sum of squared residuals

RSS = ∑
i=1

n
(yi – β0 – ∑

j=1

n
βj xij)

2

In this equation, β0 is the intercept; βj represents the coefficient; β1, .., βj are the
coefficients of the regression; and xij represents the i th observation and j th

variable.

Find the parameters that minimize loss
For example, make our model as accurate as possible. Graphically, in two dimen‐
sions, this results in a line of best fit as shown in Figure 4-2. In higher dimen‐
sions, we would have higher-dimensional hyperplanes. Mathematically, we look
at the difference between each real data point (y) and our model’s prediction (ŷ).
Square these differences to avoid negative numbers and penalize larger differ‐
ences, and then add them up and take the average. This is a measure of how well
our data fits the line.

Figure 4-2. Linear regression

Grid search
The overall idea of the grid search is to create a grid of all possible hyperparameter
combinations and train the model using each one of them. Hyperparameters are the
external characteristic of the model, can be considered the model’s settings, and are
not estimated based on data-like model parameters. These hyperparameters are
tuned during grid search to achieve better model performance.

Supervised Learning Models: An Overview | 53

1 Cross validation will be covered in detail later in this chapter.

Due to its exhaustive search, a grid search is guaranteed to find the optimal parame‐
ter within the grid. The drawback is that the size of the grid grows exponentially with
the addition of more parameters or more considered values.

The GridSearchCV class in the model_selection module of the sklearn package facil‐
itates the systematic evaluation of all combinations of the hyperparameter values that
we would like to test.

The first step is to create a model object. We then define a dictionary where the key‐
words name the hyperparameters and the values list the parameter settings to be
tested. For linear regression, the hyperparameter is fit_intercept, which is a
boolean variable that determines whether or not to calculate the intercept for this
model. If set to False, no intercept will be used in calculations:

model = LinearRegression()
param_grid = {'fit_intercept': [True, False]}
}

The second step is to instantiate the GridSearchCV object and provide the estimator
object and parameter grid, as well as a scoring method and cross validation choice, to
the initialization method. Cross validation is a resampling procedure used to evaluate
machine learning models, and scoring parameter is the evaluation metrics of the
model:1

With all settings in place, we can fit GridSearchCV:

grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring= 'r2', \
 cv=kfold)
grid_result = grid.fit(X, Y)

Advantages and disadvantages
In terms of advantages, linear regression is easy to understand and interpret. How‐
ever, it may not work well when there is a nonlinear relationship between predicted
and predictor variables. Linear regression is prone to overfitting (which we will dis‐
cuss in the next section) and when a large number of features are present, it may not
handle irrelevant features well. Linear regression also requires the data to follow cer‐
tain assumptions, such as the absence of multicollinearity. If the assumptions fail,
then we cannot trust the results obtained.

54 | Chapter 4: Supervised Learning: Models and Concepts

https://oreil.ly/tNDnc

Regularized Regression
When a linear regression model contains many independent variables, their coeffi‐
cients will be poorly determined, and the model will have a tendency to fit extremely
well to the training data (data used to build the model) but fit poorly to testing data
(data used to test how good the model is). This is known as overfitting or high
variance.

One popular technique to control overfitting is regularization, which involves the
addition of a penalty term to the error or loss function to discourage the coefficients
from reaching large values. Regularization, in simple terms, is a penalty mechanism
that applies shrinkage to model parameters (driving them closer to zero) in order to
build a model with higher prediction accuracy and interpretation. Regularized regres‐
sion has two advantages over linear regression:

Prediction accuracy
The performance of the model working better on the testing data suggests that
the model is trying to generalize from training data. A model with too many
parameters might try to fit noise specific to the training data. By shrinking or set‐
ting some coefficients to zero, we trade off the ability to fit complex models
(higher bias) for a more generalizable model (lower variance).

Interpretation
A large number of predictors may complicate the interpretation or communica‐
tion of the big picture of the results. It may be preferable to sacrifice some detail
to limit the model to a smaller subset of parameters with the strongest effects.

The common ways to regularize a linear regression model are as follows:

L1 regularization or Lasso regression
Lasso regression performs L1 regularization by adding a factor of the sum of the
absolute value of coefficients in the cost function (RSS) for linear regression, as
mentioned in Equation 4-1. The equation for lasso regularization can be repre‐
sented as follows:

CostFunction = RSS + λ * ∑ j=1
p |βj|

L1 regularization can lead to zero coefficients (i.e., some of the features are com‐
pletely neglected for the evaluation of output). The larger the value of λ, the more
features are shrunk to zero. This can eliminate some features entirely and give us
a subset of predictors, reducing model complexity. So Lasso regression not only
helps in reducing overfitting, but also can help in feature selection. Predictors not
shrunk toward zero signify that they are important, and thus L1 regularization
allows for feature selection (sparse selection). The regularization parameter (λ)
can be controlled, and a lambda value of zero produces the basic linear regression
equation.

Supervised Learning Models: An Overview | 55

A lasso regression model can be constructed using the Lasso class of the sklearn
package of Python, as shown in the code snippet that follows:

from sklearn.linear_model import Lasso
model = Lasso()
model.fit(X, Y)

L2 regularization or Ridge regression
Ridge regression performs L2 regularization by adding a factor of the sum of the
square of coefficients in the cost function (RSS) for linear regression, as men‐
tioned in Equation 4-1. The equation for ridge regularization can be represented
as follows:

CostFunction = RSS + λ * ∑ j=1
p β j

2

Ridge regression puts constraint on the coefficients. The penalty term (λ) regu‐
larizes the coefficients such that if the coefficients take large values, the optimiza‐
tion function is penalized. So ridge regression shrinks the coefficients and helps
to reduce the model complexity. Shrinking the coefficients leads to a lower var‐
iance and a lower error value. Therefore, ridge regression decreases the complex‐
ity of a model but does not reduce the number of variables; it just shrinks their
effect. When λ is closer to zero, the cost function becomes similar to the linear
regression cost function. So the lower the constraint (low λ) on the features, the
more the model will resemble the linear regression model.

A ridge regression model can be constructed using the Ridge class of the sklearn
package of Python, as shown in the code snippet that follows:

from sklearn.linear_model import Ridge
model = Ridge()
model.fit(X, Y)

Elastic net
Elastic nets add regularization terms to the model, which are a combination of
both L1 and L2 regularization, as shown in the following equation:

CostFunction = RSS + λ * ((1 – α) / 2 * ∑ j=1
p β j

2 + α * ∑ j=1
p |βj|)

In addition to setting and choosing a λ value, an elastic net also allows us to tune
the alpha parameter, where α = 0 corresponds to ridge and α = 1 to lasso. There‐
fore, we can choose an α value between 0 and 1 to optimize the elastic net. Effec‐
tively, this will shrink some coefficients and set some to 0 for sparse selection.

An elastic net regression model can be constructed using the ElasticNet class of
the sklearn package of Python, as shown in the following code snippet:

from sklearn.linear_model import ElasticNet
model = ElasticNet()
model.fit(X, Y)

56 | Chapter 4: Supervised Learning: Models and Concepts

2 See the activation function section of Chapter 3 for details on the sigmoid function.
3 MLE is a method of estimating the parameters of a probability distribution so that under the assumed statisti‐

cal model the observed data is most probable.

For all the regularized regression, λ is the key parameter to tune during grid search in
Python. In an elastic net, α can be an additional parameter to tune.

Logistic Regression
Logistic regression is one of the most widely used algorithms for classification. The
logistic regression model arises from the desire to model the probabilities of the out‐
put classes given a function that is linear in x, at the same time ensuring that output
probabilities sum up to one and remain between zero and one as we would expect
from probabilities.

If we train a linear regression model on several examples where Y = 0 or 1, we might
end up predicting some probabilities that are less than zero or greater than one,
which doesn’t make sense. Instead, we use a logistic regression model (or logit
model), which is a modification of linear regression that makes sure to output a prob‐
ability between zero and one by applying the sigmoid function.2

Equation 4-2 shows the equation for a logistic regression model. Similar to linear
regression, input values (x) are combined linearly using weights or coefficient values
to predict an output value (y). The output coming from Equation 4-2 is a probability
that is transformed into a binary value (0 or 1) to get the model prediction.

Equation 4-2. Logistic regression equation

y =
exp (β0 + β1x1 + + βi x1)

1 + exp (β0 + β1x1 + + βi x1)

Where y is the predicted output, β0 is the bias or intercept term and B1 is the coeffi‐
cient for the single input value (x). Each column in the input data has an associated β
coefficient (a constant real value) that must be learned from the training data.

In logistic regression, the cost function is basically a measure of how often we
predicted one when the true answer was zero, or vice versa. Training the logistic
regression coefficients is done using techniques such as maximum likelihood estima‐
tion (MLE) to predict values close to 1 for the default class and close to 0 for the other
class.3

Supervised Learning Models: An Overview | 57

https://oreil.ly/y9atF

A logistic regression model can be constructed using the LogisticRegression class
of the sklearn package of Python, as shown in the following code snippet:

from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, Y)

Hyperparameters

Regularization (penalty in sklearn)
Similar to linear regression, logistic regression can have regularization, which
can be L1, L2, or elasticnet. The values in the sklearn library are [l1, l2, elasticnet].

Regularization strength (C in sklearn)
This parameter controls the regularization strength. Good values of the penalty
parameters can be [100, 10, 1.0, 0.1, 0.01].

Advantages and disadvantages
In terms of the advantages, the logistic regression model is easy to implement, has
good interpretability, and performs very well on linearly separable classes. The out‐
put of the model is a probability, which provides more insight and can be used for
ranking. The model has small number of hyperparameters. Although there may be
risk of overfitting, this may be addressed using L1/L2 regularization, similar to the
way we addressed overfitting for the linear regression models.

In terms of disadvantages, the model may overfit when provided with large numbers
of features. Logistic regression can only learn linear functions and is less suitable to
complex relationships between features and the target variable. Also, it may not han‐
dle irrelevant features well, especially if the features are strongly correlated.

Support Vector Machine
The objective of the support vector machine (SVM) algorithm is to maximize the mar‐
gin (shown as shaded area in Figure 4-3), which is defined as the distance between
the separating hyperplane (or decision boundary) and the training samples that are
closest to this hyperplane, the so-called support vectors. The margin is calculated as
the perpendicular distance from the line to only the closest points, as shown in
Figure 4-3. Hence, SVM calculates a maximum-margin boundary that leads to a
homogeneous partition of all data points.

58 | Chapter 4: Supervised Learning: Models and Concepts

Figure 4-3. Support vector machine

In practice, the data is messy and cannot be separated perfectly with a hyperplane.
The constraint of maximizing the margin of the line that separates the classes must be
relaxed. This change allows some points in the training data to violate the separating
line. An additional set of coefficients is introduced that give the margin wiggle room
in each dimension. A tuning parameter is introduced, simply called C, that defines
the magnitude of the wiggle allowed across all dimensions. The larger the value of C,
the more violations of the hyperplane are permitted.

In some cases, it is not possible to find a hyperplane or a linear decision boundary,
and kernels are used. A kernel is just a transformation of the input data that allows
the SVM algorithm to treat/process the data more easily. Using kernels, the original
data is projected into a higher dimension to classify the data better.

SVM is used for both classification and regression. We achieve this by converting the
original optimization problem into a dual problem. For regression, the trick is to
reverse the objective. Instead of trying to fit the largest possible street between two
classes while limiting margin violations, SVM regression tries to fit as many instances
as possible on the street (shaded area in Figure 4-3) while limiting margin violations.
The width of the street is controlled by a hyperparameter.

The SVM regression and classification models can be constructed using the sklearn
package of Python, as shown in the following code snippets:

Supervised Learning Models: An Overview | 59

Regression

from sklearn.svm import SVR
model = SVR()
model.fit(X, Y)

Classification

from sklearn.svm import SVC
model = SVC()
model.fit(X, Y)

Hyperparameters
The following key parameters are present in the sklearn implementation of SVM and
can be tweaked while performing the grid search:

Kernels (kernel in sklearn)
The choice of kernel controls the manner in which the input variables will be
projected. There are many kernels to choose from, but linear and RBF are the
most common.

Penalty (C in sklearn)
The penalty parameter tells the SVM optimization how much you want to avoid
misclassifying each training example. For large values of the penalty parameter,
the optimization will choose a smaller-margin hyperplane. Good values might be
a log scale from 10 to 1,000.

Advantages and disadvantages
In terms of advantages, SVM is fairly robust against overfitting, especially in higher
dimensional space. It handles the nonlinear relationships quite well, with many ker‐
nels to choose from. Also, there is no distributional requirement for the data.

In terms of disadvantages, SVM can be inefficient to train and memory-intensive to
run and tune. It doesn’t perform well with large datasets. It requires the feature scal‐
ing of the data. There are also many hyperparameters, and their meanings are often
not intuitive.

K-Nearest Neighbors
K-nearest neighbors (KNN) is considered a “lazy learner,” as there is no learning
required in the model. For a new data point, predictions are made by searching
through the entire training set for the K most similar instances (the neighbors) and
summarizing the output variable for those K instances.

To determine which of the K instances in the training dataset are most similar to a
new input, a distance measure is used. The most popular distance measure is Eucli‐

60 | Chapter 4: Supervised Learning: Models and Concepts

https://oreil.ly/XpBOi

dean distance, which is calculated as the square root of the sum of the squared differ‐
ences between a point a and a point b across all input attributes i, and which is
represented as d(a, b) = ∑i=1

n (ai – bi)2. Euclidean distance is a good distance meas‐
ure to use if the input variables are similar in type.

Another distance metric is Manhattan distance, in which the distance between point
a and point b is represented as d(a, b) = ∑i=1

n | ai – bi | . Manhattan distance is a good
measure to use if the input variables are not similar in type.

The steps of KNN can be summarized as follows:

1. Choose the number of K and a distance metric.
2. Find the K-nearest neighbors of the sample that we want to classify.
3. Assign the class label by majority vote.

KNN regression and classification models can be constructed using the sklearn pack‐
age of Python, as shown in the following code:

Classification

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(X, Y)

Regression

from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor()
model.fit(X, Y)

Hyperparameters
The following key parameters are present in the sklearn implementation of KNN and
can be tweaked while performing the grid search:

Number of neighbors (n_neighbors in sklearn)
The most important hyperparameter for KNN is the number of neighbors
(n_neighbors). Good values are between 1 and 20.

Distance metric (metric in sklearn)
It may also be interesting to test different distance metrics for choosing the com‐
position of the neighborhood. Good values are euclidean and manhattan.

Advantages and disadvantages
In terms of advantages, no training is involved and hence there is no learning phase.
Since the algorithm requires no training before making predictions, new data can be
added seamlessly without impacting the accuracy of the algorithm. It is intuitive and

Supervised Learning Models: An Overview | 61

4 The approach of projecting data is similar to the PCA algorithm discussed in Chapter 7.

easy to understand. The model naturally handles multiclass classification and can
learn complex decision boundaries. KNN is effective if the training data is large. It is
also robust to noisy data, and there is no need to filter the outliers.

In terms of the disadvantages, the distance metric to choose is not obvious and diffi‐
cult to justify in many cases. KNN performs poorly on high dimensional datasets. It
is expensive and slow to predict new instances because the distance to all neighbors
must be recalculated. KNN is sensitive to noise in the dataset. We need to manually
input missing values and remove outliers. Also, feature scaling (standardization and
normalization) is required before applying the KNN algorithm to any dataset; other‐
wise, KNN may generate wrong predictions.

Linear Discriminant Analysis
The objective of the linear discriminant analysis (LDA) algorithm is to project the
data onto a lower-dimensional space in a way that the class separability is maximized
and the variance within a class is minimized.4

During the training of the LDA model, the statistical properties (i.e., mean and cova‐
riance matrix) of each class are computed. The statistical properties are estimated on
the basis of the following assumptions about the data:

• Data is normally distributed, so that each variable is shaped like a bell curve
when plotted.

• Each attribute has the same variance, and the values of each variable vary around
the mean by the same amount on average.

To make a prediction, LDA estimates the probability that a new set of inputs belongs
to every class. The output class is the one that has the highest probability.

Implementation in Python and hyperparameters
The LDA classification model can be constructed using the sklearn package of
Python, as shown in the following code snippet:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
model = LinearDiscriminantAnalysis()
model.fit(X, Y)

The key hyperparameter for the LDA model is number of components for dimen‐
sionality reduction, which is represented by n_components in sklearn.

62 | Chapter 4: Supervised Learning: Models and Concepts

https://oreil.ly/cuc7p

Advantages and disadvantages
In terms of advantages, LDA is a relatively simple model with fast implementation
and is easy to implement. In terms of disadvantages, it requires feature scaling and
involves complex matrix operations.

Classification and Regression Trees
In the most general terms, the purpose of an analysis via tree-building algorithms is
to determine a set of if–then logical (split) conditions that permit accurate prediction
or classification of cases. Classification and regression trees (or CART or decision tree
classifiers) are attractive models if we care about interpretability. We can think of this
model as breaking down our data and making a decision based on asking a series of
questions. This algorithm is the foundation of ensemble methods such as random
forest and gradient boosting method.

Representation
The model can be represented by a binary tree (or decision tree), where each node is
an input variable x with a split point and each leaf contains an output variable y for
prediction.

Figure 4-4 shows an example of a simple classification tree to predict whether a per‐
son is a male or a female based on two inputs of height (in centimeters) and weight
(in kilograms).

Figure 4-4. Classification and regression tree example

Learning a CART model
Creating a binary tree is actually a process of dividing up the input space. A greedy
approach called recursive binary splitting is used to divide the space. This is a numeri‐
cal procedure in which all the values are lined up and different split points are tried
and tested using a cost (loss) function. The split with the best cost (lowest cost,
because we minimize cost) is selected. All input variables and all possible split points

Supervised Learning Models: An Overview | 63

are evaluated and chosen in a greedy manner (e.g., the very best split point is chosen
each time).

For regression predictive modeling problems, the cost function that is minimized to
choose split points is the sum of squared errors across all training samples that fall
within the rectangle:

∑i=1
n (yi – predictioni)2

where yi is the output for the training sample and prediction is the predicted output
for the rectangle. For classification, the Gini cost function is used; it provides an indi‐
cation of how pure the leaf nodes are (i.e., how mixed the training data assigned to
each node is) and is defined as:

G = ∑i=1
n pk * (1 – pk)

where G is the Gini cost over all classes and pk is the number of training instances
with class k in the rectangle of interest. A node that has all classes of the same type
(perfect class purity) will have G = 0, while a node that has a 50–50 split of classes for
a binary classification problem (worst purity) will have G = 0.5.

Stopping criterion
The recursive binary splitting procedure described in the preceding section needs to
know when to stop splitting as it works its way down the tree with the training data.
The most common stopping procedure is to use a minimum count on the number of
training instances assigned to each leaf node. If the count is less than some minimum,
then the split is not accepted and the node is taken as a final leaf node.

Pruning the tree
The stopping criterion is important as it strongly influences the performance of the
tree. Pruning can be used after learning the tree to further lift performance. The com‐
plexity of a decision tree is defined as the number of splits in the tree. Simpler trees
are preferred as they are faster to run and easy to understand, consume less memory
during processing and storage, and are less likely to overfit the data. The fastest and
simplest pruning method is to work through each leaf node in the tree and evaluate
the effect of removing it using a test set. A leaf node is removed only if doing so
results in a drop in the overall cost function on the entire test set. The removal of
nodes can be stopped when no further improvements can be made.

64 | Chapter 4: Supervised Learning: Models and Concepts

Implementation in Python
CART regression and classification models can be constructed using the sklearn
package of Python, as shown in the following code snippet:

Classification

from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(X, Y)

Regression

from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor ()
model.fit(X, Y)

Hyperparameters
CART has many hyperparameters. However, the key hyperparameter is the maxi‐
mum depth of the tree model, which is the number of components for dimensional‐
ity reduction, and which is represented by max_depth in the sklearn package. Good
values can range from 2 to 30 depending on the number of features in the data.

Advantages and disadvantages
In terms of advantages, CART is easy to interpret and can adapt to learn complex
relationships. It requires little data preparation, and data typically does not need to be
scaled. Feature importance is built in due to the way decision nodes are built. It per‐
forms well on large datasets. It works for both regression and classification problems.

In terms of disadvantages, CART is prone to overfitting unless pruning is used. It can
be very nonrobust, meaning that small changes in the training dataset can lead to
quite major differences in the hypothesis function that gets learned. CART generally
has worse performance than ensemble models, which are covered next.

Ensemble Models
The goal of ensemble models is to combine different classifiers into a meta-classifier
that has better generalization performance than each individual classifier alone. For
example, assuming that we collected predictions from 10 experts, ensemble methods
would allow us to strategically combine their predictions to come up with a predic‐
tion that is more accurate and robust than the experts’ individual predictions.

The two most popular ensemble methods are bagging and boosting. Bagging (or boot‐
strap aggregation) is an ensemble technique of training several individual models in a
parallel way. Each model is trained by a random subset of the data. Boosting, on the
other hand, is an ensemble technique of training several individual models in a
sequential way. This is done by building a model from the training data and then

Supervised Learning Models: An Overview | 65

5 Bias and variance are described in detail later in this chapter.

creating a second model that attempts to correct the errors of the first model. Models
are added until the training set is predicted perfectly or a maximum number of mod‐
els is added. Each individual model learns from mistakes made by the previous
model. Just like the decision trees themselves, bagging and boosting can be used for
classification and regression problems.

By combining individual models, the ensemble model tends to be more flexible (less
bias) and less data-sensitive (less variance).5 Ensemble methods combine multiple,
simpler algorithms to obtain better performance.

In this section we will cover random forest, AdaBoost, the gradient boosting method,
and extra trees, along with their implementation using sklearn package.

Random forest. Random forest is a tweaked version of bagged decision trees. In order
to understand a random forest algorithm, let us first understand the bagging algo‐
rithm. Assuming we have a dataset of one thousand instances, the steps of bagging
are:

1. Create many (e.g., one hundred) random subsamples of our dataset.
2. Train a CART model on each sample.
3. Given a new dataset, calculate the average prediction from each model and

aggregate the prediction by each tree to assign the final label by majority vote.

A problem with decision trees like CART is that they are greedy. They choose the
variable to split by using a greedy algorithm that minimizes error. Even after bagging,
the decision trees can have a lot of structural similarities and result in high correla‐
tion in their predictions. Combining predictions from multiple models in ensembles
works better if the predictions from the submodels are uncorrelated, or at best are
weakly correlated. Random forest changes the learning algorithm in such a way that
the resulting predictions from all of the subtrees have less correlation.

In CART, when selecting a split point, the learning algorithm is allowed to look
through all variables and all variable values in order to select the most optimal split
point. The random forest algorithm changes this procedure such that each subtree
can access only a random sample of features when selecting the split points. The
number of features that can be searched at each split point (m) must be specified as a
parameter to the algorithm.

As the bagged decision trees are constructed, we can calculate how much the error
function drops for a variable at each split point. In regression problems, this may be
the drop in sum squared error, and in classification, this might be the Gini cost. The

66 | Chapter 4: Supervised Learning: Models and Concepts

bagged method can provide feature importance by calculating and averaging the
error function drop for individual variables.

Implementation in Python. Random forest regression and classification models can be
constructed using the sklearn package of Python, as shown in the following code:

Classification

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X, Y)

Regression

from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor()
model.fit(X, Y)

Hyperparameters. Some of the main hyperparameters that are present in the sklearn
implementation of random forest and that can be tweaked while performing the grid
search are:

Maximum number of features (max_features in sklearn)
This is the most important parameter. It is the number of random features to
sample at each split point. You could try a range of integer values, such as 1 to 20,
or 1 to half the number of input features.

Number of estimators (n_estimators in sklearn)
This parameter represents the number of trees. Ideally, this should be increased
until no further improvement is seen in the model. Good values might be a log
scale from 10 to 1,000.

Advantages and disadvantages. The random forest algorithm (or model) has gained
huge popularity in ML applications during the last decade due to its good perfor‐
mance, scalability, and ease of use. It is flexible and naturally assigns feature impor‐
tance scores, so it can handle redundant feature columns. It scales to large datasets
and is generally robust to overfitting. The algorithm doesn’t need the data to be
scaled and can model a nonlinear relationship.

In terms of disadvantages, random forest can feel like a black box approach, as we
have very little control over what the model does, and the results may be difficult to
interpret. Although random forest does a good job at classification, it may not be
good for regression problems, as it does not give a precise continuous nature predic‐
tion. In the case of regression, it doesn’t predict beyond the range in the training data
and may overfit datasets that are particularly noisy.

Supervised Learning Models: An Overview | 67

6 Split is the process of converting a nonhomogeneous parent node into two homogeneous child nodes (best
possible).

Extra trees
Extra trees, otherwise known as extremely randomized trees, is a variant of a random
forest; it builds multiple trees and splits nodes using random subsets of features simi‐
lar to random forest. However, unlike random forest, where observations are drawn
with replacement, the observations are drawn without replacement in extra trees. So
there is no repetition of observations.

Additionally, random forest selects the best split to convert the parent into the two
most homogeneous child nodes.6 However, extra trees selects a random split to divide
the parent node into two random child nodes. In extra trees, randomness doesn’t
come from bootstrapping the data; it comes from the random splits of all
observations.

In real-world cases, performance is comparable to an ordinary random forest, some‐
times a bit better. The advantages and disadvantages of extra trees are similar to those
of random forest.

Implementation in Python. Extra trees regression and classification models can be con‐
structed using the sklearn package of Python, as shown in the following code snippet.
The hyperparameters of extra trees are similar to random forest, as shown in the pre‐
vious section:

Classification

from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(X, Y)

Regression

from sklearn.ensemble import ExtraTreesRegressor
model = ExtraTreesRegressor()
model.fit(X, Y)

Adaptive Boosting (AdaBoost)
Adaptive Boosting or AdaBoost is a boosting technique in which the basic idea is to
try predictors sequentially, and each subsequent model attempts to fix the errors of
its predecessor. At each iteration, the AdaBoost algorithm changes the sample distri‐
bution by modifying the weights attached to each of the instances. It increases the
weights of the wrongly predicted instances and decreases the ones of the correctly
predicted instances.

68 | Chapter 4: Supervised Learning: Models and Concepts

The steps of the AdaBoost algorithm are:

1. Initially, all observations are given equal weights.
2. A model is built on a subset of data, and using this model, predictions are made

on the whole dataset. Errors are calculated by comparing the predictions and
actual values.

3. While creating the next model, higher weights are given to the data points that
were predicted incorrectly. Weights can be determined using the error value. For
instance, the higher the error, the more weight is assigned to the observation.

4. This process is repeated until the error function does not change, or until the
maximum limit of the number of estimators is reached.

Implementation in Python. AdaBoost regression and classification models can be con‐
structed using the sklearn package of Python, as shown in the following code snippet:

Classification

from sklearn.ensemble import AdaBoostClassifier
model = AdaBoostClassifier()
model.fit(X, Y)

Regression

from sklearn.ensemble import AdaBoostRegressor
model = AdaBoostRegressor()
model.fit(X, Y)

Hyperparameters. Some of the main hyperparameters that are present in the sklearn
implementation of AdaBoost and that can be tweaked while performing the grid
search are as follows:

Learning rate (learning_rate in sklearn)
Learning rate shrinks the contribution of each classifier/regressor. It can be con‐
sidered on a log scale. The sample values for grid search can be 0.001, 0.01, and
0.1.

Number of estimators (n_estimators in sklearn)
This parameter represents the number of trees. Ideally, this should be increased
until no further improvement is seen in the model. Good values might be a log
scale from 10 to 1,000.

Advantages and disadvantages. In terms of advantages, AdaBoost has a high degree of
precision. AdaBoost can achieve similar results to other models with much less
tweaking of parameters or settings. The algorithm doesn’t need the data to be scaled
and can model a nonlinear relationship.

Supervised Learning Models: An Overview | 69

In terms of disadvantages, the training of AdaBoost is time consuming. AdaBoost can
be sensitive to noisy data and outliers, and data imbalance leads to a decrease in clas‐
sification accuracy

Gradient boosting method
Gradient boosting method (GBM) is another boosting technique similar to AdaBoost,
where the general idea is to try predictors sequentially. Gradient boosting works by
sequentially adding the previous underfitted predictions to the ensemble, ensuring
the errors made previously are corrected.

The following are the steps of the gradient boosting algorithm:

1. A model (which can be referred to as the first weak learner) is built on a subset of
data. Using this model, predictions are made on the whole dataset.

2. Errors are calculated by comparing the predictions and actual values, and the loss
is calculated using the loss function.

3. A new model is created using the errors of the previous step as the target vari‐
able. The objective is to find the best split in the data to minimize the error. The
predictions made by this new model are combined with the predictions of the
previous. New errors are calculated using this predicted value and actual value.

4. This process is repeated until the error function does not change or until the
maximum limit of the number of estimators is reached.

Contrary to AdaBoost, which tweaks the instance weights at every interaction, this
method tries to fit the new predictor to the residual errors made by the previous
predictor.

Implementation in Python and hyperparameters. Gradient boosting method regression
and classification models can be constructed using the sklearn package of Python, as
shown in the following code snippet. The hyperparameters of gradient boosting
method are similar to AdaBoost, as shown in the previous section:

Classification

from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier()
model.fit(X, Y)

Regression

from sklearn.ensemble import GradientBoostingRegressor
model = GradientBoostingRegressor()
model.fit(X, Y)

70 | Chapter 4: Supervised Learning: Models and Concepts

Advantages and disadvantages. In terms of advantages, gradient boosting method is
robust to missing data, highly correlated features, and irrelevant features in the same
way as random forest. It naturally assigns feature importance scores, with slightly
better performance than random forest. The algorithm doesn’t need the data to be
scaled and can model a nonlinear relationship.

In terms of disadvantages, it may be more prone to overfitting than random forest, as
the main purpose of the boosting approach is to reduce bias and not variance. It has
many hyperparameters to tune, so model development may not be as fast. Also, fea‐
ture importance may not be robust to variation in the training dataset.

ANN-Based Models
In Chapter 3 we covered the basics of ANNs, along with the architecture of ANNs
and their training and implementation in Python. The details provided in that chap‐
ter are applicable across all areas of machine learning, including supervised learning.
However, there are a few additional details from the supervised learning perspective,
which we will cover in this section.

Neural networks are reducible to a classification or regression model with the activa‐
tion function of the node in the output layer. In the case of a regression problem, the
output node has linear activation function (or no activation function). A linear func‐
tion produces a continuous output ranging from -inf to +inf. Hence, the output
layer will be the linear function of the nodes in the layer before the output layer, and
it will be a regression-based model.

In the case of a classification problem, the output node has a sigmoid or softmax acti‐
vation function. A sigmoid or softmax function produces an output ranging from
zero to one to represent the probability of target value. Softmax function can also be
used for multiple groups for classification.

ANN using sklearn
ANN regression and classification models can be constructed using the sklearn pack‐
age of Python, as shown in the following code snippet:

Classification

from sklearn.neural_network import MLPClassifier
model = MLPClassifier()
model.fit(X, Y)

Regression

from sklearn.neural_network import MLPRegressor
model = MLPRegressor()
model.fit(X, Y)

Supervised Learning Models: An Overview | 71

Hyperparameters
As we saw in Chapter 3, ANN has many hyperparameters. Some of the hyperparame‐
ters that are present in the sklearn implementation of ANN and can be tweaked while
performing the grid search are:

Hidden Layers (hidden_layer_sizes in sklearn)
It represents the number of layers and nodes in the ANN architecture. In sklearn
implementation of ANN, the ith element represents the number of neurons in
the ith hidden layer. A sample value for grid search in the sklearn implementa‐
tion can be [(20,), (50,), (20, 20), (20, 30, 20)].

Activation Function (activation in sklearn)
It represents the activation function of a hidden layer. Some of the activation
functions defined in Chapter 3, such as sigmoid, relu, or tanh, can be used.

Deep neural network
ANNs with more than a single hidden layer are often called deep networks. We pre‐
fer using the library Keras to implement such networks, given the flexibility of the
library. The detailed implementation of a deep neural network in Keras was shown in
Chapter 3. Similar to MLPClassifier and MLPRegressor in sklearn for classification
and regression, Keras has modules called KerasClassifier and KerasRegressor that
can be used for creating classification and regression models with deep network.

A popular problem in finance is time series prediction, which is predicting the next
value of a time series based on a historical overview. Some of the deep neural net‐
works, such as recurrent neural network (RNN), can be directly used for time series
prediction. The details of this approach are provided in Chapter 5.

Advantages and disadvantages
The main advantage of an ANN is that it captures the nonlinear relationship between
the variables quite well. ANN can more easily learn rich representations and is good
with a large number of input features with a large dataset. ANN is flexible in how it
can be used. This is evident from its use across a wide variety of areas in machine
learning and AI, including reinforcement learning and NLP, as discussed in
Chapter 3.

The main disadvantage of ANN is the interpretability of the model, which is a draw‐
back that often cannot be ignored and is sometimes the determining factor when
choosing a model. ANN is not good with small datasets and requires a lot of tweaking
and guesswork. Choosing the right topology/algorithms to solve a problem is diffi‐
cult. Also, ANN is computationally expensive and can take a lot of time to train.

72 | Chapter 4: Supervised Learning: Models and Concepts

Using ANNs for supervised learning in finance
If a simple model such as linear or logistic regression perfectly fits your problem,
don’t bother with ANN. However, if you are modeling a complex dataset and feel a
need for better prediction power, give ANN a try. ANN is one of the most flexible
models in adapting itself to the shape of the data, and using it for supervised learning
problems can be an interesting and valuable exercise.

Model Performance
In the previous section, we discussed grid search as a way to find the right hyperpara‐
meter to achieve better performance. In this section, we will expand on that process
by discussing the key components of evaluating the model performance, which are
overfitting, cross validation, and evaluation metrics.

Overfitting and Underfitting
A common problem in machine learning is overfitting, which is defined by learning a
function that perfectly explains the training data that the model learned from but
doesn’t generalize well to unseen test data. Overfitting happens when a model over‐
learns from the training data to the point that it starts picking up idiosyncrasies that
aren’t representative of patterns in the real world. This becomes especially problem‐
atic as we make our models increasingly more complex. Underfitting is a related issue
in which the model is not complex enough to capture the underlying trend in the
data. Figure 4-5 illustrates overfitting and underfitting. The left-hand panel of
Figure 4-5 shows a linear regression model; a straight line clearly underfits the true
function. The middle panel shows that a high degree polynomial approximates the
true relationship reasonably well. On the other hand, a polynomial of a very high
degree fits the small sample almost perfectly, and performs best on the training data,
but this doesn’t generalize, and it would do a horrible job at explaining a new data
point.

The concepts of overfitting and underfitting are closely linked to bias-variance trade-
off. Bias refers to the error due to overly simplistic assumptions or faulty assumptions
in the learning algorithm. Bias results in underfitting of the data, as shown in the left-
hand panel of Figure 4-5. A high bias means our learning algorithm is missing
important trends among the features. Variance refers to the error due to an overly
complex model that tries to fit the training data as closely as possible. In high var‐
iance cases, the model’s predicted values are extremely close to the actual values from
the training set. High variance gives rise to overfitting, as shown in the right-hand
panel of Figure 4-5. Ultimately, in order to have a good model, we need low bias and
low variance.

Model Performance | 73

Figure 4-5. Overfitting and underfitting

There can be two ways to combat overfitting:

Using more training data
The more training data we have, the harder it is to overfit the data by learning
too much from any single training example.

Using regularization
Adding a penalty in the loss function for building a model that assigns too much
explanatory power to any one feature, or allows too many features to be taken
into account.

The concept of overfitting and the ways to combat it are applicable across all the
supervised learning models. For example, regularized regressions address overfitting
in linear regression, as discussed earlier in this chapter.

Cross Validation
One of the challenges of machine learning is training models that are able to general‐
ize well to unseen data (overfitting versus underfitting or a bias-variance trade-off).
The main idea behind cross validation is to split the data one time or several times so
that each split is used once as a validation set and the remainder is used as a training
set: part of the data (the training sample) is used to train the algorithm, and the
remaining part (the validation sample) is used for estimating the risk of the algo‐
rithm. Cross validation allows us to obtain reliable estimates of the model’s generali‐
zation error. It is easiest to understand it with an example. When doing k-fold cross
validation, we randomly split the training data into k folds. Then we train the model
using k-1 folds and evaluate the performance on the kth fold. We repeat this process
k times and average the resulting scores.

Figure 4-6 shows an example of cross validation, where the data is split into five sets
and in each round one of the sets is used for validation.

74 | Chapter 4: Supervised Learning: Models and Concepts

Figure 4-6. Cross validation

A potential drawback of cross validation is the computational cost, especially when
paired with a grid search for hyperparameter tuning. Cross validation can be per‐
formed in a couple of lines using the sklearn package; we will perform cross valida‐
tion in the supervised learning case studies.

In the next section, we cover the evaluation metrics for the supervised learning mod‐
els that are used to measure and compare the models’ performance.

Evaluation Metrics
The metrics used to evaluate the machine learning algorithms are very important.
The choice of metrics to use influences how the performance of machine learning
algorithms is measured and compared. The metrics influence both how you weight
the importance of different characteristics in the results and your ultimate choice of
algorithm.

The main evaluation metrics for regression and classification are illustrated in
Figure 4-7.

Figure 4-7. Evaluation metrics for regression and classification

Let us first look at the evaluation metrics for supervised regression.

Model Performance | 75

Mean absolute error
The mean absolute error (MAE) is the sum of the absolute differences between pre‐
dictions and actual values. The MAE is a linear score, which means that all the indi‐
vidual differences are weighted equally in the average. It gives an idea of how wrong
the predictions were. The measure gives an idea of the magnitude of the error, but no
idea of the direction (e.g., over- or underpredicting).

Mean squared error
The mean squared error (MSE) represents the sample standard deviation of the dif‐
ferences between predicted values and observed values (called residuals). This is
much like the mean absolute error in that it provides a gross idea of the magnitude of
the error. Taking the square root of the mean squared error converts the units back to
the original units of the output variable and can be meaningful for description and
presentation. This is called the root mean squared error (RMSE).

R² metric
The R² metric provides an indication of the “goodness of fit” of the predictions to
actual value. In statistical literature this measure is called the coefficient of determi‐
nation. This is a value between zero and one, for no-fit and perfect fit, respectively.

Adjusted R² metric
Just like R², adjusted R² also shows how well terms fit a curve or line but adjusts for
the number of terms in a model. It is given in the following formula:

Radj
2 = 1 –

(1 – R 2)(n – 1))
n – k – 1

where n is the total number of observations and k is the number of predictors.
Adjusted R² will always be less than or equal to R².

Selecting an evaluation metric for supervised regression
In terms of a preference among these evaluation metrics, if the main goal is predictive
accuracy, then RMSE is best. It is computationally simple and is easily differentiable.
The loss is symmetric, but larger errors weigh more in the calculation. The MAEs are
symmetric but do not weigh larger errors more. R² and adjusted R² are often used for
explanatory purposes by indicating how well the selected independent variable(s)
explains the variability in the dependent variable(s).

Let us first look at the evaluation metrics for supervised classification.

76 | Chapter 4: Supervised Learning: Models and Concepts

Classification
For simplicity, we will mostly discuss things in terms of a binary classification prob‐
lem (i.e., only two outcomes, such as true or false); some common terms are:

True positives (TP)
Predicted positive and are actually positive.

False positives (FP)
Predicted positive and are actually negative.

True negatives (TN)
Predicted negative and are actually negative.

False negatives (FN)
Predicted negative and are actually positive.

The difference between three commonly used evaluation metrics for classification,
accuracy, precision, and recall, is illustrated in Figure 4-8.

Figure 4-8. Accuracy, precision, and recall

Accuracy
As shown in Figure 4-8, accuracy is the number of correct predictions made as a ratio
of all predictions made. This is the most common evaluation metric for classification
problems and is also the most misused. It is most suitable when there are an equal
number of observations in each class (which is rarely the case) and when all predic‐
tions and the related prediction errors are equally important, which is often not the
case.

Precision
Precision is the percentage of positive instances out of the total predicted positive
instances. Here, the denominator is the model prediction done as positive from the
whole given dataset. Precision is a good measure to determine when the cost of false
positives is high (e.g., email spam detection).

Model Performance | 77

Recall
Recall (or sensitivity or true positive rate) is the percentage of positive instances out of
the total actual positive instances. Therefore, the denominator (true positive + false
negative) is the actual number of positive instances present in the dataset. Recall is a
good measure when there is a high cost associated with false negatives (e.g., fraud
detection).

In addition to accuracy, precision, and recall, some of the other commonly used eval‐
uation metrics for classification are discussed in the following sections.

Area under ROC curve
Area under ROC curve (AUC) is an evaluation metric for binary classification prob‐
lems. ROC is a probability curve, and AUC represents degree or measure of separa‐
bility. It tells how much the model is capable of distinguishing between classes. The
higher the AUC, the better the model is at predicting zeros as zeros and ones as ones.
An AUC of 0.5 means that the model has no class separation capacity whatsoever.
The probabilistic interpretation of the AUC score is that if you randomly choose a
positive case and a negative case, the probability that the positive case outranks the
negative case according to the classifier is given by the AUC.

Confusion matrix
A confusion matrix lays out the performance of a learning algorithm. The confusion
matrix is simply a square matrix that reports the counts of the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) predictions of a classifier,
as shown in Figure 4-9.

Figure 4-9. Confusion matrix

The confusion matrix is a handy presentation of the accuracy of a model with two or
more classes. The table presents predictions on the x-axis and accuracy outcomes on
the y-axis. The cells of the table are the number of predictions made by the model.
For example, a model can predict zero or one, and each prediction may actually have
been a zero or a one. Predictions for zero that were actually zero appear in the cell for

78 | Chapter 4: Supervised Learning: Models and Concepts

prediction = 0 and actual = 0, whereas predictions for zero that were actually one
appear in the cell for prediction = 0 and actual = 1.

Selecting an evaluation metric for supervised classification
The evaluation metric for classification depends heavily on the task at hand. For
example, recall is a good measure when there is a high cost associated with false nega‐
tives such as fraud detection. We will further examine these evaluation metrics in the
case studies.

Model Selection
Selecting the perfect machine learning model is both an art and a science. Looking at
machine learning models, there is no one solution or approach that fits all. There are
several factors that can affect your choice of a machine learning model. The main cri‐
teria in most of the cases is the model performance that we discussed in the previous
section. However, there are many other factors to consider while performing model
selection. In the following section, we will go over all such factors, followed by a dis‐
cussion of model trade-offs.

Factors for Model Selection
The factors considered for the model selection process are as follows:

Simplicity
The degree of simplicity of the model. Simplicity usually results in quicker, more
scalable, and easier to understand models and results.

Training time
Speed, performance, memory usage and overall time taken for model training.

Handle nonlinearity in the data
The ability of the model to handle the nonlinear relationship between the
variables.

Robustness to overfitting
The ability of the model to handle overfitting.

Size of the dataset
The ability of the model to handle large number of training examples in the
dataset.

Number of features
The ability of the model to handle high dimensionality of the feature space.

Model Selection | 79

7 In this table we do not include AdaBoost and extra trees as their overall behavior across all the parameters are
similar to Gradient Boosting and Random Forest, respectively.

Model interpretation
How explainable is the model? Model interpretability is important because it
allows us to take concrete actions to solve the underlying problem.

Feature scaling
Does the model require variables to be scaled or normally distributed?

Figure 4-10 compares the supervised learning models on the factors mentioned pre‐
viously and outlines a general rule-of-thumb to narrow down the search for the best
machine learning algorithm7 for a given problem. The table is based on the advan‐
tages and disadvantages of different models discussed in the individual model section
in this chapter.

Figure 4-10. Model selection

We can see from the table that relatively simple models include linear and logistic
regression and as we move towards the ensemble and ANN, the complexity increases.
In terms of the training time, the linear models and CART are relatively faster to
train as compared to ensemble methods and ANN.

Linear and logistic regression can’t handle nonlinear relationships, while all other
models can. SVM can handle the nonlinear relationship between dependent and
independent variables with nonlinear kernels.

80 | Chapter 4: Supervised Learning: Models and Concepts

SVM and random forest tend to overfit less as compared to the linear regression,
logistic regression, gradient boosting, and ANN. The degree of overfitting also
depends on other parameters, such as size of the data and model tuning, and can be
checked by looking at the results of the test set for each model. Also, the boosting
methods such as gradient boosting have higher overfitting risk compared to the bag‐
ging methods, such as random forest. Recall the focus of gradient boosting is to mini‐
mize the bias and not variance.

Linear and logistic regressions are not able to handle large datasets and large number
of features well. However, CART, ensemble methods, and ANN are capable of han‐
dling large datasets and many features quite well. The linear and logistic regression
generally perform better than other models in case the size of the dataset is small.
Application of variable reduction techniques (shown in Chapter 7) enables the linear
models to handle large datasets. The performance of ANN increases with an increase
in the size of the dataset.

Given linear regression, logistic regression, and CART are relatively simpler models,
they have better model interpretation as compared to the ensemble models and
ANN.

Model Trade-off
Often, it’s a trade-off between different factors when selecting a model. ANN, SVM,
and some ensemble methods can be used to create very accurate predictive models,
but they may lack simplicity and interpretability and may take a significant amount
of resources to train.

In terms of selecting the final model, models with lower interpretability may be pre‐
ferred when predictive performance is the most important goal, and it’s not necessary
to explain how the model works and makes predictions. In some cases, however,
model interpretability is mandatory.

Interpretability-driven examples are often seen in the financial industry. In many
cases, choosing a machine learning algorithm has less to do with the optimization or
the technical aspects of the algorithm and more to do with business decisions. Sup‐
pose a machine learning algorithm is used to accept or reject an individual’s credit
card application. If the applicant is rejected and decides to file a complaint or take
legal action, the financial institution will need to explain how that decision was made.
While that can be nearly impossible for ANN, it’s relatively straightforward for deci‐
sion tree–based models.

Different classes of models are good at modeling different types of underlying pat‐
terns in data. So a good first step is to quickly test out a few different classes of mod‐
els to know which ones capture the underlying structure of the dataset most

Model Selection | 81

efficiently. We will follow this approach while performing model selection in all our
supervised learning–based case studies.

Chapter Summary
In this chapter, we discussed the importance of supervised learning models in
finance, followed by a brief introduction to several supervised learning models,
including linear and logistic regression, SVM, decision trees, ensemble, KNN, LDA,
and ANN. We demonstrated training and tuning of these models in a few lines of
code using sklearn and Keras libraries.

We discussed the most common error metrics for regression and classification mod‐
els, explained the bias-variance trade-off, and illustrated the various tools for manag‐
ing the model selection process using cross validation.

We introduced the strengths and weaknesses of each model and discussed the factors
to consider when selecting the best model. We also discussed the trade-off between
model performance and interpretability.

In the following chapter, we will dive into the case studies for regression and classifi‐
cation. All case studies in the next two chapters leverage the concepts presented in
this chapter and in the previous two chapters.

82 | Chapter 4: Supervised Learning: Models and Concepts

CHAPTER 5

Supervised Learning: Regression
(Including Time Series Models)

Supervised regression–based machine learning is a predictive form of modeling in
which the goal is to model the relationship between a target and the predictor vari‐
able(s) in order to estimate a continuous set of possible outcomes. These are the most
used machine learning models in finance.

One of the focus areas of analysts in financial institutions (and finance in general) is
to predict investment opportunities, typically predictions of asset prices and asset
returns. Supervised regression–based machine learning models are inherently suit‐
able in this context. These models help investment and financial managers under‐
stand the properties of the predicted variable and its relationship with other variables,
and help them identify significant factors that drive asset returns. This helps investors
estimate return profiles, trading costs, technical and financial investment required in
infrastructure, and thus ultimately the risk profile and profitability of a strategy or
portfolio.

With the availability of large volumes of data and processing techniques, supervised
regression–based machine learning isn’t just limited to asset price prediction. These
models are applied to a wide range of areas within finance, including portfolio man‐
agement, insurance pricing, instrument pricing, hedging, and risk management.

In this chapter we cover three supervised regression–based case studies that span
diverse areas, including asset price prediction, instrument pricing, and portfolio
management. All of the case studies follow the standardized seven-step model devel‐
opment process presented in Chapter 2; those steps include defining the problem,
loading the data, exploratory data analysis, data preparation, model evaluation, and

83

1 There may be reordering or renaming of the steps or substeps based on the appropriateness and intuitiveness
of the steps/substeps.

2 An exogenous variable is one whose value is determined outside the model and imposed on the model.

model tuning.1 The case studies are designed not only to cover a diverse set of topics
from the finance standpoint but also to cover multiple machine learning and model‐
ing concepts, including models from basic linear regression to advanced deep learn‐
ing that were presented in Chapter 4.

A substantial amount of asset modeling and prediction problems in the financial
industry involve a time component and estimation of a continuous output. As such,
it is also important to address time series models. In its broadest form, time series
analysis is about inferring what has happened to a series of data points in the past and
attempting to predict what will happen to it in the future. There have been a lot of
comparisons and debates in academia and the industry regarding the differences
between supervised regression and time series models. Most time series models are
parametric (i.e., a known function is assumed to represent the data), while the major‐
ity of supervised regression models are nonparametric. Time series models primarily
use historical data of the predicted variables for prediction, and supervised learning
algorithms use exogenous variables as predictor variables.2 However, supervised
regression can embed the historical data of the predicted variable through a time-
delay approach (covered later in this chapter), and a time series model (such as ARI‐
MAX, also covered later in this chapter) can use exogenous variables for prediction.
Hence, time series and supervised regression models are similar in the sense that both
can use exogenous variables as well as historical data of the predicted variable for
forecasting. In terms of the final output, both supervised regression and time series
models estimate a continuous set of possible outcomes of a variable.

In Chapter 4, we covered the concepts of models that are common between super‐
vised regression and supervised classification. Given that time series models are more
closely aligned with supervised regression than supervised classification, we will go
through the concepts of time series models separately in this chapter. We will also
demonstrate how we can use time series models on financial data to predict future
values. Comparison of time series models against the supervised regression models
will be presented in the case studies. Additionally, some machine learning and deep
learning models (such as LSTM) can be directly used for time series forecasting, and
those will be discussed as well.

84 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

In “Case Study 1: Stock Price Prediction” on page 95, we demonstrate one of the most
popular prediction problems in finance, that of predicting stock returns. In addition
to predicting future stock prices accurately, the purpose of this case study is to dis‐
cuss the machine learning–based framework for general asset class price prediction in
finance. In this case study we will discuss several machine learning and time series
concepts, along with focusing on visualization and model tuning.

In “Case Study 2: Derivative Pricing” on page 114, we will delve into derivative pricing
using supervised regression and show how to deploy machine learning techniques in
the context of traditional quant problems. As compared to traditional derivative pric‐
ing models, machine learning techniques can lead to faster derivative pricing without
relying on the several impractical assumptions. Efficient numerical computation
using machine learning can be increasingly beneficial in areas such as financial risk
management, where a trade-off between efficiency and accuracy is often inevitable.

In “Case Study 3: Investor Risk Tolerance and Robo-Advisors” on page 125, we illus‐
trate supervised regression–based framework to estimate the risk tolerance of invest‐
ors. In this case study, we build a robo-advisor dashboard in Python and implement
this risk tolerance prediction model in the dashboard. We demonstrate how such
models can lead to the automation of portfolio management processes, including the
use of robo-advisors for investment management. The purpose is also to illustrate
how machine learning can efficiently be used to overcome the problem of traditional
risk tolerance profiling or risk tolerance questionnaires that suffer from several
behavioral biases.

In “Case Study 4: Yield Curve Prediction” on page 141, we use a supervised regression–
based framework to forecast different yield curve tenors simultaneously. We demon‐
strate how we can produce multiple tenors at the same time to model the yield curve
using machine learning models.

In this chapter, we will learn about the following concepts related to supervised
regression and time series techniques:

• Application and comparison of different time series and machine learning
models.

• Interpretation of the models and results. Understanding the potential overfitting
and underfitting and intuition behind linear versus nonlinear models.

• Performing data preparation and transformations to be used in machine learning
models.

• Performing feature selection and engineering to improve model performance.
• Using data visualization and data exploration to understand outcomes.

Supervised Learning: Regression (Including Time Series Models) | 85

3 These models are discussed later in this chapter.

4 There may be reordering or renaming of the steps or substeps based on the appropriateness and intuitiveness
of the steps/substeps.

• Algorithm tuning to improve model performance. Understanding, implement‐
ing, and tuning time series models such as ARIMA for prediction.

• Framing a problem statement related to portfolio management and behavioral
finance in a regression-based machine learning framework.

• Understanding how deep learning–based models such as LSTM can be used for
time series prediction.

The models used for supervised regression were presented in Chapters 3 and 4. Prior
to the case studies, we will discuss time series models. We highly recommend readers
turn to Time Series Analysis and Its Applications, 4th Edition, by Robert H. Shumway
and David S. Stoffer (Springer) for a more in-depth understanding of time series con‐
cepts, and to Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,
2nd Edition, by Aurélien Géron (O’Reilly) for more on concepts in supervised regres‐
sion models.

This Chapter’s Code Repository

A Python-based master template for supervised regression, a time
series model template, and the Jupyter notebook for all case studies
presented in this chapter are included in the folder Chapter 5 - Sup.
Learning - Regression and Time Series models of the code repository
for this book.
For any new supervised regression–based case study, use the com‐
mon template from the code repository, modify the elements spe‐
cific to the case study, and borrow the concepts and insights from
the case studies presented in this chapter. The template also
includes the implementation and tuning of the ARIMA and LSTM
models.3 The templates are designed to run on the cloud (i.e., Kag‐
gle, Google Colab, and AWS). All the case studies have been
designed on a uniform regression template.4

Time Series Models
A time series is a sequence of numbers that are ordered by a time index.

In this section we will cover the following aspects of time series models, which we
further leverage in the case studies:

86 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

https://oreil.ly/sJFV0
https://oreil.ly/sJFV0

• The components of a time series
• Autocorrelation and stationarity of time series
• Traditional time series models (e.g., ARIMA)
• Use of deep learning models for time series modeling
• Conversion of time series data for use in a supervised learning framework

Time Series Breakdown
A time series can be broken down into the following components:

Trend Component
A trend is a consistent directional movement in a time series. These trends will
be either deterministic or stochastic. The former allows us to provide an underly‐
ing rationale for the trend, while the latter is a random feature of a series that we
will be unlikely to explain. Trends often appear in financial series, and many
trading models use sophisticated trend identification algorithms.

Seasonal Component
Many time series contain seasonal variation. This is particularly true in series
representing business sales or climate levels. In quantitative finance we often see
seasonal variation, particularly in series related to holiday seasons or annual tem‐
perature variation (such as natural gas).

We can write the components of a time series yt as

yt = St + T t + Rt

where St is the seasonal component, T t is the trend component, and Rt represents the
remainder component of the time series not captured by seasonal or trend
component.

The Python code for breaking down a time series (Y) into its component is as follows:

import statsmodels.api as sm
sm.tsa.seasonal_decompose(Y,freq=52).plot()

Figure 5-1 shows the time series broken down into trend, seasonality, and remainder
components. Breaking down a time series into these components may help us better
understand the time series and identify its behavior for better prediction.

The three time series components are shown separately in the bottom three panels.
These components can be added together to reconstruct the actual time series shown
in the top panel (shown as “observed”). Notice that the time series shows a trending
component after 2017. Hence, the prediction model for this time series should incor‐

Time Series Models | 87

porate the information regarding the trending behavior after 2017. In terms of sea‐
sonality there is some increase in the magnitude in the beginning of the calendar
year. The residual component shown in the bottom panel is what is left over when
the seasonal and trend components have been subtracted from the data. The residual
component is mostly flat with some spikes and noise around 2018 and 2019. Also,
each of the plots are on different scales, and the trend component has maximum
range as shown by the scale on the plot.

Figure 5-1. Time series components

Autocorrelation and Stationarity
When we are given one or more time series, it is relatively straightforward to decom‐
pose the time series into trend, seasonality, and residual components. However, there
are other aspects that come into play when dealing with time series data, particularly
in finance.

Autocorrelation
There are many situations in which consecutive elements of a time series exhibit cor‐
relation. That is, the behavior of sequential points in the series affect each other in a
dependent manner. Autocorrelation is the similarity between observations as a func‐
tion of the time lag between them. Such relationships can be modeled using an autor‐
egression model. The term autoregression indicates that it is a regression of the
variable against itself.

In an autoregression model, we forecast the variable of interest using a linear combi‐
nation of past values of the variable.

88 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

5 A white noise process is a random process of random variables that are uncorrelated and have a mean of zero
and a finite variance.

Thus, an autoregressive model of order p can be written as

yt = c + ϕ1yt –1 + ϕ2yt –2 +ϕp yt – p + ϵ

where ϵt is white noise.5 An autoregressive model is like a multiple regression but
with lagged values of yt as predictors. We refer to this as an AR(p) model, an autore‐
gressive model of order p. Autoregressive models are remarkably flexible at handling
a wide range of different time series patterns.

Stationarity
A time series is said to be stationary if its statistical properties do not change over
time. Thus a time series with trend or with seasonality is not stationary, as the trend
and seasonality will affect the value of the time series at different times. On the other
hand, a white noise series is stationary, as it does not matter when you observe it; it
should look similar at any point in time.

Figure 5-2 shows some examples of nonstationary series.

Figure 5-2. Nonstationary plots

In the first plot, we can clearly see that the mean varies (increases) with time, result‐
ing in an upward trend. Thus this is a nonstationary series. For a series to be classi‐
fied as stationary, it should not exhibit a trend. Moving on to the second plot, we
certainly do not see a trend in the series, but the variance of the series is a function of
time. A stationary series must have a constant variance; hence this series is a nonsta‐
tionary series as well. In the third plot, the spread becomes closer as the time increa‐
ses, which implies that the covariance is a function of time. The three examples
shown in Figure 5-2 represent nonstationary time series. Now look at a fourth plot, as
shown in Figure 5-3.

Time Series Models | 89

Figure 5-3. Stationary plot

In this case, the mean, variance, and covariance are constant with time. This is what a
stationary time series looks like. Predicting future values using this fourth plot would
be easier. Most statistical models require the series to be stationary to make effective
and precise predictions.

The two major reasons behind nonstationarity of a time series are trend and season‐
ality, as shown in Figure 5-2. In order to use time series forecasting models, we gener‐
ally convert any nonstationary series to a stationary series, making it easier to model
since statistical properties don’t change over time.

Differencing
Differencing is one of the methods used to make a time series stationary. In this
method, we compute the difference of consecutive terms in the series. Differencing is
typically performed to get rid of the varying mean. Mathematically, differencing can
be written as:

yt
′ = yt – yt –1

where yt is the value at a time t.

When the differenced series is white noise, the original series is referred to as a non‐
stationary series of degree one.

Traditional Time Series Models (Including the ARIMA Model)
There are many ways to model a time series in order to make predictions. Most of the
time series models aim at incorporating the trend, seasonality, and remainder com‐
ponents while addressing the autocorrelation and stationarity embedded in the time
series. For example, the autoregressive (AR) model discussed in the previous section
addresses the autocorrelation in the time series.

One of the most widely used models in time series forecasting is the ARIMA model.

90 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

ARIMA
If we combine stationarity with autoregression and a moving average model (dis‐
cussed further on in this section), we obtain an ARIMA model. ARIMA is an acro‐
nym for AutoRegressive Integrated Moving Average, and it has the following
components:

AR(p)
It represents autoregression, i.e., regression of the time series onto itself, as dis‐
cussed in the previous section, with an assumption that current series values
depend on its previous values with some lag (or several lags). The maximum lag
in the model is referred to as p.

I(d)
It represents order of integration. It is simply the number of differences needed
to make the series stationary.

MA(q)
It represents moving average. Without going into detail, it models the error of
the time series; again, the assumption is that current error depends on the previ‐
ous with some lag, which is referred to as q.

The moving average equation is written as:

yt = c + ϵt + θ1ϵt –1 + θ2ϵt –2

where, ϵt is white noise. We refer to this as an MA(q) model of order q.

Combining all the components, the full ARIMA model can be written as:

yt
′ = c + ϕ1yt –1

′ + ⋯ + ϕp yt – p
′ + θ1εt –1 + ⋯ + θqεt –q + εt

where yt
' is the differenced series (it may have been differenced more than once). The

predictors on the right-hand side include both lagged values of yt
' and lagged errors.

We call this an ARIMA(p,d,q) model, where p is the order of the autoregressive part,
d is the degree of first differencing involved, and q is the order of the moving average
part. The same stationarity and invertibility conditions that are used for autoregres‐
sive and moving average models also apply to an ARIMA model.

The Python code to fit the ARIMA model of the order (1,0,0) is shown in the
following:

from statsmodels.tsa.arima_model import ARIMA
model=ARIMA(endog=Y_train,order=[1,0,0])

Time Series Models | 91

The family of ARIMA models has several variants, and some of them are as follows:

ARIMAX
ARIMA models with exogenous variables included. We will be using this model
in case study 1.

SARIMA
“S” in this model stands for seasonal, and this model is targeted at modeling the
seasonality component embedded in the time series, along with other
components.

VARMA
This is the extension of the model to multivariate case, when there are many vari‐
ables to be predicted simultaneously. We predict many variables simultaneously
in “Case Study 4: Yield Curve Prediction” on page 141.

Deep Learning Approach to Time Series Modeling
The traditional time series models such as ARIMA are well understood and effective
on many problems. However, these traditional methods also suffer from several limi‐
tations. Traditional time series models are linear functions, or simple transformations
of linear functions, and they require manually diagnosed parameters, such as time
dependence, and don’t perform well with corrupt or missing data.

If we look at the advancements in the field of deep learning for time series prediction,
we see that recurrent neural network (RNN) has gained increasing attention in recent
years. These methods can identify structure and patterns such as nonlinearity, can
seamlessly model problems with multiple input variables, and are relatively robust to
missing data. The RNN models can retain state from one iteration to the next by
using their own output as input for the next step. These deep learning models can be
referred to as time series models, as they can make future predictions using the data
points in the past, similar to traditional time series models such as ARIMA. There‐
fore, there are a wide range of applications in finance where these deep learning mod‐
els can be leveraged. Let us look at the deep learning models for time series
forecasting.

RNNs
Recurrent neural networks (RNNs) are called “recurrent” because they perform the
same task for every element of a sequence, with the output being dependent on the
previous computations. RNN models have a memory, which captures information
about what has been calculated so far. As shown in Figure 5-4, a recurrent neural net‐
work can be thought of as multiple copies of the same network, each passing a mes‐
sage to a successor.

92 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

6 A detailed explanation of LSTM models can be found in this blog post by Christopher Olah .

Figure 5-4. Recurrent Neural Network

In Figure 5-4:

• Xt is the input at time step t.
• Ot is the output at time step t.
• St is the hidden state at time step t. It’s the memory of the network. It is calcula‐

ted based on the previous hidden state and the input at the current step.

The main feature of an RNN is this hidden state, which captures some information
about a sequence and uses it accordingly whenever needed.

Long short-term memory
Long short-term memory (LSTM) is a special kind of RNN explicitly designed to
avoid the long-term dependency problem. Remembering information for long peri‐
ods of time is practically default behavior for an LSTM model.6 These models are
composed of a set of cells with features to memorize the sequence of data. These cells
capture and store the data streams. Further, the cells interconnect one module of the
past to another module of the present to convey information from several past time
instants to the present one. Due to the use of gates in each cell, data in each cell can
be disposed, filtered, or added for the next cells.

The gates, based on artificial neural network layers, enable the cells to optionally let
data pass through or be disposed. Each layer yields numbers in the range of zero to
one, depicting the amount of every segment of data that ought to be let through in
each cell. More precisely, an estimation of zero value implies “let nothing pass
through.” An estimation of one indicates “let everything pass through.” Three types
of gates are involved in each LSTM, with the goal of controlling the state of each cell:

Time Series Models | 93

https://oreil.ly/4PDhr

7 An ARIMA model and a Keras-based LSTM model will be demonstrated in one of the case studies.

Forget Gate
Outputs a number between zero and one, where one shows “completely keep
this” and zero implies “completely ignore this.” This gate conditionally decides
whether the past should be forgotten or preserved.

Input Gate
Chooses which new data needs to be stored in the cell.

Output Gate
Decides what will yield out of each cell. The yielded value will be based on the
cell state along with the filtered and newly added data.

Keras wraps the efficient numerical computation libraries and functions and allows
us to define and train LSTM neural network models in a few short lines of code. In
the following code, LSTM module from keras.layers is used for implementing
LSTM network. The network is trained with the variable X_train_LSTM. The network
has a hidden layer with 50 LSTM blocks or neurons and an output layer that makes a
single value prediction. Also refer to Chapter 3 for a more detailed description of all
the terms (i.e., sequential, learning rate, momentum, epoch, and batch size).

A sample Python code for implementing an LSTM model in Keras is shown below:

from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
from keras.layers import LSTM

def create_LSTMmodel(learn_rate = 0.01, momentum=0):
 # create model
 model = Sequential()
 model.add(LSTM(50, input_shape=(X_train_LSTM.shape[1],\
 X_train_LSTM.shape[2])))
 #More number of cells can be added if needed
 model.add(Dense(1))
 optimizer = SGD(lr=learn_rate, momentum=momentum)
 model.compile(loss='mse', optimizer='adam')
 return model
LSTMModel = create_LSTMmodel(learn_rate = 0.01, momentum=0)
LSTMModel_fit = LSTMModel.fit(X_train_LSTM, Y_train_LSTM, validation_data=\
 (X_test_LSTM, Y_test_LSTM),epochs=330, batch_size=72, verbose=0, shuffle=False)

In terms of both learning and implementation, LSTM provides considerably more
options for fine-tuning compared to ARIMA models. Although deep learning models
have several advantages over traditional time series models, deep learning models are
more complicated and difficult to train.7

94 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Modifying Time Series Data for Supervised Learning Models
A time series is a sequence of numbers that are ordered by a time index. Supervised
learning is where we have input variables (X) and an output variable (Y). Given a
sequence of numbers for a time series dataset, we can restructure the data into a set of
predictor and predicted variables, just like in a supervised learning problem. We can
do this by using previous time steps as input variables and using the next time step as
the output variable. Let’s make this concrete with an example.

We can restructure a time series shown in the left table in Figure 5-5 as a supervised
learning problem by using the value at the previous time step to predict the value at
the next time step. Once we’ve reorganized the time series dataset this way, the data
would look like the table on the right.

Figure 5-5. Modifying time series for supervised learning models

We can see that the previous time step is the input (X) and the next time step is the
output (Y) in our supervised learning problem. The order between the observations is
preserved and must continue to be preserved when using this dataset to train a super‐
vised model. We will delete the first and last row while training our supervised model
as we don’t have values for either X or Y.

In Python, the main function to help transform time series data into a supervised
learning problem is the shift() function from the Pandas library. We will demon‐
strate this approach in the case studies. The use of prior time steps to predict the next
time step is called the sliding window, time delay, or lag method.

Having discussed all the concepts of supervised learning and time series models, let
us move to the case studies.

Case Study 1: Stock Price Prediction
One of the biggest challenges in finance is predicting stock prices. However, with the
onset of recent advancements in machine learning applications, the field has been
evolving to utilize nondeterministic solutions that learn what is going on in order to
make more accurate predictions. Machine learning techniques naturally lend

Case Study 1: Stock Price Prediction | 95

themselves to stock price prediction based on historical data. Predictions can be
made for a single time point ahead or for a set of future time points.

As a high-level overview, other than the historical price of the stock itself, the features
that are generally useful for stock price prediction are as follows:

Correlated assets
An organization depends on and interacts with many external factors, including
its competitors, clients, the global economy, the geopolitical situation, fiscal and
monetary policies, access to capital, and so on. Hence, its stock price may be cor‐
related not only with the stock price of other companies but also with other
assets such as commodities, FX, broad-based indices, or even fixed income
securities.

Technical indicators
A lot of investors follow technical indicators. Moving average, exponential mov‐
ing average, and momentum are the most popular indicators.

Fundamental analysis
Two primary data sources to glean features that can be used in fundamental
analysis include:

Performance reports
Annual and quarterly reports of companies can be used to extract or deter‐
mine key metrics, such as ROE (Return on Equity) and P/E (Price-to-
Earnings).

News
News can indicate upcoming events that can potentially move the stock price
in a certain direction.

In this case study, we will use various supervised learning–based models to predict
the stock price of Microsoft using correlated assets and its own historical data. By the
end of this case study, readers will be familiar with a general machine learning
approach to stock prediction modeling, from gathering and cleaning data to building
and tuning different models.

In this case study, we will focus on:

• Looking at various machine learning and time series models, ranging in com‐
plexity, that can be used to predict stock returns.

• Visualization of the data using different kinds of charts (i.e., density, correlation,
scatterplot, etc.)

• Using deep learning (LSTM) models for time series forecasting.

96 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

8 Refer to “Case Study 3: Bitcoin Trading Strategy” on page 179 presented in Chapter 6 and “Case Study 1: NLP
and Sentiment Analysis–Based Trading Strategies” on page 362 presented in Chapter 10 to understand the
usage of technical indicators and news-based fundamental analysis as features in the price prediction.

9 Equity markets have trading holidays, while currency markets do not. However, the alignment of the dates
across all the time series is ensured before any modeling or analysis.

• Implementation of the grid search for time series models (i.e., ARIMA model).
• Interpretation of the results and examining potential overfitting and underfitting

of the data across the models.

Blueprint for Using Supervised Learning Models to Predict a
Stock Price

1. Problem definition
In the supervised regression framework used for this case study, the weekly return of
Microsoft stock is the predicted variable. We need to understand what affects Micro‐
soft stock price and incorporate as much information into the model. Out of correla‐
ted assets, technical indicators, and fundamental analysis (discussed in the section
before), we will focus on correlated assets as features in this case study.8

For this case study, other than the historical data of Microsoft, the independent vari‐
ables used are the following potentially correlated assets:

Stocks
IBM (IBM) and Alphabet (GOOGL)

Currency9

USD/JPY and GBP/USD

Indices
S&P 500, Dow Jones, and VIX

The dataset used for this case study is extracted from Yahoo Finance and the FRED
website. In addition to predicting the stock price accurately, this case study will also
demonstrate the infrastructure and framework for each step of time series and super‐
vised regression–based modeling for stock price prediction. We will use the daily
closing price of the last 10 years, from 2010 onward.

Case Study 1: Stock Price Prediction | 97

https://fred.stlouisfed.org
https://fred.stlouisfed.org

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The list of the libraries used for data loading, data
analysis, data preparation, model evaluation, and model tuning are shown below. The
packages used for different purposes have been segregated in the Python code that
follows. The details of most of these packages and functions were provided in Chap‐
ters 2 and 4. The use of these packages will be demonstrated in different steps of the
model development process.

Function and modules for the supervised regression models

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import ElasticNet
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.neural_network import MLPRegressor

Function and modules for data analysis and model evaluation

from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_squared_error
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2, f_regression

Function and modules for deep learning models

from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
from keras.layers import LSTM
from keras.wrappers.scikit_learn import KerasRegressor

Function and modules for time series models

from statsmodels.tsa.arima_model import ARIMA
import statsmodels.api as sm

Function and modules for data preparation and visualization

pandas, pandas_datareader, numpy and matplotlib
import numpy as np
import pandas as pd
import pandas_datareader.data as web
from matplotlib import pyplot

98 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

10 In different case studies across the book we will demonstrate loading the data through different sources (e.g.,
CSV, and external websites like quandl).

from pandas.plotting import scatter_matrix
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from pandas.plotting import scatter_matrix
from statsmodels.graphics.tsaplots import plot_acf

2.2. Loading the data. One of the most important steps in machine learning and pre‐
dictive modeling is gathering good data. The following steps demonstrate the loading
of data from the Yahoo Finance and FRED websites using the Pandas DataReader
function:10

stk_tickers = ['MSFT', 'IBM', 'GOOGL']
ccy_tickers = ['DEXJPUS', 'DEXUSUK']
idx_tickers = ['SP500', 'DJIA', 'VIXCLS']

stk_data = web.DataReader(stk_tickers, 'yahoo')
ccy_data = web.DataReader(ccy_tickers, 'fred')
idx_data = web.DataReader(idx_tickers, 'fred')

Next, we define our dependent (Y) and independent (X) variables. The predicted
variable is the weekly return of Microsoft (MSFT). The number of trading days in a
week is assumed to be five, and we compute the return using five trading days. For
independent variables we use the correlated assets and the historical return of MSFT
at different frequencies.

The variables used as independent variables are lagged five-day return of stocks (IBM
and GOOG), currencies (USD/JPY and GBP/USD), and indices (S&P 500, Dow
Jones, and VIX), along with lagged 5-day, 15-day, 30-day and 60-day return of
MSFT.

The lagged five-day variables embed the time series component by using a time-delay
approach, where the lagged variable is included as one of the independent variables.
This step is reframing the time series data into a supervised regression–based model
framework.

return_period = 5
Y = np.log(stk_data.loc[:, ('Adj Close', 'MSFT')]).diff(return_period).\
shift(-return_period)
Y.name = Y.name[-1]+'_pred'

X1 = np.log(stk_data.loc[:, ('Adj Close', ('GOOGL', 'IBM'))]).diff(return_period)
X1.columns = X1.columns.droplevel()
X2 = np.log(ccy_data).diff(return_period)
X3 = np.log(idx_data).diff(return_period)

X4 = pd.concat([np.log(stk_data.loc[:, ('Adj Close', 'MSFT')]).diff(i) \

Case Study 1: Stock Price Prediction | 99

for i in [return_period, return_period*3,\
return_period*6, return_period*12]], axis=1).dropna()
X4.columns = ['MSFT_DT', 'MSFT_3DT', 'MSFT_6DT', 'MSFT_12DT']

X = pd.concat([X1, X2, X3, X4], axis=1)

dataset = pd.concat([Y, X], axis=1).dropna().iloc[::return_period, :]
Y = dataset.loc[:, Y.name]
X = dataset.loc[:, X.columns]

3. Exploratory data analysis
We will look at descriptive statistics, data visualization, and time series analysis in
this section.

3.1. Descriptive statistics. Let’s have a look at the dataset we have:

dataset.head()

Output

The variable MSFT_pred is the return of Microsoft stock and is the predicted vari‐
able. The dataset contains the lagged series of other correlated stocks, currencies, and
indices. Additionally, it also consists of the lagged historical returns of MSFT.

3.2. Data visualization. The fastest way to learn more about the data is to visualize it.
The visualization involves independently understanding each attribute of the dataset.
We will look at the scatterplot and the correlation matrix. These plots give us a sense
of the interdependence of the data. Correlation can be calculated and displayed for
each pair of the variables by creating a correlation matrix. Hence, besides the rela‐
tionship between independent and dependent variables, it also shows the correlation
among the independent variables. This is useful to know because some machine
learning algorithms like linear and logistic regression can have poor performance if
there are highly correlated input variables in the data:

correlation = dataset.corr()
pyplot.figure(figsize=(15,15))
pyplot.title('Correlation Matrix')
sns.heatmap(correlation, vmax=1, square=True,annot=True,cmap='cubehelix')

100 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Output

Looking at the correlation plot (full-size version available on GitHub), we see some
correlation of the predicted variable with the lagged 5-day, 15-day, 30-day, and 60-
day returns of MSFT. Also, we see a higher negative correlation of many asset returns
versus VIX, which is intuitive.

Next, we can visualize the relationship between all the variables in the regression
using the scatterplot matrix shown below:

pyplot.figure(figsize=(15,15))
scatter_matrix(dataset,figsize=(12,12))
pyplot.show()

Case Study 1: Stock Price Prediction | 101

https://oreil.ly/g3wVU

Output

Looking at the scatterplot (full-size version available on GitHub), we see some linear
relationship of the predicted variable with the lagged 15-day, 30-day, and 60-day
returns of MSFT. Otherwise, we do not see any special relationship between our pre‐
dicted variable and the features.

3.3. Time series analysis. Next, we delve into the time series analysis and look at the
decomposition of the time series of the predicted variable into trend and seasonality
components:

res = sm.tsa.seasonal_decompose(Y,freq=52)
fig = res.plot()
fig.set_figheight(8)
fig.set_figwidth(15)
pyplot.show()

102 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

https://oreil.ly/g3wVU

11 The time series is not the stock price but stock return, so the trend is mild compared to the stock price series.

Output

We can see that for MSFT there has been a general upward trend in the return series.
This may be due to the large run-up of MSFT in the recent years, causing more posi‐
tive weekly return data points than negative.11 The trend may show up in the con‐
stant/bias terms in our models. The residual (or white noise) term is relatively small
over the entire time series.

4. Data preparation
This step typically involves data processing, data cleaning, looking at feature impor‐
tance, and performing feature reduction. The data obtained for this case study is rela‐
tively clean and doesn’t require further processing. Feature reduction might be useful
here, but given the relatively small number of variables considered, we will keep all of
them as is. We will demonstrate data preparation in some of the subsequent case
studies in detail.

5. Evaluate models

5.1. Train-test split and evaluation metrics. As described in Chapter 2, it is a good idea
to partition the original dataset into a training set and a test set. The test set is a sam‐
ple of the data that we hold back from our analysis and modeling. We use it right at
the end of our project to confirm the performance of our final model. It is the final
test that gives us confidence on our estimates of accuracy on unseen data. We will use

Case Study 1: Stock Price Prediction | 103

80% of the dataset for modeling and use 20% for testing. With time series data, the
sequence of values is important. So we do not distribute the dataset into training and
test sets in random fashion, but we select an arbitrary split point in the ordered list of
observations and create two new datasets:

validation_size = 0.2
train_size = int(len(X) * (1-validation_size))
X_train, X_test = X[0:train_size], X[train_size:len(X)]
Y_train, Y_test = Y[0:train_size], Y[train_size:len(X)]

5.2. Test options and evaluation metrics. To optimize the various hyperparameters of
the models, we use ten-fold cross validation (CV) and recalculate the results ten times
to account for the inherent randomness in some of the models and the CV process.
We will evaluate algorithms using the mean squared error metric. This metric gives
an idea of the performance of the supervised regression models. All these concepts,
including cross validation and evaluation metrics, have been described in Chapter 4:

num_folds = 10
scoring = 'neg_mean_squared_error'

5.3. Compare models and algorithms. Now that we have completed the data loading and
designed the test harness, we need to choose a model.

5.3.1. Machine learning models from Scikit-learn. In this step, the supervised regression
models are implemented using the sklearn package:

Regression and tree regression algorithms

models = []
models.append(('LR', LinearRegression()))
models.append(('LASSO', Lasso()))
models.append(('EN', ElasticNet()))
models.append(('KNN', KNeighborsRegressor()))
models.append(('CART', DecisionTreeRegressor()))
models.append(('SVR', SVR()))

Neural network algorithms

models.append(('MLP', MLPRegressor()))

Ensemble models

Boosting methods
models.append(('ABR', AdaBoostRegressor()))
models.append(('GBR', GradientBoostingRegressor()))
Bagging methods
models.append(('RFR', RandomForestRegressor()))
models.append(('ETR', ExtraTreesRegressor()))

104 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Once we have selected all the models, we loop over each of them. First, we run the k-
fold analysis. Next, we run the model on the entire training and testing dataset.

All the algorithms use default tuning parameters. We will calculate the mean and
standard deviation of the evaluation metric for each algorithm and collect the results
for model comparison later:

names = []
kfold_results = []
test_results = []
train_results = []
for name, model in models:
 names.append(name)
 ## k-fold analysis:
 kfold = KFold(n_splits=num_folds, random_state=seed)
 #converted mean squared error to positive. The lower the better
 cv_results = -1* cross_val_score(model, X_train, Y_train, cv=kfold, \
 scoring=scoring)
 kfold_results.append(cv_results)
 # Full Training period
 res = model.fit(X_train, Y_train)
 train_result = mean_squared_error(res.predict(X_train), Y_train)
 train_results.append(train_result)
 # Test results
 test_result = mean_squared_error(res.predict(X_test), Y_test)
 test_results.append(test_result)

Let’s compare the algorithms by looking at the cross validation results:

Cross validation results

fig = pyplot.figure()
fig.suptitle('Algorithm Comparison: Kfold results')
ax = fig.add_subplot(111)
pyplot.boxplot(kfold_results)
ax.set_xticklabels(names)
fig.set_size_inches(15,8)
pyplot.show()

Case Study 1: Stock Price Prediction | 105

Output

Although the results of a couple of the models look good, we see that the linear
regression and the regularized regression including the lasso regression (LASSO) and
elastic net (EN) seem to perform best. This indicates a strong linear relationship
between the dependent and independent variables. Going back to the exploratory
analysis, we saw a good correlation and linear relationship of the target variables with
the different lagged MSFT variables.

Let us look at the errors of the test set as well:

Training and test error

compare algorithms
fig = pyplot.figure()

ind = np.arange(len(names)) # the x locations for the groups
width = 0.35 # the width of the bars

fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
pyplot.bar(ind - width/2, train_results, width=width, label='Train Error')
pyplot.bar(ind + width/2, test_results, width=width, label='Test Error')
fig.set_size_inches(15,8)
pyplot.legend()
ax.set_xticks(ind)
ax.set_xticklabels(names)
pyplot.show()

106 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Output

Examining the training and test error, we still see a stronger performance from the
linear models. Some of the algorithms, such as the decision tree regressor (CART),
overfit on the training data and produced very high error on the test set. Ensemble
models such as gradient boosting regression (GBR) and random forest regression
(RFR) have low bias but high variance. We also see that the artificial neural network
algorithm (shown as MLP in the chart) shows higher errors in both the training and
test sets. This is perhaps due to the linear relationship of the variables not captured
accurately by ANN, improper hyperparameters, or insufficient training of the model.
Our original intuition from the cross validation results and the scatterplots also seem
to demonstrate a better performance of linear models.

We now look at some of the time series and deep learning models that can be used.
Once we are done creating these, we will compare their performance against that of
the supervised regression–based models. Due to the nature of time series models, we
are not able to run a k-fold analysis. We can still compare our results to the other
models based on the full training and testing results.

5.3.2. Time series–based models: ARIMA and LSTM. The models used so far already
embed the time series component by using a time-delay approach, where the lagged
variable is included as one of the independent variables. However, for the time ser‐
ies–based models we do not need the lagged variables of MSFT as the independent
variables. Hence, as a first step we remove MSFT’s previous returns for these models.
We use all other variables as the exogenous variables in these models.

Let us first prepare the dataset for ARIMA models by having only the correlated var‐
riables as exogenous variables:

Case Study 1: Stock Price Prediction | 107

X_train_ARIMA=X_train.loc[:, ['GOOGL', 'IBM', 'DEXJPUS', 'SP500', 'DJIA', \
'VIXCLS']]
X_test_ARIMA=X_test.loc[:, ['GOOGL', 'IBM', 'DEXJPUS', 'SP500', 'DJIA', \
'VIXCLS']]
tr_len = len(X_train_ARIMA)
te_len = len(X_test_ARIMA)
to_len = len (X)

We now configure the ARIMA model with the order (1,0,0) and use the independent
variables as the exogenous variables in the model. The version of the ARIMA model
where the exogenous variables are also used is known as the ARIMAX model, where
"X" represents exogenous variables:

modelARIMA=ARIMA(endog=Y_train,exog=X_train_ARIMA,order=[1,0,0])
model_fit = modelARIMA.fit()

Now we fit the ARIMA model:

error_Training_ARIMA = mean_squared_error(Y_train, model_fit.fittedvalues)
predicted = model_fit.predict(start = tr_len -1 ,end = to_len -1, \
 exog = X_test_ARIMA)[1:]
error_Test_ARIMA = mean_squared_error(Y_test,predicted)
error_Test_ARIMA

Output

0.0005931919240399084

Error of this ARIMA model is reasonable.

Now let’s prepare the dataset for the LSTM model. We need the data in the form of
arrays of all the input variables and the output variables.

The logic behind the LSTM is that data is taken from the previous day (the data of all
the other features for that day—correlated assets and the lagged variables of MSFT)
and we try to predict the next day. Then we move the one-day window with one day
and again predict the next day. We iterate like this over the whole dataset (of course
in batches). The code below will create a dataset in which X is the set of independent
variables at a given time (t) and Y is the target variable at the next time (t + 1):

seq_len = 2 #Length of the seq for the LSTM

Y_train_LSTM, Y_test_LSTM = np.array(Y_train)[seq_len-1:], np.array(Y_test)
X_train_LSTM = np.zeros((X_train.shape[0]+1-seq_len, seq_len, X_train.shape[1]))
X_test_LSTM = np.zeros((X_test.shape[0], seq_len, X.shape[1]))
for i in range(seq_len):
 X_train_LSTM[:, i, :] = np.array(X_train)[i:X_train.shape[0]+i+1-seq_len, :]
 X_test_LSTM[:, i, :] = np.array(X)\
 [X_train.shape[0]+i-1:X.shape[0]+i+1-seq_len, :]

In the next step, we create the LSTM architecture. As we can see, the input of the
LSTM is in X_train_LSTM, which goes into 50 hidden units in the LSTM layer and
then is transformed to a single output—the stock return value. The hyperparameters

108 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

(i.e., learning rate, optimizer, activation function, etc.) were discussed in Chapter 3 of
the book:

LSTM Network
def create_LSTMmodel(learn_rate = 0.01, momentum=0):
 # create model
 model = Sequential()
 model.add(LSTM(50, input_shape=(X_train_LSTM.shape[1],\
 X_train_LSTM.shape[2])))
 #More cells can be added if needed
 model.add(Dense(1))
 optimizer = SGD(lr=learn_rate, momentum=momentum)
 model.compile(loss='mse', optimizer='adam')
 return model
LSTMModel = create_LSTMmodel(learn_rate = 0.01, momentum=0)
LSTMModel_fit = LSTMModel.fit(X_train_LSTM, Y_train_LSTM, \
 validation_data=(X_test_LSTM, Y_test_LSTM),\
 epochs=330, batch_size=72, verbose=0, shuffle=False)

Now we fit the LSTM model with the data and look at the change in the model per‐
formance metric over time simultaneously in the training set and the test set:

pyplot.plot(LSTMModel_fit.history['loss'], label='train',)
pyplot.plot(LSTMModel_fit.history['val_loss'], '--',label='test',)
pyplot.legend()
pyplot.show()

Output

error_Training_LSTM = mean_squared_error(Y_train_LSTM,\
 LSTMModel.predict(X_train_LSTM))
predicted = LSTMModel.predict(X_test_LSTM)
error_Test_LSTM = mean_squared_error(Y_test,predicted)

Case Study 1: Stock Price Prediction | 109

Now, in order to compare the time series and the deep learning models, we append
the result of these models to the results of the supervised regression–based models:

test_results.append(error_Test_ARIMA)
test_results.append(error_Test_LSTM)

train_results.append(error_Training_ARIMA)
train_results.append(error_Training_LSTM)

names.append("ARIMA")
names.append("LSTM")

Output

Looking at the chart, we find the time series–based ARIMA model comparable to the
linear supervised regression models: linear regression (LR), lasso regression (LASSO),
and elastic net (EN). This can primarily be due to the strong linear relationship as
discussed before. The LSTM model performs decently; however, the ARIMA model
outperforms the LSTM model in the test set. Hence, we select the ARIMA model for
model tuning.

6. Model tuning and grid search
Let us perform the model tuning of the ARIMA model.

110 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Model Tuning for the Supervised Learning or Time Series Models

The detailed implementation of grid search for all the supervised
learning–based models, along with the ARIMA and LSTM models,
is provided in the Regression-Master template under the GitHub
repository for this book. For the grid search of the ARIMA and
LSTM models, refer to the “ARIMA and LSTM Grid Search” sec‐
tion of the Regression-Master template.

The ARIMA model is generally represented as ARIMA(p,d,q) model, where p is the
order of the autoregressive part, d is the degree of first differencing involved, and q is
the order of the moving average part. The order of the ARIMA model was set to
(1,0,0). So we perform a grid search with different p, d, and q combinations in the
ARIMA model’s order and select the combination that minimizes the fitting error:

def evaluate_arima_model(arima_order):
 #predicted = list()
 modelARIMA=ARIMA(endog=Y_train,exog=X_train_ARIMA,order=arima_order)
 model_fit = modelARIMA.fit()
 error = mean_squared_error(Y_train, model_fit.fittedvalues)
 return error

evaluate combinations of p, d and q values for an ARIMA model
def evaluate_models(p_values, d_values, q_values):
 best_score, best_cfg = float("inf"), None
 for p in p_values:
 for d in d_values:
 for q in q_values:
 order = (p,d,q)
 try:
 mse = evaluate_arima_model(order)
 if mse < best_score:
 best_score, best_cfg = mse, order
 print('ARIMA%s MSE=%.7f' % (order,mse))
 except:
 continue
 print('Best ARIMA%s MSE=%.7f' % (best_cfg, best_score))

evaluate parameters
p_values = [0, 1, 2]
d_values = range(0, 2)
q_values = range(0, 2)
warnings.filterwarnings("ignore")
evaluate_models(p_values, d_values, q_values)

Output

ARIMA(0, 0, 0) MSE=0.0009879
ARIMA(0, 0, 1) MSE=0.0009721
ARIMA(1, 0, 0) MSE=0.0009696
ARIMA(1, 0, 1) MSE=0.0009685

Case Study 1: Stock Price Prediction | 111

https://oreil.ly/9S8h_
https://oreil.ly/9S8h_

ARIMA(2, 0, 0) MSE=0.0009684
ARIMA(2, 0, 1) MSE=0.0009683
Best ARIMA(2, 0, 1) MSE=0.0009683

We see that the ARIMA model with the order (2,0,1) is the best performer out of all
the combinations tested in the grid search, although there isn’t a significant differ‐
ence in the mean squared error (MSE) with other combinations. This means that the
model with the autoregressive lag of two and moving average of one yields the best
result. We should not forget the fact that there are other exogenous variables in the
model that influence the order of the best ARIMA model as well.

7. Finalize the model
In the last step we will check the finalized model on the test set.

7.1. Results on the test dataset.
prepare model
modelARIMA_tuned=ARIMA(endog=Y_train,exog=X_train_ARIMA,order=[2,0,1])
model_fit_tuned = modelARIMA_tuned.fit()

estimate accuracy on validation set
predicted_tuned = model_fit.predict(start = tr_len -1 ,\
 end = to_len -1, exog = X_test_ARIMA)[1:]
print(mean_squared_error(Y_test,predicted_tuned))

Output

0.0005970582461404503

The MSE of the model on the test set looks good and is actually less than that of the
training set.

In the last step, we will visualize the output of the selected model and compare the
modeled data against the actual data. In order to visualize the chart, we convert the
return time series to a price time series. We also assume the price at the beginning of
the test set as one for the sake of simplicity. Let us look at the plot of actual versus
predicted data:

plotting the actual data versus predicted data
predicted_tuned.index = Y_test.index
pyplot.plot(np.exp(Y_test).cumprod(), 'r', label='actual',)

plotting t, a separately
pyplot.plot(np.exp(predicted_tuned).cumprod(), 'b--', label='predicted')
pyplot.legend()
pyplot.rcParams["figure.figsize"] = (8,5)
pyplot.show()

112 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Looking at the chart, we clearly see the trend has been captured perfectly by the
model. The predicted series is less volatile compared to the actual time series, and it
aligns with the actual data for the first few months of the test set. A point to note is
that the purpose of the model is to compute the next day’s return given the data
observed up to the present day, and not to predict the stock price several days in the
future given the current data. Hence, a deviation from the actual data is expected as
we move away from the beginning of the test set. The model seems to perform well
for the first few months, with deviation from the actual data increasing six to seven
months after the beginning of the test set.

Conclusion
We can conclude that simple models—linear regression, regularized regression (i.e.,
Lasso and elastic net)—along with the time series models, such as ARIMA, are prom‐
ising modeling approaches for stock price prediction problems. This approach helps
us deal with overfitting and underfitting, which are some of the key challenges in pre‐
dicting problems in finance.

We should also note that we can use a wider set of indicators, such as P/E ratio, trad‐
ing volume, technical indicators, or news data, which might lead to better results. We
will demonstrate this in some of the future case studies in the book.

Overall, we created a supervised-regression and time series modeling framework that
allows us to perform stock price prediction using historical data. This framework
generates results to analyze risk and profitability before risking any capital.

Case Study 1: Stock Price Prediction | 113

Case Study 2: Derivative Pricing
In computational finance and risk management, several numerical methods (e.g.,
finite differences, fourier methods, and Monte Carlo simulation) are commonly used
for the valuation of financial derivatives.

The Black-Scholes formula is probably one of the most widely cited and used models
in derivative pricing. Numerous variations and extensions of this formula are used to
price many kinds of financial derivatives. However, the model is based on several
assumptions. It assumes a specific form of movement for the derivative price, namely
a Geometric Brownian Motion (GBM). It also assumes a conditional payment at
maturity of the option and economic constraints, such as no-arbitrage. Several other
derivative pricing models have similarly impractical model assumptions. Finance
practitioners are well aware that these assumptions are violated in practice, and prices
from these models are further adjusted using practitioner judgment.

Another aspect of the many traditional derivative pricing models is model calibra‐
tion, which is typically done not by historical asset prices but by means of derivative
prices (i.e., by matching the market prices of heavily traded options to the derivative
prices from the mathematical model). In the process of model calibration, thousands
of derivative prices need to be determined in order to fit the parameters of the model,
and the overall process is time consuming. Efficient numerical computation is
increasingly important in financial risk management, especially when we deal with
real-time risk management (e.g., high frequency trading). However, due to the
requirement of a highly efficient computation, certain high-quality asset models and
methodologies are discarded during model calibration of traditional derivative pric‐
ing models.

Machine learning can potentially be used to tackle these drawbacks related to imprac‐
tical model assumptions and inefficient model calibration. Machine learning algo‐
rithms have the ability to tackle more nuances with very few theoretical assumptions
and can be effectively used for derivative pricing, even in a world with frictions. With
the advancements in hardware, we can train machine learning models on high per‐
formance CPUs, GPUs, and other specialized hardware to achieve a speed increase of
several orders of magnitude as compared to the traditional derivative pricing models.

Additionally, market data is plentiful, so it is possible to train a machine learning
algorithm to learn the function that is collectively generating derivative prices in the
market. Machine learning models can capture subtle nonlinearities in the data that
are not obtainable through other statistical approaches.

In this case study, we look at derivative pricing from a machine learning standpoint
and use a supervised regression–based model to price an option from simulated data.
The main idea here is to come up with a machine learning framework for derivative
pricing. Achieving a machine learning model with high accuracy would mean that we

114 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

12 The predicted variable, which is the option price, should ideally be directly obtained for the market. Given
this case study is more for demonstration purposes, we use model-generated option price for the sake of con‐
venience.

can leverage the efficient numerical calculation of machine learning for derivative
pricing with fewer underlying model assumptions.

In this case study, we will focus on:

• Developing a machine learning–based framework for derivative pricing.
• Comparison of linear and nonlinear supervised regression models in the context

of derivative pricing.

Blueprint for Developing a Machine Learning Model for
Derivative Pricing

1. Problem definition
In the supervised regression framework we used for this case study, the predicted
variable is the price of the option, and the predictor variables are the market data
used as inputs to the Black-Scholes option pricing model.

The variables selected to estimate the market price of the option are stock price, strike
price, time to expiration, volatility, interest rate, and dividend yield. The predicted
variable for this case study was generated using random inputs and feeding them into
the well-known Black-Scholes model.12

The price of a call option per the Black-Scholes option pricing model is defined in
Equation 5-1.

Equation 5-1. Black-Scholes equation for call option

Se –qτΦ(d1) – e –rτ KΦ(d2)

with

d1 = ln (S / K) + (r – q + σ 2 / 2)τ

σ τ

and

Case Study 2: Derivative Pricing | 115

d2 = ln (S / K) + (r – q – σ 2 / 2)τ

σ τ
= d1 – σ τ

where we have stock price S ; strike price K ; risk-free rate r ; annual dividend yield q;
time to maturity τ = T – t (represented as a unitless fraction of one year); and vola‐
tility σ.

To make the logic simpler, we define moneyness as M = K / S and look at the prices
in terms of per unit of current stock price. We also set q as 0.

This simplifies the formula to the following:

e –qτΦ(– ln (M) + (r + σ 2 / 2)τ

σ τ) – e –rτMΦ(– ln (M) + (r – σ 2 / 2)τ

σ τ)
Looking at the equation above, the parameters that feed into the Black-Scholes option
pricing model are moneyness, risk-free rate, volatility, and time to maturity.

The parameter that plays the central role in derivative market is volatility, as it is
directly related to the movement of the stock prices. With the increase in the volatil‐
ity, the range of share price movements becomes much wider than that of a low vola‐
tility stock.

In the options market, there isn’t a single volatility used to price all the options. This
volatility depends on the option moneyness and time to maturity. In general, the vol‐
atility increases with higher time to maturity and with moneyness. This behavior is
referred to as volatility smile/skew. We often derive the volatility from the price of the
options existing in the market, and this volatility is referred to as “implied” volatility.
In this exercise, we assume the structure of the volatility surface and use function in
Equation 5-2, where volatility depends on the option moneyness and time to matur‐
ity to generate the option volatility surface.

Equation 5-2. Equation for vloatility

σ(M , τ) = σ0 + ατ + β(M – 1)2

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The loading of Python packages is similar to case
study 1 in this chapter. Please refer to the Jupyter notebook of this case study for
more details.

2.2. Defining functions and parameters. To generate the dataset, we need to simulate the
input parameters and then create the predicted variable.

116 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

13 When the spot price is equal to the strike price, at-the-money option.

As a first step we define the constant parameters. The constant parameters required
for the volatility surface are defined below. These parameters are not expected to have
a significant impact on the option price; therefore, these parameters are set to some
meaningful values:

true_alpha = 0.1
true_beta = 0.1
true_sigma0 = 0.2

The risk-free rate, which is an input to the Black-Scholes option pricing model, is
defined as follows:

risk_free_rate = 0.05

Volatility and option pricing functions. In this step we define the function to compute
the volatility and price of a call option as per Equations 5-1 and 5-2:

def option_vol_from_surface(moneyness, time_to_maturity):
 return true_sigma0 + true_alpha * time_to_maturity +\
 true_beta * np.square(moneyness - 1)

def call_option_price(moneyness, time_to_maturity, option_vol):
 d1=(np.log(1/moneyness)+(risk_free_rate+np.square(option_vol))*\
 time_to_maturity)/ (option_vol*np.sqrt(time_to_maturity))
 d2=(np.log(1/moneyness)+(risk_free_rate-np.square(option_vol))*\
 time_to_maturity)/(option_vol*np.sqrt(time_to_maturity))
 N_d1 = norm.cdf(d1)
 N_d2 = norm.cdf(d2)

 return N_d1 - moneyness * np.exp(-risk_free_rate*time_to_maturity) * N_d2

2.3. Data generation. We generate the input and output variables in the following
steps:

• Time to maturity (Ts) is generated using the np.random.random function, which
generates a uniform random variable between zero and one.

• Moneyness (Ks) is generated using the np.random.randn function, which gener‐
ates a normally distributed random variable. The random number multiplied by
0.25 generates the deviation of strike from spot price,13 and the overall equation
ensures that the moneyness is greater than zero.

• Volatility (sigma) is generated as a function of time to maturity and moneyness
using Equation 5-2.

• The option price is generated using Equation 5-1 for the Black-Scholes option
price.

Case Study 2: Derivative Pricing | 117

14 Refer to the Jupyter notebook of this case study to go through other charts such as histogram plot and corre‐
lation plot.

In total we generate 10,000 data points (N):

N = 10000

Ks = 1+0.25*np.random.randn(N)
Ts = np.random.random(N)
Sigmas = np.array([option_vol_from_surface(k,t) for k,t in zip(Ks,Ts)])
Ps = np.array([call_option_price(k,t,sig) for k,t,sig in zip(Ks,Ts,Sigmas)])

Now we create the variables for predicted and predictor variables:

Y = Ps
X = np.concatenate([Ks.reshape(-1,1), Ts.reshape(-1,1), Sigmas.reshape(-1,1)], \
axis=1)

dataset = pd.DataFrame(np.concatenate([Y.reshape(-1,1), X], axis=1),
 columns=['Price', 'Moneyness', 'Time', 'Vol'])

3. Exploratory data analysis
Let’s have a look at the dataset we have.

3.1. Descriptive statistics.
dataset.head()

Output

Price Moneyness Time Vol
0 1.390e-01 0.898 0.221 0.223

1 3.814e-06 1.223 0.052 0.210

2 1.409e-01 0.969 0.391 0.239

3 1.984e-01 0.950 0.628 0.263

4 2.495e-01 0.914 0.810 0.282

The dataset contains price—which is the price of the option and is the predicted vari‐
able—along with moneyness (the ratio of strike and spot price), time to maturity, and
volatility, which are the features in the model.

3.2. Data visualization. In this step we look at scatterplot to understand the interaction
between different variables:14

pyplot.figure(figsize=(15,15))
scatter_matrix(dataset,figsize=(12,12))
pyplot.show()

118 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Output

The scatterplot reveals very interesting dependencies and relationships between the
variables. Let us look at the first row of the chart to see the relationship of price to
different variables. We observe that as moneyness decreases (i.e., strike price decrea‐
ses as compared to the stock price), there is an increase in the price, which is in line
with the rationale described in the previous section. Looking at the price versus time
to maturity, we see an increase in the option price. The price versus volatility chart
also shows an increase in the price with the volatility. However, option price seems to
exhibit a nonlinear relationship with most of the variables. This means that we expect
our nonlinear models to do a better job than our linear models.

Another interesting relationship is between volatility and strike. The more we deviate
from the moneyness of one, the higher the volatility we observe. This behavior is
shown due to the volatility function we defined before and illustrates the volatility
smile/skew.

Case Study 2: Derivative Pricing | 119

4. Data preparation and analysis
We performed most of the data preparation steps (i.e., getting the dependent and
independent variables) in the preceding sections. In this step we look at the feature
importance.

4.1. Univariate feature selection. We start by looking at each feature individually and,
using the single variable regression fit as the criteria, look at the most important vari‐
ables:

bestfeatures = SelectKBest(k='all', score_func=f_regression)
fit = bestfeatures.fit(X,Y)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(['Moneyness', 'Time', 'Vol'])
#concat two dataframes for better visualization
featureScores = pd.concat([dfcolumns,dfscores],axis=1)
featureScores.columns = ['Specs','Score'] #naming the dataframe columns
featureScores.nlargest(10,'Score').set_index('Specs')

Output

Moneyness : 30282.309
Vol : 2407.757
Time : 1597.452

We observe that the moneyness is the most important variable for the option price,
followed by volatility and time to maturity. Given there are only three predictor vari‐
ables, we retain all the variables for modeling.

5. Evaluate models

5.1. Train-test split and evaluation metrics. First, we separate the training set and test
set:

validation_size = 0.2

train_size = int(len(X) * (1-validation_size))
X_train, X_test = X[0:train_size], X[train_size:len(X)]
Y_train, Y_test = Y[0:train_size], Y[train_size:len(X)]

We use the prebuilt sklearn models to run a k-fold analysis on our training data. We
then train the model on the full training data and use it for prediction of the test data.
We will evaluate algorithms using the mean squared error metric. The parameters for
the k-fold analysis and evaluation metrics are defined as follows:

num_folds = 10
seed = 7
scoring = 'neg_mean_squared_error'

120 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

5.2. Compare models and algorithms. Now that we have completed the data loading and
have designed the test harness, we need to choose a model out of the suite of the
supervised regression models.

Linear models and regression trees

models = []
models.append(('LR', LinearRegression()))
models.append(('KNN', KNeighborsRegressor()))
models.append(('CART', DecisionTreeRegressor()))
models.append(('SVR', SVR()))

Artificial neural network

models.append(('MLP', MLPRegressor()))

Boosting and bagging methods

Boosting methods
models.append(('ABR', AdaBoostRegressor()))
models.append(('GBR', GradientBoostingRegressor()))
Bagging methods
models.append(('RFR', RandomForestRegressor()))
models.append(('ETR', ExtraTreesRegressor()))

Once we have selected all the models, we loop over each of them. First, we run the k-
fold analysis. Next, we run the model on the entire training and testing dataset.

The algorithms use default tuning parameters. We will calculate the mean and stan‐
dard deviation of error metric and save the results for use later.

Output

Case Study 2: Derivative Pricing | 121

The Python code for the k-fold analysis step is similar to that used in case study 1.
Readers can also refer to the Jupyter notebook of this case study in the code reposi‐
tory for more details. Let us look at the performance of the models in the training set.

We see clearly that the nonlinear models, including classification and regression tree
(CART), ensemble models, and artificial neural network (represented by MLP in the
chart above), perform a lot better that the linear algorithms. This is intuitive given the
nonlinear relationships we observed in the scatterplot.

Artificial neural networks (ANN) have the natural ability to model any function with
fast experimentation and deployment times (definition, training, testing, inference).
ANN can effectively be used in complex derivative pricing situations. Hence, out of
all the models with good performance, we choose ANN for further analysis.

6. Model tuning and finalizing the model
Determining the proper number of nodes for the middle layer of an ANN is more of
an art than a science, as discussed in Chapter 3. Too many nodes in the middle layer,
and thus too many connections, produce a neural network that memorizes the input
data and lacks the ability to generalize. Therefore, increasing the number of nodes in
the middle layer will improve performance on the training set, while decreasing the
number of nodes in the middle layer will improve performance on a new dataset.

As discussed in Chapter 3, the ANN model has several other hyperparameters such as
learning rate, momentum, activation function, number of epochs, and batch size. All
these hyperparameters can be tuned during the grid search process. However, in this
step, we stick to performing grid search on the number of hidden layers for the pur‐
pose of simplicity. The approach to perform grid search on other hyperparameters is
the same as described in the following code snippet:

'''
hidden_layer_sizes : tuple, length = n_layers - 2, default (100,)
 The ith element represents the number of neurons in the ith
 hidden layer.
'''
param_grid={'hidden_layer_sizes': [(20,), (50,), (20,20), (20, 30, 20)]}
model = MLPRegressor()
kfold = KFold(n_splits=num_folds, random_state=seed)
grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring=scoring, \
 cv=kfold)
grid_result = grid.fit(X_train, Y_train)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
 print("%f (%f) with: %r" % (mean, stdev, param))

122 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Output

Best: -0.000024 using {'hidden_layer_sizes': (20, 30, 20)}
-0.000580 (0.000601) with: {'hidden_layer_sizes': (20,)}
-0.000078 (0.000041) with: {'hidden_layer_sizes': (50,)}
-0.000090 (0.000140) with: {'hidden_layer_sizes': (20, 20)}
-0.000024 (0.000011) with: {'hidden_layer_sizes': (20, 30, 20)}

The best model has three layers, with 20, 30, and 20 nodes in each hidden layer,
respectively. Hence, we prepare a model with this configuration and check its perfor‐
mance on the test set. This is a crucial step, because a greater number of layers may
lead to overfitting and have poor performance in the test set.

prepare model
model_tuned = MLPRegressor(hidden_layer_sizes=(20, 30, 20))
model_tuned.fit(X_train, Y_train)

estimate accuracy on validation set
transform the validation dataset
predictions = model_tuned.predict(X_test)
print(mean_squared_error(Y_test, predictions))

Output

3.08127276609567e-05

We see that the root mean squared error (RMSE) is 3.08e–5, which is less than one
cent. Hence, the ANN model does an excellent job of fitting the Black-Scholes option
pricing model. A greater number of layers and tuning of other hyperparameters may
enable the ANN model to capture the complex relationship and nonlinearity in the
data even better. Overall, the results suggest that ANN may be used to train an option
pricing model that matches market prices.

7. Additional analysis: removing the volatility data
As an additional analysis, we make the process harder by trying to predict the price
without the volatility data. If the model performance is good, we will eliminate the
need to have a volatility function as described before. In this step, we further compare
the performance of the linear and nonlinear models. In the following code snippet,
we remove the volatility variable from the dataset of the predictor variable and define
the training set and test set again:

X = X[:, :2]
validation_size = 0.2
train_size = int(len(X) * (1-validation_size))
X_train, X_test = X[0:train_size], X[train_size:len(X)]
Y_train, Y_test = Y[0:train_size], Y[train_size:len(X)]

Next, we run the suite of the models (except the regularized regression model) with
the new dataset, with the same parameters and similar Python code as before. The
performance of all the models after removing the volatility data is as follows:

Case Study 2: Derivative Pricing | 123

Looking at the result, we have a similar conclusion as before and see a poor perfor‐
mance of the linear regression and good performance of the ensemble and ANN
models. The linear regression now does even a worse job than before. However, the
performance of ANN and other ensemble models does not deviate much from their
previous performance. This implies the information of the volatility is likely captured
in other variables, such as moneyness and time to maturity. Overall, it is good news
as it means that fewer variables might be needed to achieve the same performance.

Conclusion
We know that derivative pricing is a nonlinear problem. As expected, our linear
regression model did not do as well as our nonlinear models, and the non-linear
models have a very good overall performance. We also observed that removing the
volatility increases the difficulty of the prediction problem for the linear regression.
However, the nonlinear models such as ensemble models and ANN are still able to
do well at the prediction process. This does indicate that one might be able to side‐
step the development of an option volatility surface and achieve a good prediction
with a smaller number of variables.

We saw that an artificial neural network (ANN) can reproduce the Black-Scholes
option pricing formula for a call option to a high degree of accuracy, meaning we can
leverage efficient numerical calculation of machine learning in derivative pricing
without relying on the impractical assumptions made in the traditional derivative
pricing models. The ANN and the related machine learning architecture can easily be
extended to pricing derivatives in the real world, with no knowledge of the theory of
derivative pricing. The use of machine learning techniques can lead to much faster
derivative pricing compared to traditional derivative pricing models. The price we

124 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

might have to pay for this extra speed is some loss of accuracy. However, this reduced
accuracy is often well within reasonable limits and acceptable from a practical point
of view. New technology has commoditized the use of ANN, so it might be worth‐
while for banks, hedge funds, and financial institutions to explore these models for
derivative pricing.

Case Study 3: Investor Risk Tolerance and Robo-Advisors
The risk tolerance of an investor is one of the most important inputs to the portfolio
allocation and rebalancing steps of the portfolio management process. There is a wide
variety of risk profiling tools that take varied approaches to understanding the risk
tolerance of an investor. Most of these approaches include qualitative judgment and
involve significant manual effort. In most of the cases, the risk tolerance of an
investor is decided based on a risk tolerance questionnaire.

Several studies have shown that these risk tolerance questionnaires are prone to
error, as investors suffer from behavioral biases and are poor judges of their own risk
perception, especially during stressed markets. Also, given that these questionnaires
must be manually completed by investors, they eliminate the possibility of automat‐
ing the entire investment management process.

So can machine learning provide a better understanding of an investor’s risk profile
than a risk tolerance questionnaire can? Can machine learning contribute to auto‐
mating the entire portfolio management process by cutting the client out of the loop?
Could an algorithm be written to develop a personality profile for the client that
would be a better representation of how they would deal with different market
scenarios?

The goal of this case study is to answer these questions. We first build a supervised
regression–based model to predict the risk tolerance of an investor. We then build a
robo-advisor dashboard in Python and implement the risk tolerance prediction
model in the dashboard. The overall purpose is to demonstrate the automation of the
manual steps in the portfolio management process with the help of machine learning.
This can prove to be immensely useful, specifically for robo-advisors.

A dashboard is one of the key features of a robo-advisor as it provides access to
important information and allows users to interact with their accounts free of any
human dependency, making the portfolio management process highly efficient.

Figure 5-6 provides a quick glance at the robo-advisor dashboard built for this case
study. The dashboard performs end-to-end asset allocation for an investor, embed‐
ding the machine learning–based risk tolerance model constructed in this case study.

Case Study 3: Investor Risk Tolerance and Robo-Advisors | 125

Figure 5-6. Robo-advisor dashboard

This dashboard has been built in Python and is described in detail in an additional
step in this case study. Although it has been built in the context of robo-advisors, it
can be extended to other areas in finance and can embed the machine learning mod‐
els discussed in other case studies, providing finance decision makers with a graphi‐
cal interface for analyzing and interpreting model results.

In this case study, we will focus on:

• Feature elimination and feature importance/intuition.
• Using machine learning to automate manual processes involved in portfolio

management process.
• Using machine learning to quantify and model the behavioral bias of investors/

individuals.
• Embedding machine learning models into user interfaces or dashboards using

Python.

126 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

15 Given that the primary purpose of the model is to be used in the portfolio management context, the individ‐
ual is also referred to as investor in the case study.

Blueprint for Modeling Investor Risk Tolerance and Enabling
a Machine Learning–Based Robo-Advisor

1. Problem definition
In the supervised regression framework used for this case study, the predicted vari‐
able is the “true” risk tolerance of an individual,15 and the predictor variables are
demographic, financial, and behavioral attributes of an individual.

The data used for this case study is from the Survey of Consumer Finances (SCF),
which is conducted by the Federal Reserve Board. The survey includes responses
about household demographics, net worth, financial, and nonfinancial assets for the
same set of individuals in 2007 (precrisis) and 2009 (postcrisis). This enables us to see
how each household’s allocation changed after the 2008 global financial crisis. Refer
to the data dictionary for more information on this survey.

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The details on loading the standard Python packages
were presented in the previous case studies. Refer to the Jupyter notebook for this
case study for more details.

2.2. Loading the data. In this step we load the data from the Survey of Consumer
Finances and look at the data shape:

load dataset
dataset = pd.read_excel('SCFP2009panel.xlsx')

Let us look at the size of the data:

dataset.shape

Output

(19285, 515)

As we can see, the dataset has a total of 19,285 observations with 515 columns. The
number of columns represents the number of features.

Case Study 3: Investor Risk Tolerance and Robo-Advisors | 127

https://oreil.ly/2vxJ6
https://oreil.ly/_L8vS

16 There potentially can be several ways of computing the risk tolerance. In this case study, we use the intuitive
ways to measure the risk tolerance of an individual.

3. Data preparation and feature selection
In this step we prepare the predicted and predictor variables to be used for modeling.

3.1. Preparing the predicted variable. In the first step, we prepare the predicted variable,
which is the true risk tolerance.

The steps to compute the true risk tolerance are as follows:

1. Compute the risky assets and the risk-free assets for all the individuals in the sur‐
vey data. Risky and risk-free assets are defined as follows:

Risky assets
Investments in mutual funds, stocks, and bonds.

Risk-free assets
Checking and savings balances, certificates of deposit, and other cash balan‐
ces and equivalents.

2. Take the ratio of risky assets to total assets (where total assets is the sum of risky
and risk-free assets) of an individual and consider that as a measure of the indi‐
vidual’s risk tolerance.16 From the SCF, we have the data of risky and risk-free
assets for the individuals in 2007 and 2009. We use this data and normalize the
risky assets with the price of a stock index (S&P500) in 2007 versus 2009 to get
risk tolerance.

3. Identify the “intelligent” investors. Some literature describes an intelligent
investor as one who does not change their risk tolerance during changes in the
market. So we consider the investors who changed their risk tolerance by less
than 10% between 2007 and 2009 as the intelligent investors. Of course, this is a
qualitative judgment, and there can be several other ways of defining an intelli‐
gent investor. However, as mentioned before, beyond coming up with a precise
definition of true risk tolerance, the purpose of this case study is to demonstrate
the usage of machine learning and provide a machine learning–based framework
in portfolio management that can be further leveraged for more detailed analysis.

Let us compute the predicted variable. First, we get the risky and risk-free assets and
compute the risk tolerance for 2007 and 2009 in the following code snippet:

Compute the risky assets and risk-free assets for 2007
dataset['RiskFree07']= dataset['LIQ07'] + dataset['CDS07'] + dataset['SAVBND07']\
 + dataset['CASHLI07']
dataset['Risky07'] = dataset['NMMF07'] + dataset['STOCKS07'] + dataset['BOND07']

128 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Compute the risky assets and risk-free assets for 2009
dataset['RiskFree09']= dataset['LIQ09'] + dataset['CDS09'] + dataset['SAVBND09']\
+ dataset['CASHLI09']
dataset['Risky09'] = dataset['NMMF09'] + dataset['STOCKS09'] + dataset['BOND09']

Compute the risk tolerance for 2007
dataset['RT07'] = dataset['Risky07']/(dataset['Risky07']+dataset['RiskFree07'])

#Average stock index for normalizing the risky assets in 2009
Average_SP500_2007=1478
Average_SP500_2009=948

Compute the risk tolerance for 2009
dataset['RT09'] = dataset['Risky09']/(dataset['Risky09']+dataset['RiskFree09'])*\
 (Average_SP500_2009/Average_SP500_2007)

Let us look at the details of the data:

dataset.head()

Output

The data above displays some of the columns out of the 521 columns of the dataset.

Let us compute the percentage change in risk tolerance between 2007 and 2009:

dataset['PercentageChange'] = np.abs(dataset['RT09']/dataset['RT07']-1)

Next, we drop the rows containing “NA” or “NaN”:

Drop the rows containing NA
dataset=dataset.dropna(axis=0)

dataset=dataset[~dataset.isin([np.nan, np.inf, -np.inf]).any(1)]

Let us investigate the risk tolerance behavior of individuals in 2007 versus 2009. First
we look at the risk tolerance in 2007:

sns.distplot(dataset['RT07'], hist=True, kde=False,
 bins=int(180/5), color = 'blue',
 hist_kws={'edgecolor':'black'})

Case Study 3: Investor Risk Tolerance and Robo-Advisors | 129

Output

Looking at the risk tolerance in 2007, we see that a significant number of individuals
had a risk tolerance close to one, meaning investments were skewed more toward the
risky assets. Now let us look at the risk tolerance in 2009:

sns.distplot(dataset['RT09'], hist=True, kde=False,
 bins=int(180/5), color = 'blue',
 hist_kws={'edgecolor':'black'})

Output

Clearly, the behavior of the individuals reversed after the crisis. Overall risk tolerance
decreased, which is shown by the outsized proportion of households having risk tol‐
erance close to zero in 2009. Most of the investments of these individuals were in
risk-free assets.

130 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

In the next step, we pick the intelligent investors whose change in risk tolerance
between 2007 and 2009 was less than 10%, as described in “3.1. Preparing the predic‐
ted variable” on page 128:

dataset3 = dataset[dataset['PercentageChange']<=.1]

We assign the true risk tolerance as the average risk tolerance of these intelligent
investors between 2007 and 2009:

dataset3['TrueRiskTolerance'] = (dataset3['RT07'] + dataset3['RT09'])/2

This is the predicted variable for this case study.

Let us drop other labels that might not be needed for the prediction:

dataset3.drop(labels=['RT07', 'RT09'], axis=1, inplace=True)
dataset3.drop(labels=['PercentageChange'], axis=1, inplace=True)

3.2. Feature selection—limit the feature space. In this section, we will explore ways to
condense the feature space.

3.2.1. Feature elimination. To filter the features further, we check the description in
the data dictionary and keep only the features that are relevant.

Looking at the entire data, we have more than 500 features in the dataset. However,
academic literature and industry practice indicate risk tolerance is heavily influenced
by investor demographic, financial, and behavioral attributes, such as age, current
income, net worth, and willingness to take risk. All these attributes were available in
the dataset and are summarized in the following section. These attributes are used as
features to predict investors’ risk tolerance.

In the dataset, each of the columns contains a numeric value corresponding to the
value of the attribute. The details are as follows:

AGE
There are six age categories, where 1 represents age less than 35 and 6 represents
age more than 75.

Case Study 3: Investor Risk Tolerance and Robo-Advisors | 131

https://oreil.ly/_L8vS

EDUC
There are four education categories, where 1 represents no high school and 4
represents college degree.

MARRIED
There are two categories to represent marital status, where 1 represents married
and 2 represents unmarried.

OCCU
This represents occupation category. A value of 1 represents managerial status
and 4 represents unemployed.

KIDS
Number of children.

WSAVED
This represents the individual’s spending versus income, split into three cate‐
gories. For example, 1 represents spending exceeded income.

NWCAT
This represents net worth category. There are five categories, where 1 represents
net worth less than the 25th percentile and 5 represents net worth more than the
90th percentile.

INCCL
This represents income category. There are five categories, where 1 represents
income less than $10,000 and 5 represents income more than $100,000.

RISK
This represents the willingness to take risk on a scale of 1 to 4, where 1 represents
the highest level of willingness to take risk.

We keep only the intuitive features as of 2007 and remove all the intermediate fea‐
tures and features related to 2009, as the variables of 2007 are the only ones required
for predicting the risk tolerance:

keep_list2 = ['AGE07','EDCL07','MARRIED07','KIDS07','OCCAT107','INCOME07',\
'RISK07','NETWORTH07','TrueRiskTolerance']

drop_list2 = [col for col in dataset3.columns if col not in keep_list2]

dataset3.drop(labels=drop_list2, axis=1, inplace=True)

132 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Now let us look at the correlation among the features:

correlation
correlation = dataset3.corr()
plt.figure(figsize=(15,15))
plt.title('Correlation Matrix')
sns.heatmap(correlation, vmax=1, square=True,annot=True,cmap='cubehelix')

Output

Looking at the correlation chart (full-size version available on GitHub), net worth
and income are positively correlated with risk tolerance. With a greater number of
kids and marriage, risk tolerance decreases. As the willingness to take risks decreases,
the risk tolerance decreases. With age there is a positive relationship of the risk

Case Study 3: Investor Risk Tolerance and Robo-Advisors | 133

https://oreil.ly/iQpk4

17 We could have chosen RMSE as the evaluation metric; however, R2 was chosen as the evaluation metric given
that we already used RMSE as the evaluation metric in the previous case studies.

tolerance. As per Hui Wang and Sherman Hanna’s paper “Does Risk Tolerance
Decrease with Age?,” risk tolerance increases as people age (i.e., the proportion of net
wealth invested in risky assets increases as people age) when other variables are held
constant.

So in summary, the relationship of these variables with risk tolerance seems intuitive.

4. Evaluate models

4.1. Train-test split. Let us split the data into training and test set:

Y= dataset3["TrueRiskTolerance"]
X = dataset3.loc[:, dataset3.columns != 'TrueRiskTolerance']
validation_size = 0.2
seed = 3
X_train, X_validation, Y_train, Y_validation = \
train_test_split(X, Y, test_size=validation_size, random_state=seed)

4.2. Test options and evaluation metrics. We use R2 as the evaluation metric and select
10 as the number of folds for cross validation.17

num_folds = 10
scoring = 'r2'

4.3. Compare models and algorithms. Next, we select the suite of the regression model
and perform the k-folds cross validation.

Regression Models

spot-check the algorithms
models = []
models.append(('LR', LinearRegression()))
models.append(('LASSO', Lasso()))
models.append(('EN', ElasticNet()))
models.append(('KNN', KNeighborsRegressor()))
models.append(('CART', DecisionTreeRegressor()))
models.append(('SVR', SVR()))
#Ensemble Models
Boosting methods
models.append(('ABR', AdaBoostRegressor()))
models.append(('GBR', GradientBoostingRegressor()))
Bagging methods
models.append(('RFR', RandomForestRegressor()))
models.append(('ETR', ExtraTreesRegressor()))

134 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

The Python code for the k-fold analysis step is similar to that of previous case studies.
Readers can also refer to the Jupyter notebook of this case study in the code reposi‐
tory for more details. Let us look at the performance of the models in the training set.

The nonlinear models perform better than the linear models, which means that there
is a nonlinear relationship between the risk tolerance and the variables used to pre‐
dict it. Given random forest regression is one of the best methods, we use it for fur‐
ther grid search.

5. Model tuning and grid search
As discussed in Chapter 4, random forest has many hyperparameters that can be
tweaked while performing the grid search. However, we will confine our grid search
to number of estimators (n_estimators) as it is one of the most important hyper‐
parameters. It represents the number of trees in the random forest model. Ideally,
this should be increased until no further improvement is seen in the model:

8. Grid search : RandomForestRegressor
'''
n_estimators : integer, optional (default=10)
 The number of trees in the forest.
'''
param_grid = {'n_estimators': [50,100,150,200,250,300,350,400]}
model = RandomForestRegressor()
kfold = KFold(n_splits=num_folds, random_state=seed)
grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring=scoring, \
 cv=kfold)
grid_result = grid.fit(X_train, Y_train)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']

Case Study 3: Investor Risk Tolerance and Robo-Advisors | 135

stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']

Output

Best: 0.738632 using {'n_estimators': 250}

Random forest with number of estimators as 250 is the best model after grid search.

6. Finalize the model
Let us look at the results on the test dataset and check the feature importance.

6.1. Results on the test dataset. We prepare the random forest model with the number
of estimators as 250:

model = RandomForestRegressor(n_estimators = 250)
model.fit(X_train, Y_train)

Let us look at the performance in the training set:

from sklearn.metrics import r2_score
predictions_train = model.predict(X_train)
print(r2_score(Y_train, predictions_train))

Output

0.9640632406817223

The R2 of the training set is 96%, which is a good result. Now let us look at the perfor‐
mance in the test set:

predictions = model.predict(X_validation)
print(mean_squared_error(Y_validation, predictions))
print(r2_score(Y_validation, predictions))

Output

0.007781840953471237
0.7614494526639909

From the mean squared error and R2 of 76% shown above for the test set, the random
forest model does an excellent job of fitting the risk tolerance.

6.2. Feature importance and features intuition
Let us look into the feature importance of the variables within the random forest
model:

import pandas as pd
import numpy as np
model = RandomForestRegressor(n_estimators= 200,n_jobs=-1)
model.fit(X_train,Y_train)
#use inbuilt class feature_importances of tree based classifiers
#plot graph of feature importances for better visualization

136 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

feat_importances = pd.Series(model.feature_importances_, index=X.columns)
feat_importances.nlargest(10).plot(kind='barh')
plt.show()

Output

In the chart, the x-axis represents the magnitude of the importance of a feature.
Hence, income and net worth, followed by age and willingness to take risk, are the
key variables in determining risk tolerance.

6.3. Save model for later use. In this step we save the model for later use. The saved
model can be used directly for prediction given the set of input variables. The model
is saved as finalized_model.sav using the dump module of the pickle package. This
saved model can be loaded using the load module.

Let’s save the model as the first step:

Save Model Using Pickle
from pickle import dump
from pickle import load

save the model to disk
filename = 'finalized_model.sav'
dump(model, open(filename, 'wb'))

Now let’s load the saved model and use it for prediction:

load the model from disk
loaded_model = load(open(filename, 'rb'))
estimate accuracy on validation set
predictions = loaded_model.predict(X_validation)
result = mean_squared_error(Y_validation, predictions)
print(r2_score(Y_validation, predictions))
print(result)

Case Study 3: Investor Risk Tolerance and Robo-Advisors | 137

Output

0.7683894847939692
0.007555447734714956

7. Additional step: robo-advisor dashboard
We mentioned the robo-advisor dashboard in the beginning of this case study. The
robo-advisor dashboard performs an automation of the portfolio management pro‐
cess and aims to overcome the problem of traditional risk tolerance profiling.

Python Code for Robo-Advisor Dashboard

This robo-advisor dashboard is built in Python using the plotly
dash package. Dash is a productive Python framework for building
web applications with good user interfaces. The code for the robo-
advisor dashboard is added to the code repository for this book.
The code is in a Jupyter notebook called “Sample Robo-advisor”. A
detailed description of the code is outside the scope of this case
study. However, the codebase can be leveraged for creation of any
new machine learning–enabled dashboard.

The dashboard has two panels:

• Inputs for investor characteristics
• Asset allocation and portfolio performance

Input for investor characteristics. Figure 5-7 shows the input panel for the investor
characteristics. This panel takes all the input regarding the investor’s demographic,
financial, and behavioral attributes. These inputs are for the predicted variables we
used in the risk tolerance model created in the preceding steps. The interface is
designed to input the categorical and continuous variables in the correct format.

Once the inputs are submitted, we leverage the model saved in “6.3. Save model for
later use” on page 137. This model takes all the inputs and produces the risk tolerance
of an investor (refer to the predict_riskTolerance function of the “Sample Robo-
advisor” Jupyter notebook in the code repository for this book for more details). The
risk tolerance prediction model is embedded in this dashboard and is triggered once
the “Calculate Risk Tolerance” button is pressed after submitting the inputs.

138 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

https://dash.plot.ly
https://oreil.ly/8fTDy

Figure 5-7. Robo-advisor input panel

7.2 Asset allocation and portfolio performance. Figure 5-8 shows the “Asset Allocation
and Portfolio Performance” panel, which performs the following functionalities:

• Once the risk tolerance is computed using the model, it is displayed on the top of
this panel.

• In the next step, we pick the assets for our portfolio from the dropdown.
• Once the list of assets are submitted, the traditional mean-variance portfolio allo‐

cation model is used to allocate the portfolio among the assets selected. Risk

Case Study 3: Investor Risk Tolerance and Robo-Advisors | 139

tolerance is one of the key inputs for this process. (Refer to the get_asset_allo
cation function of the “Sample Robo-advisor” Jupyter notebook in the code
repository for this book for more details.)

• The dashboard also shows the historical performance of the allocated portfolio
for an initial investment of $100.

Figure 5-8. Robo-advisor asset allocation and portfolio performance panel

Although the dashboard is a basic version of the robo-advisor dashboard, it performs
end-to-end asset allocation for an investor and provides the portfolio view and his‐
torical performance of the portfolio over a selected period. There are several potential
enhancements to this prototype in terms of the interface and underlying models
used. The dashboard can be enhanced to include additional instruments and incor‐
porate additional features such as real-time portfolio monitoring, portfolio rebalanc‐
ing, and investment advisory. In terms of the underlying models used for asset
allocation, we have used the traditional mean-variance optimization method, but it
can be further enhanced to use the allocation algorithms based on machine learning
techniques such as eigen-portfolio, hierarchical risk parity, or reinforcement learn‐
ing–based models, described in Chapters 7, 8 and 9, respectively. The risk tolerance
model can be further enhanced by using additional features or using the actual data
of the investors rather than using data from the Survey of Consumer Finances.

140 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Conclusion
In this case study, we introduced the regression-based algorithm applied to compute
an investor’s risk tolerance, followed by a demonstration of the model in a robo-
advisor setup. We showed that machine learning models might be able to objectively
analyze the behavior of different investors in a changing market and attribute these
changes to variables involved in determining risk appetite. With an increase in the
volume of investors’ data and the availability of rich machine learning infrastructure,
such models might prove to be more useful than existing manual processes.

We saw that there is a nonlinear relationship between the variables and the risk toler‐
ance. We analyzed the feature importance and found that results of the case study are
quite intuitive. Income and net worth, followed by age and willingness to take risk,
are the key variables to deciding risk tolerance. These variables have been considered
key variables to model risk tolerance across academic and industry literature.

Through the robo-advisor dashboard powered by machine learning, we demon‐
strated an effective combination of data science and machine learning implementa‐
tion in wealth management. Robo-advisors and investment managers could leverage
such models and platforms to enhance the portfolio management process with the
help of machine learning.

Case Study 4: Yield Curve Prediction
A yield curve is a line that plots yields (interest rates) of bonds having equal credit
quality but differing maturity dates. This yield curve is used as a benchmark for other
debt in the market, such as mortgage rates or bank lending rates. The most frequently
reported yield curve compares the 3-months, 2-years, 5-years, 10-years, and 30-years
U.S. Treasury debt.

The yield curve is the centerpiece in a fixed income market. Fixed income markets
are important sources of finance for governments, national and supranational insti‐
tutions, banks, and private and public corporations. In addition, yield curves are very
important to investors in pension funds and insurance companies.

The yield curve is a key representation of the state of the bond market. Investors
watch the bond market closely as it is a strong predictor of future economic activity
and levels of inflation, which affect prices of goods, financial assets, and real estate.
The slope of the yield curve is an important indicator of short-term interest rates and
is followed closely by investors.

Hence, an accurate yield curve forecasting is of critical importance in financial appli‐
cations. Several statistical techniques and tools commonly used in econometrics and
finance have been applied to model the yield curve.

Case Study 4: Yield Curve Prediction | 141

In this case study we will use supervised learning–based models to predict the yield
curve. This case study is inspired by the paper Artificial Neural Networks in Fixed
Income Markets for Yield Curve Forecasting by Manuel Nunes et al. (2018).

In this case study, we will focus on:

• Simultaneous modeling (producing multiple outputs at the same time) of the
interest rates.

• Comparison of neural network versus linear regression models.
• Modeling a time series in a supervised regression–based framework.
• Understanding the variable intuition and feature selection.

Overall, the case study is similar to the stock price prediction case study presented
earlier in this chapter, with the following differences:

• We predict multiple outputs simultaneously, rather than a single output.
• The predicted variable in this case study is not the return variable.
• Given that we already covered time series models in case study 1, we focus on

artificial neural networks for prediction in this case study.

Blueprint for Using Supervised Learning Models to Predict
the Yield Curve

1. Problem definition
In the supervised regression framework used for this case study, three tenors (1M,
5Y, and 30Y) of the yield curve are the predicted variables. These tenors represent
short-term, medium-term, and long-term tenors of the yield curve.

We need to understand what affects the movement of the yield curve and hence
incorporate as much information into our model as we can. As a high-level overview,
other than the historical price of the yield curve itself, we look at other correlated
variables that can influence the yield curve. The independent or predictor variables
we consider are:

• Previous value of the treasury curve for different tenors. The tenors used are 1-
month, 3-month, 1-year, 2-year, 5-year, 7-year, 10-year, and 30-year yields.

142 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

• Percentage of the federal debt held by the public, foreign governments, and the
federal reserve.

• Corporate spread on Baa-rated debt relative to the 10-year treasury rate.

The federal debt and corporate spread are correlated variables and can be potentially
useful in modeling the yield curve. The dataset used for this case study is extracted
from Yahoo Finance and FRED. We will use the daily data of the last 10 years, from
2010 onward.

By the end of this case study, readers will be familiar with a general machine learning
approach to yield curve modeling, from gathering and cleaning data to building and
tuning different models.

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The loading of Python packages is similar to other
case studies in this chapter. Refer to the Jupyter notebook of this case study for more
details.

2.2. Loading the data. The following steps demonstrate the loading of data using Pan‐
das’s DataReader function:

Get the data by webscraping using pandas datareader
tsy_tickers = ['DGS1MO', 'DGS3MO', 'DGS1', 'DGS2', 'DGS5', 'DGS7', 'DGS10',
 'DGS30',
 'TREAST', # Treasury securities held by the Federal Reserve ($MM)
 'FYGFDPUN', # Federal Debt Held by the Public ($MM)
 'FDHBFIN', # Federal Debt Held by International Investors ($BN)
 'GFDEBTN', # Federal Debt: Total Public Debt ($BN)
 'BAA10Y', # Baa Corporate Bond Yield Relative to Yield on 10-Year
]
tsy_data = web.DataReader(tsy_tickers, 'fred').dropna(how='all').ffill()
tsy_data['FDHBFIN'] = tsy_data['FDHBFIN'] * 1000
tsy_data['GOV_PCT'] = tsy_data['TREAST'] / tsy_data['GFDEBTN']
tsy_data['HOM_PCT'] = tsy_data['FYGFDPUN'] / tsy_data['GFDEBTN']
tsy_data['FOR_PCT'] = tsy_data['FDHBFIN'] / tsy_data['GFDEBTN']

Next, we define our dependent (Y) and independent (X) variables. The predicted
variables are the rate for three tenors of the yield curve (i.e., 1M, 5Y, and 30Y) as
mentioned before. The number of trading days in a week is assumed to be five, and
we compute the lagged version of the variables mentioned in the problem definition
section as independent variables using five trading day lag.

The lagged five-day variables embed the time series component by using a time-delay
approach, where the lagged variable is included as one of the independent variables.
This step reframes the time series data into a supervised regression–based model
framework.

Case Study 4: Yield Curve Prediction | 143

https://fred.stlouisfed.org

3. Exploratory data analysis. We will look at descriptive statistics and data visualization
in this section.

3.1. Descriptive statistics. Let us look at the shape and the columns in the dataset:

dataset.shape

Output

(505, 15)

The data contains around 500 observations with 15 columns.

3.2. Data visualization. Let us first plot the predicted variables and see their behavior:

Y.plot(style=['-','--',':'])

Output

In the plot, we see that the deviation among the short-term, medium-term, and long-
term rates was higher in 2010 and has been decreasing since then. There was a drop
in the long-term and medium-term rates during 2011, and they also have been
declining since then. The order of the rates has been in line with the tenors. However,
for a few months in recent years, the 5Y rate has been lower than the 1M rate. In the
time series of all the tenors, we can see that the mean varies with time, resulting in an
upward trend. Thus these series are nonstationary time series.

144 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

In some cases, the linear regression for such nonstationary dependent variables might
not be valid. However, we are using the lagged variables, which are also nonstation‐
ary as independent variables. So we are effectively modeling a nonstationary time ser‐
ies against another nonstationary time series, which might still be valid.

Next, we look at the scatterplots (a correlation plot is skipped for this case study as it
has a similar interpretation to that of a scatterplot). We can visualize the relationship
between all the variables in the regression using the scatter matrix shown below:

Scatterplot Matrix
pyplot.figure(figsize=(15,15))
scatter_matrix(dataset,figsize=(15,16))
pyplot.show()

Output

Case Study 4: Yield Curve Prediction | 145

Looking at the scatterplot (full-size version available on GitHub), we see a significant
linear relationship of the predicted variables with their lags and other tenors of the
yield curve. There is also a linear relationship, with negative slope between 1M, 5Y
rates versus corporate spread and changes in foreign government purchases. The 30Y
rate shows a linear relationship with these variables, although the slope is negative.
Overall, we see a lot of linear relationships, and we expect the linear models to per‐
form well.

4. Data preparation and analysis
We performed most of the data preparation steps (i.e., getting the dependent and
independent variables) in the preceding steps, and so we’ll skip this step.

5. Evaluate models
In this step we evaluate the models. The Python code for this step is similar to dthat
in case study 1, and some of the repetitive code is skipped. Readers can also refer to
the Jupyter notebook of this case study in the code repository for this book for more
details.

5.1. Train-test split and evaluation metrics. We will use 80% of the dataset for modeling
and use 20% for testing. We will evaluate algorithms using the mean squared error
metric. All the algorithms use default tuning parameters.

5.2. Compare models and algorithms. In this case study, the primary purpose is to com‐
pare the linear models with the artificial neural network in yield curve modeling. So
we stick to the linear regression (LR), regularized regression (LASSO and EN), and
artificial neural network (shown as MLP). We also include a few other models such as
KNN and CART, as these models are simpler with good interpretation, and if there is
a nonlinear relationship between the variables, the CART and KNN models will be
able to capture it and provide a good comparison benchmark for ANN.

Looking at the training and test error, we see a good performance of the linear regres‐
sion model. We see that lasso and elastic net perform poorly. These are regularized
regression models, and they reduce the number of variables in case they are not
important. A decrease in the number of variables might have caused a loss of infor‐
mation leading to poor model performance. KNN and CART are good, but looking
closely, we see that the test errors are higher than the training error. We also see that
the performance of the artificial neural network (MLP) algorithm is comparable to
the linear regression model. Despite its simplicity, the linear regression is a tough
benchmark to beat for one-step-ahead forecasting when there is a significant linear
relationship between the variables.

146 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

https://oreil.ly/XIsvu

Output

6. Model tuning and grid search.
Similar to case study 2 of this chapter, we perform a grid search of the ANN model
with different combinations of hidden layers. Several other hyperparameters such as
learning rate, momentum, activation function, number of epochs, and batch size can
be tuned during the grid search process, similar to the steps mentioned below.

'''
hidden_layer_sizes : tuple, length = n_layers - 2, default (100,)
 The ith element represents the number of neurons in the ith
 hidden layer.
'''
param_grid={'hidden_layer_sizes': [(20,), (50,), (20,20), (20, 30, 20)]}
model = MLPRegressor()
kfold = KFold(n_splits=num_folds, random_state=seed)
grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring=scoring, \
 cv=kfold)
grid_result = grid.fit(X_train, Y_train)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
 print("%f (%f) with: %r" % (mean, stdev, param))

Output

Best: -0.018006 using {'hidden_layer_sizes': (20, 30, 20)}
-0.036433 (0.019326) with: {'hidden_layer_sizes': (20,)}

Case Study 4: Yield Curve Prediction | 147

-0.020793 (0.007075) with: {'hidden_layer_sizes': (50,)}
-0.026638 (0.010154) with: {'hidden_layer_sizes': (20, 20)}
-0.018006 (0.005637) with: {'hidden_layer_sizes': (20, 30, 20)}

The best model is the model with three layers, with 20, 30, and 20 nodes in each hid‐
den layer, respectively. Hence, we prepare a model with this configuration and check
its performance on the test set. This is a crucial step, as a greater number of layers
may lead to overfitting and have poor performance in the test set.

Prediction comparison. In the last step we look at the prediction plot of actual data
versus the prediction from both linear regression and ANN models. Refer to the
Jupyter notebook of this case study for the Python code of this section.

148 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

Looking at the charts above, we see that the predictions of the linear regression and
ANN are comparable. For 1M tenor, the fitting with ANN is slightly poor compared
to the regression. However, for 5Y and 30Y tenors the ANN performs as well as the
regression model.

Conclusion
In this case study, we applied supervised regression to the prediction of several tenors
of yield curve. The linear regression model, despite its simplicity, is a tough bench‐
mark to beat for such one-step-ahead forecasting, given the dominant characteristic
of the last available value of the variable to predict. The ANN results in this case
study are comparable to the linear regression models. An additional benefit of ANN
is that it is more flexible to changing market conditions. Also, ANN models can be
enhanced by performing grid search on several other hyperparameters and the
option of incorporating recurrent neural networks, such as LSTM.

Overall, we built a machine learning–based model using ANN with an encouraging
outcome, in the context of fixed income instruments. This allows us to perform pre‐
dictions using historical data to generate results and analyze risk and profitability
before risking any actual capital in the fixed income market.

Chapter Summary
In “Case Study 1: Stock Price Prediction” on page 95, we covered a machine learning
and time series–based framework for stock price prediction. We demonstrated the
significance of visualization and compared time series against the machine learning

Chapter Summary | 149

models. In “Case Study 2: Derivative Pricing” on page 114, we explored the use of
machine learning for a traditional derivative pricing problem and demonstrated a
high model performance. In “Case Study 3: Investor Risk Tolerance and Robo-
Advisors” on page 125, we demonstrated how supervised learning models can be
used to model the risk tolerance of investors, which can lead to automation of the
portfolio management process. “Case Study 4: Yield Curve Prediction” on page 141
was similar to the stock price prediction case study, providing another example of
comparison of linear and nonlinear models in the context of fixed income markets.

We saw that time series and linear supervised learning models worked well for asset
price prediction problems (i.e., case studies 1 and 4), where the predicted variable
had a significant linear relationship with its lagged component. However, in deriva‐
tive pricing and risk tolerance prediction, where there are nonlinear relationships,
ensemble and ANN models performed better. Readers who are interested in imple‐
menting a case study using supervised regression or time series models are encour‐
aged to understand the nuances in the variable relationships and model intuition
before proceeding to model selection.

Overall, the concepts in Python, machine learning, time series, and finance presented
in this chapter through the case studies can used as a blueprint for any other super‐
vised regression–based problem in finance.

Exercises
• Using the concepts and framework of machine learning and time series models

specified in case study 1, develop a predictive model for another asset class—cur‐
rency pair (EUR/USD, for example) or bitcoin.

• In case study 1, add some technical indicators, such as trend or momentum, and
check the enhancement in the model performance. Some of the ideas of the tech‐
nical indicators can be borrowed from “Case Study 3: Bitcoin Trading Strategy”
on page 179 in Chapter 6.

• Using the concepts in “Case Study 2: Derivative Pricing” on page 114, develop a
machine learning–based model to price American options.

• Incorporate multivariate time series modeling using a variant of the ARIMA
model, such as VARMAX, for rates prediction in the yield curve prediction case
study and compare the performance against the machine learning–based models.

• Enhance the robo-advisor dashboard presented in “Case Study 3: Investor Risk
Tolerance and Robo-Advisors” on page 125 to incorporate instruments other
than equities.

150 | Chapter 5: Supervised Learning: Regression (Including Time Series Models)

https://oreil.ly/EMUXv
https://oreil.ly/t7s8q

CHAPTER 6

Supervised Learning: Classification

Here are some of the key questions that financial analysts attempt to solve:

• Is a borrower going to repay their loan or default on it?
• Will the instrument price go up or down?
• Is this credit card transaction a fraud or not?

All of these problem statements, in which the goal is to predict the categorical class
labels, are inherently suitable for classification-based machine learning.

Classification-based algorithms have been used across many areas within finance that
require predicting a qualitative response. These include fraud detection, default pre‐
diction, credit scoring, directional forecasting of asset price movement, and buy/sell
recommendations. There are many other use cases of classification-based supervised
learning in portfolio management and algorithmic trading.

In this chapter we cover three such classification-based case studies that span a
diverse set of areas, including fraud detection, loan default probability, and formulat‐
ing a trading strategy.

In “Case Study 1: Fraud Detection” on page 153, we use a classification-based algorithm
to predict whether a transaction is fraudulent. The focus of this case study is also to
deal with an unbalanced dataset, given that the fraud dataset is highly unbalanced
with a small number of fraudulent observations.

In “Case Study 2: Loan Default Probability” on page 166, we use a classification-based
algorithm to predict whether a loan will default. The case study focuses on various
techniques and concepts of data processing, feature selection, and exploratory
analysis.

151

1 There may be reordering or renaming of the steps or substeps based on the appropriateness and intuitiveness
of the steps/substeps.

In “Case Study 3: Bitcoin Trading Strategy” on page 179, we use classification-based
algorithms to predict whether the current trading signal of bitcoin is to buy or sell
depending on the relationship between the short-term and long-term price. We pre‐
dict the trend of bitcoin’s price using technical indicators. The prediction model can
easily be transformed into a trading bot that can perform buy, sell, or hold actions
without human intervention.

In addition to focusing on different problem statements in finance, these case studies
will help you understand:

• How to develop new features such as technical indicators for an investment strat‐
egy using feature engineering, and how to improve model performance.

• How to use data preparation and data transformation, and how to perform fea‐
ture reduction and use feature importance.

• How to use data visualization and exploratory data analysis for feature reduction
and to improve model performance.

• How to use algorithm tuning and grid search across various classification-based
models to improve model performance.

• How to handle unbalanced data.
• How to use the appropriate evaluation metrics for classification.

This Chapter’s Code Repository

A Python-based master template for supervised classification
model, along with the Jupyter notebook for the case studies presen‐
ted in this chapter, is included in the folder Chapter 6 - Sup. Learn‐
ing - Classification models in the code repository for this book. All
of the case studies presented in this chapter use the standardized
seven-step model development process presented in Chapter 2.1

For any new classification-based problem, the master template
from the code repository can be modified with the elements spe‐
cific to the problem. The templates are designed to run on cloud
infrastructure (e.g., Kaggle, Google Colab, or AWS). In order to
run the template on the local machine, all the packages used within
the template must be installed successfully.

152 | Chapter 6: Supervised Learning: Classification

https://oreil.ly/y19Yc
https://oreil.ly/y19Yc

Case Study 1: Fraud Detection
Fraud is one of the most significant issues the finance sector faces. It is incredibly
costly. According to one study, it is estimated that the typical organization loses 5%
of its annual revenue to fraud each year. When applied to the 2017 estimated Gross
World Product of $79.6 trillion, this translates to potential global losses of up to $4
trillion.

Fraud detection is a task inherently suitable for machine learning, as machine learn‐
ing–based models can scan through huge transactional datasets, detect unusual activ‐
ity, and identify all cases that might be prone to fraud. Also, the computations of
these models are faster compared to traditional rule-based approaches. By collecting
data from various sources and then mapping them to trigger points, machine learn‐
ing solutions are able to discover the rate of defaulting or fraud propensity for each
potential customer and transaction, providing key alerts and insights for the financial
institutions.

In this case study, we will use various classification-based models to detect whether a
transaction is a normal payment or a fraud.

The focuses of this case study are:

• Handling unbalanced data by downsampling/upsampling the data.
• Selecting the right evaluation metric, given that one of the main goals is to

reduce false negatives (cases in which fraudulent transactions incorrectly go
unnoticed).

Blueprint for Using Classification Models to Determine
Whether a Transaction Is Fraudulent

1. Problem definition
In the classification framework defined for this case study, the response (or target)
variable has the column name “Class.” This column has a value of 1 in the case of
fraud and a value of 0 otherwise.

The dataset used is obtained from Kaggle. This dataset holds transactions by Euro‐
pean cardholders that occurred over two days in September 2013, with 492 cases of
fraud out of 284,807 transactions.

Case Study 1: Fraud Detection | 153

https://oreil.ly/CeFRs

The dataset has been anonymized for privacy reasons. Given that certain feature
names are not provided (i.e., they are called V1, V2, V3, etc.), the visualization and
feature importance will not give much insight into the behavior of the model.

By the end of this case study, readers will be familiar with a general approach to fraud
modeling, from gathering and cleaning data to building and tuning a classifier.

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The list of the libraries used for data loading, data
analysis, data preparation, model evaluation, and model tuning are shown below. The
packages used for different purposes have been separated in the Python code below.
The details of most of these packages and functions have been provided in Chapter 2
and Chapter 4:

Packages for data loading, data analysis, and data preparation

import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot

from pandas import read_csv, set_option
from pandas.plotting import scatter_matrix
from sklearn.preprocessing import StandardScaler

Packages for model evaluation and classification models

from sklearn.model_selection import train_test_split, KFold,\
 cross_val_score, GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import Pipeline
from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier,
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.metrics import classification_report, confusion_matrix,\
 accuracy_score

Packages for deep learning models

from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier

154 | Chapter 6: Supervised Learning: Classification

Packages for saving the model

from pickle import dump
from pickle import load

3. Exploratory data analysis
The following sections walk through some high-level data inspection.

3.1. Descriptive statistics. The first thing we must do is gather a basic sense of our data.
Remember, except for the transaction and amount, we do not know the names of
other columns. The only thing we know is that the values of those columns have been
scaled. Let’s look at the shape and columns of the data:

shape
dataset.shape

Output

(284807, 31)

#peek at data
set_option('display.width', 100)
dataset.head(5)

Output

5 rows × 31 columns

As shown, the variable names are nondescript (V1, V2, etc.). Also, the data type for
the entire dataset is float, except Class, which is of type integer.

How many are fraud and how many are not fraud? Let us check:

class_names = {0:'Not Fraud', 1:'Fraud'}
print(dataset.Class.value_counts().rename(index = class_names))

Output

Not Fraud 284315
Fraud 492
Name: Class, dtype: int64

Notice the stark imbalance of the data labels. Most of the transactions are nonfraud.
If we use this dataset as the base for our modeling, most models will not place enough
emphasis on the fraud signals; the nonfraud data points will drown out any weight

Case Study 1: Fraud Detection | 155

the fraud signals provide. As is, we may encounter difficulties modeling the predic‐
tion of fraud, with this imbalance leading the models to simply assume all transac‐
tions are nonfraud. This would be an unacceptable result. We will explore some ways
of dealing with this issue in the subsequent sections.

3.2. Data visualization. Since the feature descriptions are not provided, visualizing the
data will not lead to much insight. This step will be skipped in this case study.

4. Data preparation
This data is from Kaggle and is already in a cleaned format without any empty rows
or columns. Data cleaning or categorization is unnecessary.

5. Evaluate models
Now we are ready to split the data and evaluate the models.

5.1. Train-test split and evaluation metrics. As described in Chapter 2, it is a good idea
to partition the original dataset into training and test sets. The test set is a sample of
the data that we hold back from our analysis and modeling. We use it at the end of
our project to confirm the accuracy of our final model. It is the final test that gives us
confidence in our estimates of accuracy on unseen data. We will use 80% of the data‐
set for model training and 20% for testing:

Y= dataset["Class"]
X = dataset.loc[:, dataset.columns != 'Class']
validation_size = 0.2
seed = 7
X_train, X_validation, Y_train, Y_validation =\
train_test_split(X, Y, test_size=validation_size, random_state=seed)

5.2. Checking models. In this step, we will evaluate different machine learning models.
To optimize the various hyperparameters of the models, we use ten-fold cross valida‐
tion and recalculate the results ten times to account for the inherent randomness in
some of the models and the CV process. All of these models, including cross valida‐
tion, are described in Chapter 4.

Let us design our test harness. We will evaluate algorithms using the accuracy metric.
This is a gross metric that will give us a quick idea of how correct a given model is. It
is useful on binary classification problems.

test options for classification
num_folds = 10
scoring = 'accuracy'

Let’s create a baseline of performance for this problem and spot-check a number of
different algorithms. The selected algorithms include:

156 | Chapter 6: Supervised Learning: Classification

Linear algorithms
Logistic regression (LR) and linear discriminant analysis (LDA).

Nonlinear algorithms
Classification and regression trees (CART) and K-nearest neighbors (KNN).

There are good reasons for selecting these models. These models are simpler and
faster models with good interpretation for problems with large datasets. CART and
KNN will be able to discern any nonlinear relationships between the variables. The
key problem here is using an unbalanced sample. Unless we resolve that, more com‐
plex models, such as ensemble and ANNs, will have poor prediction. We will focus
on addressing this later in the case study and then will evaluate the performance of
these types of models.

spot-check basic Classification algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))

All the algorithms use default tuning parameters. We will display the mean and stan‐
dard deviation of accuracy for each algorithm as we calculate and collect the results
for use later.

results = []
names = []
for name, model in models:
 kfold = KFold(n_splits=num_folds, random_state=seed)
 cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, \
 scoring=scoring)
 results.append(cv_results)
 names.append(name)
 msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
 print(msg)

Output

LR: 0.998942 (0.000229)
LDA: 0.999364 (0.000136)
KNN: 0.998310 (0.000290)
CART: 0.999175 (0.000193)

compare algorithms
fig = pyplot.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
pyplot.boxplot(results)
ax.set_xticklabels(names)
fig.set_size_inches(8,4)
pyplot.show()

Case Study 1: Fraud Detection | 157

The accuracy of the overall result is quite high. But let us check how well it predicts
the fraud cases. Choosing one of the model CART from the results above and looking
at the result on the test set:

prepare model
model = DecisionTreeClassifier()
model.fit(X_train, Y_train)

estimate accuracy on validation set
predictions = model.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(classification_report(Y_validation, predictions))

Output

0.9992275552122467
 precision recall f1-score support

 0 1.00 1.00 1.00 56862
 1 0.77 0.79 0.78 100

 accuracy 1.00 56962
 macro avg 0.89 0.89 0.89 56962
weighted avg 1.00 1.00 1.00 56962

And producing the confusion matrix yields:

df_cm = pd.DataFrame(confusion_matrix(Y_validation, predictions), \
columns=np.unique(Y_validation), index = np.unique(Y_validation))
df_cm.index.name = 'Actual'
df_cm.columns.name = 'Predicted'
sns.heatmap(df_cm, cmap="Blues", annot=True,annot_kws={"size": 16})

158 | Chapter 6: Supervised Learning: Classification

Overall accuracy is strong, but the confusion metrics tell a different story. Despite the
high accuracy level, 21 out of 100 instances of fraud are missed and incorrectly pre‐
dicted as nonfraud. The false negative rate is substantial.

The intention of a fraud detection model is to minimize these false negatives. To do
so, the first step would be to choose the right evaluation metric.

In Chapter 4, we covered the evaluation metrics, such as accuracy, precision, and
recall, for a classification-based problem. Accuracy is the number of correct predic‐
tions made as a ratio of all predictions made. Precision is the number of items cor‐
rectly identified as positive out of total items identified as positive by the model.
Recall is the total number of items correctly identified as positive out of total true
positives.

For this type of problem, we should focus on recall, the ratio of true positives to the
sum of true positives and false negatives. So if false negatives are high, then the value
of recall will be low.

In the next step, we perform model tuning, select the model using the recall metric,
and perform under-sampling.

6. Model tuning
The purpose of the model tuning step is to perform the grid search on the model
selected in the previous step. However, since we encountered poor model perfor‐
mance in the previous section due to the unbalanced dataset, we will focus our atten‐
tion on that. We will analyze the impact of choosing the correct evaluation metric
and see the impact of using an adjusted, balanced sample.

Case Study 1: Fraud Detection | 159

6.1. Model tuning by choosing the correct evaluation metric. As mentioned in the preced‐
ing step, if false negatives are high, then the value of recall will be low. Models are
ranked according to this metric:

scoring = 'recall'

Let us spot-check some basic classification algorithms for recall:

models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))

Running cross validation:

results = []
names = []
for name, model in models:
 kfold = KFold(n_splits=num_folds, random_state=seed)
 cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, \
 scoring=scoring)
 results.append(cv_results)
 names.append(name)
 msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
 print(msg)

Output

LR: 0.595470 (0.089743)
LDA: 0.758283 (0.045450)
KNN: 0.023882 (0.019671)
CART: 0.735192 (0.073650)

We see that the LDA model has the best recall of the four models. We continue by
evaluating the test set using the trained LDA:

prepare model
model = LinearDiscriminantAnalysis()
model.fit(X_train, Y_train)
estimate accuracy on validation set

predictions = model.predict(X_validation)
print(accuracy_score(Y_validation, predictions))

Output

0.9995435553526912

160 | Chapter 6: Supervised Learning: Classification

LDA performs better, missing only 18 out of 100 cases of fraud. Additionally, we find
fewer false positives as well. However, there is still improvement to be made.

6.2. Model tuning—balancing the sample by random under-sampling. The current data
exhibits a significant class imbalance, where there are very few data points labeled
“fraud.” The issue of such class imbalance can result in a serious bias toward the
majority class, reducing the classification performance and increasing the number of
false negatives.

One of the remedies to handle such situations is to under-sample the data. A simple
technique is to under-sample the majority class randomly and uniformly. This might
lead to a loss of information, but it may yield strong results by modeling the minority
class well.

Next, we will implement random under-sampling, which consists of removing data
to have a more balanced dataset. This will help ensure that our models avoid
overfitting.

The steps to implement random under-sampling are:

1. First, we determine the severity of the class imbalance by using value_counts()
on the class column. We determine how many instances are considered fraud
transactions (fraud = 1).

2. We bring the nonfraud transaction observation count to the same amount as
fraud transactions. Assuming we want a 50/50 ratio, this will be equivalent to 492
cases of fraud and 492 cases of nonfraud transactions.

3. We now have a subsample of our dataframe with a 50/50 ratio with regards to
our classes. We train the models on this subsample. Then we perform this itera‐
tion again to shuffle the nonfraud observations in the training sample. We keep

Case Study 1: Fraud Detection | 161

track of the model performance to see whether our models can maintain a cer‐
tain accuracy every time we repeat this process:

df = pd.concat([X_train, Y_train], axis=1)
amount of fraud classes 492 rows.
fraud_df = df.loc[df['Class'] == 1]
non_fraud_df = df.loc[df['Class'] == 0][:492]

normal_distributed_df = pd.concat([fraud_df, non_fraud_df])

Shuffle dataframe rows
df_new = normal_distributed_df.sample(frac=1, random_state=42)
split out validation dataset for the end
Y_train_new= df_new["Class"]
X_train_new = df_new.loc[:, dataset.columns != 'Class']

Let us look at the distribution of the classes in the dataset:

print('Distribution of the Classes in the subsample dataset')
print(df_new['Class'].value_counts()/len(df_new))
sns.countplot('Class', data=df_new)
pyplot.title('Equally Distributed Classes', fontsize=14)
pyplot.show()

Output

Distribution of the Classes in the subsample dataset
1 0.5
0 0.5
Name: Class, dtype: float64

162 | Chapter 6: Supervised Learning: Classification

The data is now balanced, with close to 1,000 observations. We will train all the mod‐
els again, including an ANN. Now that the data is balanced, we will focus on accuracy
as our main evaluation metric, since it considers both false positives and false nega‐
tives. Recall can always be produced if needed:

#setting the evaluation metric
scoring='accuracy'
spot-check the algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
#Neural Network
models.append(('NN', MLPClassifier()))
Ensemble Models
Boosting methods
models.append(('AB', AdaBoostClassifier()))
models.append(('GBM', GradientBoostingClassifier()))
Bagging methods
models.append(('RF', RandomForestClassifier()))
models.append(('ET', ExtraTreesClassifier()))

The steps to define and compile an ANN-based deep learning model in Keras, along
with all the terms (neurons, activation, momentum, etc.) mentioned in the following
code, have been described in Chapter 3. This code can be leveraged for any deep
learning–based classification model.

Keras-based deep learning model:

Function to create model, required for KerasClassifier
def create_model(neurons=12, activation='relu', learn_rate = 0.01, momentum=0):
 # create model
 model = Sequential()
 model.add(Dense(X_train.shape[1], input_dim=X_train.shape[1], \
 activation=activation))
 model.add(Dense(32,activation=activation))
 model.add(Dense(1, activation='sigmoid'))
 # Compile model
 optimizer = SGD(lr=learn_rate, momentum=momentum)
 model.compile(loss='binary_crossentropy', optimizer='adam', \
 metrics=['accuracy'])
 return model
models.append(('DNN', KerasClassifier(build_fn=create_model,\
epochs=50, batch_size=10, verbose=0)))

Running the cross validation on the new set of models results in the following:

Case Study 1: Fraud Detection | 163

Although a couple of models, including random forest (RF) and logistic regression
(LR), perform well, GBM slightly edges out the other models. We select this for fur‐
ther analysis. Note that the result of the deep learning model using Keras (i.e.,
“DNN”) is poor.

A grid search is performed for the GBM model by varying the number of estimators
and maximum depth. The details of the GBM model and the parameters to tune for
this model are described in Chapter 4.

Grid Search: GradientBoosting Tuning
n_estimators = [20,180,1000]
max_depth= [2, 3,5]
param_grid = dict(n_estimators=n_estimators, max_depth=max_depth)
model = GradientBoostingClassifier()
kfold = KFold(n_splits=num_folds, random_state=seed)
grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring=scoring, \
 cv=kfold)
grid_result = grid.fit(X_train_new, Y_train_new)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))

Output

Best: 0.936992 using {'max_depth': 5, 'n_estimators': 1000}

In the next step, the final model is prepared, and the result on the test set is checked:

prepare model
model = GradientBoostingClassifier(max_depth= 5, n_estimators = 1000)
model.fit(X_train_new, Y_train_new)
estimate accuracy on Original validation set
predictions = model.predict(X_validation)
print(accuracy_score(Y_validation, predictions))

164 | Chapter 6: Supervised Learning: Classification

Output

0.9668199852533268

The accuracy of the model is high. Let’s look at the confusion matrix:

Output

The results on the test set are impressive, with a high accuracy and, importantly, no
false negatives. However, we see that an outcome of using our under-sampled data is
a propensity for false positives—cases in which nonfraud transactions are misclassi‐
fied as fraudulent. This is a trade-off the financial institution would have to consider.
There is an inherent cost balance between the operational overhead, and possible
customer experience impact, from processing false positives and the financial loss
resulting from missing fraud cases through false negatives.

Conclusion
In this case study, we performed fraud detection on credit card transactions. We
illustrated how different classification machine learning models stack up against each
other and demonstrated that choosing the right metric can make an important differ‐
ence in model evaluation. Under-sampling was shown to lead to a significant
improvement, as all fraud cases in the test set were correctly identified after applying
under-sampling. This came with a trade-off, though. The reduction in false negatives
came with an increase in false positives.

Overall, by using different machine learning models, choosing the right evaluation
metrics, and handling unbalanced data, we demonstrated how the implementation of
a simple classification-based model can produce robust results for fraud detection.

Case Study 1: Fraud Detection | 165

Case Study 2: Loan Default Probability
Lending is one of the most important activities of the finance industry. Lenders pro‐
vide loans to borrowers in exchange for the promise of repayment with interest. That
means the lender makes a profit only if the borrower pays off the loan. Hence, the
two most critical questions in the lending industry are:

1. How risky is the borrower?
2. Given the borrower’s risk, should we lend to them?

Default prediction could be described as a perfect job for machine learning, as the
algorithms can be trained on millions of examples of consumer data. Algorithms can
perform automated tasks such as matching data records, identifying exceptions, and
calculating whether an applicant qualifies for a loan. The underlying trends can be
assessed with algorithms and continuously analyzed to detect trends that might influ‐
ence lending and underwriting risk in the future.

The goal of this case study is to build a machine learning model to predict the proba‐
bility that a loan will default.

In most real-life cases, including loan default modeling, we are unable to work with
clean, complete data. Some of the potential problems we are bound to encounter are
missing values, incomplete categorical data, and irrelevant features. Although data
cleaning may not be mentioned often, it is critical for the success of machine learning
applications. The algorithms that we use can be powerful, but without the relevant or
appropriate data, the system may fail to yield ideal results. So one of the focus areas of
this case study will be data preparation and cleaning. Various techniques and con‐
cepts of data processing, feature selection, and exploratory analysis are used for data
cleaning and organizing the feature space.

In this case study, we will focus on:

• Data preparation, data cleaning, and handling a large number of features.
• Data discretization and handling categorical data.
• Feature selection and data transformation.

166 | Chapter 6: Supervised Learning: Classification

Blueprint for Creating a Machine Learning Model for
Predicting Loan Default Probability

1. Problem definition
In the classification framework for this case study, the predicted variable is charge-off,
a debt that a creditor has given up trying to collect on after a borrower has missed
payments for several months. The predicted variable takes a value of 1 in case of
charge-off and a value of 0 otherwise.

We will analyze data for loans from 2007 to 2017Q3 from Lending Club, available on
Kaggle. Lending Club is a US peer-to-peer lending company. It operates an online
lending platform that enables borrowers to obtain a loan and investors to purchase
notes backed by payments made on these loans. The dataset contains more than
887,000 observations with 150 variables containing complete loan data for all loans
issued over the specified time period. The features include income, age, credit scores,
home ownership, borrower location, collections, and many others. We will investi‐
gate these 150 predictor variables for feature selection.

By the end of this case study, readers will be familiar with a general approach to loan
default modeling, from gathering and cleaning data to building and tuning a
classifier.

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The standard Python packages are loaded in this
step. The details have been presented in the previous case studies. Please refer to the
Jupyter notebook for this case study for more details.

2.2. Loading the data. The loan data for the time period from 2007 to 2017Q3 is
loaded:

load dataset
dataset = pd.read_csv('LoansData.csv.gz', compression='gzip', \
low_memory=True)

3. Data preparation and feature selection
In the first step, let us look at the size of the data:

dataset.shape

Case Study 2: Loan Default Probability | 167

https://oreil.ly/DG9j5
https://oreil.ly/DG9j5

2 The predicted variable is further used for correlation-based feature reduction.

Output

(1646801, 150)

Given that there are 150 features for each loan, we will first focus on limiting the fea‐
ture space, followed by the exploratory analysis.

3.1. Preparing the predicted variable. Here, we look at the details of the predicted vari‐
able and prepare it. The predicted variable will be derived from the loan_status col‐
umn. Let’s check the value distributions:2

dataset['loan_status'].value_counts(dropna=False)

Output

Current 788950
Fully Paid 646902
Charged Off 168084
Late (31-120 days) 23763
In Grace Period 10474
Late (16-30 days) 5786
Does not meet the credit policy. Status:Fully Paid 1988
Does not meet the credit policy. Status:Charged Off 761
Default 70
NaN 23
Name: loan_status, dtype: int64

From the data definition documentation:

Fully Paid
Loans that have been fully repaid.

Default
Loans that have not been current for 121 days or more.

Charged Off
Loans for which there is no longer a reasonable expectation of further payments.

A large proportion of observations show a status of Current, and we do not know
whether those will be Charged Off, Fully Paid, or Default in the future. The obser‐
vations for Default are tiny in number compared to Fully Paid or Charged Off and
are not considered. The remaining categories of loan status are not of prime
importance for this analysis. So, in order to convert this to a binary classification
problem and to analyze in detail the effect of important variables on the loan status,
we will consider only two major categories—Charged Off and Fully Paid:

168 | Chapter 6: Supervised Learning: Classification

dataset = dataset.loc[dataset['loan_status'].isin(['Fully Paid', 'Charged Off'])]
dataset['loan_status'].value_counts(normalize=True, dropna=False)

Output

Fully Paid 0.793758
Charged Off 0.206242
Name: loan_status, dtype: float64

About 79% of the remaining loans have been fully paid and 21% have been charged
off, so we have a somewhat unbalanced classification problem, but it is not as unbal‐
anced as the dataset of fraud detection we saw in the previous case study.

In the next step, we create a new binary column in the dataset, where we categorize
Fully Paid as 0 and Charged Off as 1. This column represents the predicted variable
for this classification problem. A value of 1 in this column indicates the borrower has
defaulted:

dataset['charged_off'] = (dataset['loan_status'] == 'Charged Off').apply(np.uint8)
dataset.drop('loan_status', axis=1, inplace=True)

3.2. Feature selection—limit the feature space. The full dataset has 150 features for each
loan, but not all features contribute to the prediction variable. Removing features of
low importance can improve accuracy and reduce both model complexity and over‐
fitting. Training time can also be reduced for very large datasets. We’ll eliminate fea‐
tures in the following steps using three different approaches:

• Eliminating features that have more than 30% missing values.
• Eliminating features that are unintuitive based on subjective judgment.
• Eliminating features with low correlation with the predicted variable.

3.2.1. Feature elimination based on significant missing values. First, we calculate the per‐
centage of missing data for each feature:

missing_fractions = dataset.isnull().mean().sort_values(ascending=False)

#Drop the missing fraction
drop_list = sorted(list(missing_fractions[missing_fractions > 0.3].index))
dataset.drop(labels=drop_list, axis=1, inplace=True)
dataset.shape

Output

(814986, 92)

This dataset has 92 columns remaining once some of the columns with a significant
number of missing values are dropped.

3.2.2. Feature elimination based on intuitiveness. To filter the features further we check
the description in the data dictionary and keep the features that intuitively contribute

Case Study 2: Loan Default Probability | 169

to the prediction of default. We keep features that contain the relevant credit detail of
the borrower, including annual income, FICO score, and debt-to-income ratio. We
also keep those features that are available to investors when considering an invest‐
ment in the loan. These include features in the loan application and any features
added by Lending Club when the loan listing was accepted, such as loan grade and
interest rate.

The list of the features retained are shown in the following code snippet:

keep_list = ['charged_off','funded_amnt','addr_state', 'annual_inc', \
'application_type','dti', 'earliest_cr_line', 'emp_length',\
'emp_title', 'fico_range_high',\
'fico_range_low', 'grade', 'home_ownership', 'id', 'initial_list_status', \
'installment', 'int_rate', 'loan_amnt', 'loan_status',\
'mort_acc', 'open_acc', 'pub_rec', 'pub_rec_bankruptcies', \
'purpose', 'revol_bal', 'revol_util', \
'sub_grade', 'term', 'title', 'total_acc',\
'verification_status', 'zip_code','last_pymnt_amnt',\
'num_actv_rev_tl', 'mo_sin_rcnt_rev_tl_op',\
'mo_sin_old_rev_tl_op',"bc_util","bc_open_to_buy",\
"avg_cur_bal","acc_open_past_24mths"]

drop_list = [col for col in dataset.columns if col not in keep_list]
dataset.drop(labels=drop_list, axis=1, inplace=True)
dataset.shape

Output

(814986, 39)

After removing the features in this step, 39 columns remain.

3.2.3. Feature elimination based on the correlation. The next step is to check the correla‐
tion with the predicted variable. Correlation gives us the interdependence between
the predicted variable and the feature. We select features with a moderate-to-strong
relationship with the target variable and drop those that have a correlation of less
than 3% with the predicted variable:

correlation = dataset.corr()
correlation_chargeOff = abs(correlation['charged_off'])
drop_list_corr = sorted(list(correlation_chargeOff\
 [correlation_chargeOff < 0.03].index))
print(drop_list_corr)

Output

['pub_rec', 'pub_rec_bankruptcies', 'revol_bal', 'total_acc']

The columns with low correlation are dropped from the dataset, and we are left with
only 35 columns:

dataset.drop(labels=drop_list_corr, axis=1, inplace=True)

170 | Chapter 6: Supervised Learning: Classification

4. Feature selection and exploratory analysis
In this step, we perform the exploratory data analysis of the feature selection. Given
that many features had to be eliminated, it is preferable that we perform the explora‐
tory data analysis after feature selection to better visualize the relevant features. We
will also continue the feature elimination by visually screening and dropping those
features deemed irrelevant.

4.1. Feature analysis and exploration. In the following sections, we take a deeper dive
into the dataset features.

4.1.1. Analyzing the categorical features. Let us look at the some of the categorical fea‐
tures in the dataset.

First, let’s look at the id, emp_title, title, and zip_code features:

dataset[['id','emp_title','title','zip_code']].describe()

Output

id emp_title title zip_code
count 814986 766415 807068 814986

unique 814986 280473 60298 925

top 14680062 Teacher Debt consolidation 945xx

freq 1 11351 371874 9517

IDs are all unique and irrelevant for modeling. There are too many unique values for
employment titles and titles. Occupation and job title may provide some information
for default modeling; however, we assume much of this information is embedded in
the verified income of the customer. Moreover, additional cleaning steps on these
features, such as standardizing or grouping the titles, would be necessary to extract
any marginal information. This work is outside the scope of this case study but could
be explored in subsequent iterations of the model.

Geography could play a role in credit determination, and zip codes provide a granu‐
lar view of this dimension. Again, additional work would be necessary to prepare this
feature for modeling and was deemed outside the scope of this case study.

dataset.drop(['id','emp_title','title','zip_code'], axis=1, inplace=True)

Let’s look at the term feature.

Term refers to the number of payments on the loan. Values are in months and can be
either 36 or 60. The 60-month loans are more likely to charge off.

Case Study 2: Loan Default Probability | 171

Let’s convert term to integers and group by the term for further analysis:

dataset['term'] = dataset['term'].apply(lambda s: np.int8(s.split()[0]))
dataset.groupby('term')['charged_off'].value_counts(normalize=True).loc[:,1]

Output

term
36 0.165710
60 0.333793
Name: charged_off, dtype: float64

Loans with five-year periods are more than twice as likely to charge-off as loans with
three-year periods. This feature seems to be important for the prediction.

Let’s look at the emp_length feature:

dataset['emp_length'].replace(to_replace='10+ years', value='10 years',\
 inplace=True)

dataset['emp_length'].replace('< 1 year', '0 years', inplace=True)

def emp_length_to_int(s):
 if pd.isnull(s):
 return s
 else:
 return np.int8(s.split()[0])

dataset['emp_length'] = dataset['emp_length'].apply(emp_length_to_int)
charge_off_rates = dataset.groupby('emp_length')['charged_off'].value_counts\
 (normalize=True).loc[:,1]
sns.barplot(x=charge_off_rates.index, y=charge_off_rates.values)

Output

172 | Chapter 6: Supervised Learning: Classification

Loan status does not appear to vary much with employment length (on average);
hence this feature is dropped:

dataset.drop(['emp_length'], axis=1, inplace=True)

Let’s look at the sub_grade feature:

charge_off_rates = dataset.groupby('sub_grade')['charged_off'].value_counts\
(normalize=True).loc[:,1]
sns.barplot(x=charge_off_rates.index, y=charge_off_rates.values)

Output

As shown in the chart, there’s a clear trend of higher probability of charge-off as the
sub-grade worsens, and so it is considered to be a key feature.

4.1.2. Analyzing the continuous features. Let’s look at the annual_inc feature:

dataset[['annual_inc']].describe()

Output

annual_inc
count 8.149860e+05

mean 7.523039e+04

std 6.524373e+04

min 0.000000e+00

25% 4.500000e+04

50% 6.500000e+04

75% 9.000000e+04

max 9.550000e+06

Case Study 2: Loan Default Probability | 173

Annual income ranges from $0 to $9,550,000, with a median of $65,000. Because of
the large range of incomes, we use a log transform of the annual income variable:

dataset['log_annual_inc'] = dataset['annual_inc'].apply(lambda x: np.log10(x+1))
dataset.drop('annual_inc', axis=1, inplace=True)

Let’s look at the FICO score (fico_range_low, fico_range_high) feature:

dataset[['fico_range_low','fico_range_high']].corr()

Output

fico_range_low fico_range_high
fico_range_low 1.0 1.0

fico_range_high 1.0 1.0

Given that the correlation between FICO low and high is 1, it is preferred that we
keep only one feature, which we take as the average of FICO scores:

dataset['fico_score'] = 0.5*dataset['fico_range_low'] +\
 0.5*dataset['fico_range_high']

dataset.drop(['fico_range_high', 'fico_range_low'], axis=1, inplace=True)

4.2. Encoding categorical data. In order to use a feature in the classification models, we
need to convert the categorical data (i.e., text features) to its numeric representation.
This process is called encoding. There can be different ways of encoding. However,
for this case study we will use a label encoder, which encodes labels with a value
between 0 and n, where n is the number of distinct labels. The LabelEncoder func‐
tion from sklearn is used in the following step, and all the categorical columns are
encoded at once:

from sklearn.preprocessing import LabelEncoder
Categorical boolean mask
categorical_feature_mask = dataset.dtypes==object
filter categorical columns using mask and turn it into a list
categorical_cols = dataset.columns[categorical_feature_mask].tolist()

Let us look at the categorical columns:

categorical_cols

Output

['grade',
 'sub_grade',
 'home_ownership',
 'verification_status',
 'purpose',
 'addr_state',
 'initial_list_status',
 'application_type']

174 | Chapter 6: Supervised Learning: Classification

3 Sampling is covered in detail in “Case Study 1: Fraud Detection” on page 153.

4.3. Sampling data. Given that the loan data is skewed, it is sampled to have an equal
number of charge-off and no charge-off observations. Sampling leads to a more bal‐
anced dataset and avoids overfitting:3

loanstatus_0 = dataset[dataset["charged_off"]==0]
loanstatus_1 = dataset[dataset["charged_off"]==1]
subset_of_loanstatus_0 = loanstatus_0.sample(n=5500)
subset_of_loanstatus_1 = loanstatus_1.sample(n=5500)
dataset = pd.concat([subset_of_loanstatus_1, subset_of_loanstatus_0])
dataset = dataset.sample(frac=1).reset_index(drop=True)
print("Current shape of dataset :",dataset.shape)

Although sampling may have its advantages, there might be some disadvantages as
well. Sampling may exclude some data that might not be homogeneous to the data
that is taken. This affects the level of accuracy in the results. Also, selection of the
proper size of samples is a difficult job. Hence, sampling should be performed with
caution and should generally be avoided in the case of a relatively balanced dataset.

5. Evaluate algorithms and models

5.1. Train-test split. Splitting out the validation dataset for the model evaluation is the
next step:

Y= dataset["charged_off"]
X = dataset.loc[:, dataset.columns != 'charged_off']
validation_size = 0.2
seed = 7
X_train, X_validation, Y_train, Y_validation = \
train_test_split(X, Y, test_size=validation_size, random_state=seed)

5.2. Test options and evaluation metrics. In this step, the test options and evaluation
metrics are selected. The roc_auc evaluation metric is selected for this classification.
The details of this metric were provided in Chapter 4. This metric represents a
model’s ability to discriminate between positive and negative classes. An roc_auc of
1.0 represents a model that made all predictions perfectly, and a value of 0.5 repre‐
sents a model that is as good as random.

num_folds = 10
scoring = 'roc_auc'

The model cannot afford to have a high amount of false negatives as that leads to a
negative impact on the investors and the credibility of the company. So we can use
recall as we did in the fraud detection use case.

Case Study 2: Loan Default Probability | 175

5.3. Compare models and algorithms. Let us spot-check the classification algorithms.
We include ANN and ensemble models in the list of models to be checked:

models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
Neural Network
models.append(('NN', MLPClassifier()))
Ensemble Models
Boosting methods
models.append(('AB', AdaBoostClassifier()))
models.append(('GBM', GradientBoostingClassifier()))
Bagging methods
models.append(('RF', RandomForestClassifier()))
models.append(('ET', ExtraTreesClassifier()))

After performing the k-fold cross validation on the models shown above, the overall
performance is as follows:

The gradient boosting method (GBM) model performs best, and we select it for grid
search in the next step. The details of GBM along with the model parameters are
described in Chapter 4.

176 | Chapter 6: Supervised Learning: Classification

6. Model tuning and grid search
We tune the number of estimator and maximum depth hyperparameters, which were
discussed in Chapter 4:

Grid Search: GradientBoosting Tuning
n_estimators = [20,180]
max_depth= [3,5]
param_grid = dict(n_estimators=n_estimators, max_depth=max_depth)
model = GradientBoostingClassifier()
kfold = KFold(n_splits=num_folds, random_state=seed)
grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring=scoring, \
 cv=kfold)
grid_result = grid.fit(X_train, Y_train)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))

Output

Best: 0.952950 using {'max_depth': 5, 'n_estimators': 180}

A GBM model with max_depth of 5 and number of estimators of 150 results in the
best model.

7. Finalize the model
Now, we perform the final steps for selecting a model.

7.1. Results on the test dataset. Let us prepare the GBM model with the parameters
found during the grid search step and check the results on the test dataset:

model = GradientBoostingClassifier(max_depth= 5, n_estimators= 180)
model.fit(X_train, Y_train)

estimate accuracy on validation set
predictions = model.predict(X_validation)
print(accuracy_score(Y_validation, predictions))

Output

0.889090909090909

Case Study 2: Loan Default Probability | 177

The accuracy of the model is a reasonable 89% on the test set. Let us examine the
confusion matrix:

Looking at the confusion matrix and the overall result of the test set, both the rate of
false positives and the rate of false negatives are lower; the overall model performance
looks good and is in line with the training set results.

7.2. Variable intuition/feature importance. In this step, we compute and display the
variable importance of our trained model:

print(model.feature_importances_) #use inbuilt class feature_importances
feat_importances = pd.Series(model.feature_importances_, index=X.columns)
#plot graph of feature importances for better visualization
feat_importances.nlargest(10).plot(kind='barh')
pyplot.show()

Output

The results of the model importance are intuitive. The last payment amount seems to
be the most important feature, followed by loan term and sub-grade.

178 | Chapter 6: Supervised Learning: Classification

Conclusion
In this case study, we introduced the classification-based tree algorithm applied to
loan default prediction. We showed that data preparation is one of the most impor‐
tant steps. We addressed this by performing feature elimination using different tech‐
niques, such as feature intuition, correlation analysis, visualization, and data quality
checks of the features. We illustrated that there can be different ways of handling and
analyzing the categorical data and converting categorical data into a usable format for
the models.

We emphasized that performing data processing and establishing an understanding
of variable importance is key in the model development process. A focus on these
steps led to the implementation of a simple classification-based model that produced
robust results for default prediction.

Case Study 3: Bitcoin Trading Strategy
First released as open source in 2009 by the pseudonymous Satoshi Nakamoto, bit‐
coin is the longest-running and most well-known cryptocurrency.

A major drawback of cryptocurrency trading is the volatility of the market. Since
cryptocurrency markets trade 24/7, tracking cryptocurrency positions against quickly
changing market dynamics can rapidly become an impossible task to manage. This is
where automated trading algorithms and trading bots can assist.

Various machine learning algorithms can be used to generate trading signals in an
attempt to predict the market’s movement. One could use machine learning algo‐
rithms to classify the next day’s movement into three categories: market will rise
(take a long position), market will fall (take a short position), or market will move
sideways (take no position). Since we know the market direction, we can decide the
optimum entry and exit points.

Machine learning has one key aspect called feature engineering. It means that we can
create new, intuitive features and feed them to a machine learning algorithm in order
to achieve better results. We can introduce different technical indicators as features
to help predict future prices of an asset. These technical indicators are derived from
market variables such as price or volume and have additional information or signals
embedded in them. There are many different categories of technical indicators,
including trend, volume, volatility, and momentum indicators.

In this case study, we will use various classification-based models to predict whether
the current position signal is buy or sell. We will create additional trend and momen‐
tum indicators from market prices to leverage as additional features in the prediction.

Case Study 3: Bitcoin Trading Strategy | 179

In this case study, we will focus on:

• Building a trading strategy using classification (classification of long/short sig‐
nals).

• Feature engineering and constructing technical indicators of trend, momentum,
and mean reversion.

• Building a framework for backtesting results of a trading strategy.
• Choosing the right evaluation metric to assess a trading strategy.

Blueprint for Using Classification-Based Models to Predict
Whether to Buy or Sell in the Bitcoin Market

1. Problem definition
The problem of predicting a buy or sell signal for a trading strategy is defined in the
classification framework, where the predicted variable has a value of 1 for buy and 0
for sell. This signal is decided through the comparison of the short-term and long-
term price trends.

The data used is from one of the largest bitcoin exchanges in terms of average daily
volume, Bitstamp. The data covers prices from January 2012 to May 2017. Different
trend and momentum indicators are created from the data and are added as features
to enhance the performance of the prediction model.

By the end of this case study, readers will be familiar with a general approach to
building a trading strategy, from cleaning data and feature engineering to model tun‐
ing and developing a backtesting framework.

2. Getting started—loading the data and Python packages
Let’s load the packages and the data.

2.1. Loading the Python packages. The standard Python packages are loaded in this
step. The details have been presented in the previous case studies. Refer to the Jupyter
notebook for this case study for more details.

2.2. Loading the data. The bitcoin data fetched from the Bitstamp website is loaded in
this step:

180 | Chapter 6: Supervised Learning: Classification

https://www.bitstamp.com

load dataset
dataset = pd.read_csv('BitstampData.csv')

3. Exploratory data analysis
In this step, we will take a detailed look at this data.

3.1. Descriptive statistics. First, let us look at the shape of the data:

dataset.shape

Output

(2841377, 8)

peek at data
set_option('display.width', 100)
dataset.tail(2)

Output

Timestamp Open High Low Close Volume_(BTC) Volume_(Currency) Weighted_Price
2841372 1496188560 2190.49 2190.49 2181.37 2181.37 1.700166 3723.784755 2190.247337

2841373 1496188620 2190.50 2197.52 2186.17 2195.63 6.561029 14402.811961 2195.206304

The dataset has minute-by-minute data of OHLC (Open, High, Low, Close) and
traded volume of bitcoin. The dataset is large, with approximately 2.8 million total
observations.

4. Data preparation
In this part, we will clean the data to prepare for modeling.

4.1. Data cleaning. We clean the data by filling the NaNs with the last available values:

dataset[dataset.columns.values] = dataset[dataset.columns.values].ffill()

The Timestamp column is not useful for modeling and is dropped from the dataset:

dataset=dataset.drop(columns=['Timestamp'])

4.2. Preparing the data for classification. As a first step, we will create the target variable
for our model. This is the column that will indicate whether the trading signal is buy
or sell. We define the short-term price as the 10-day rolling average and the long-
term price as the 60-day rolling average. We attach a label of 1 (0) if the short-term
price is higher (lower) than the long-term price:

Create short simple moving average over the short window
dataset['short_mavg'] = dataset['Close'].rolling(window=10, min_periods=1,\
center=False).mean()

Case Study 3: Bitcoin Trading Strategy | 181

Create long simple moving average over the long window
dataset['long_mavg'] = dataset['Close'].rolling(window=60, min_periods=1,\
center=False).mean()

Create signals
dataset['signal'] = np.where(dataset['short_mavg'] >
dataset['long_mavg'], 1.0, 0.0)

4.3. Feature engineering. We begin feature engineering by analyzing the features we
expect may influence the performance of the prediction model. Based on a concep‐
tual understanding of key factors that drive investment strategies, the task at hand is
to identify and construct new features that may capture the risks or characteristics
embodied by these return drivers. For this case study, we will explore the efficacy of
specific momentum technical indicators.

The current data of the bitcoin consists of date, open, high, low, close, and volume.
Using this data, we calculate the following momentum indicators:

Moving average
A moving average provides an indication of a price trend by cutting down the
amount of noise in the series.

Stochastic oscillator %K
A stochastic oscillator is a momentum indicator that compares the closing price
of a security to a range of its previous prices over a certain period of time. %K
and %D are slow and fast indicators. The fast indicator is more sensitive than the
slow indicator to changes in the price of the underlying security and will likely
result in many transaction signals.

Relative strength index (RSI)
This is a momentum indicator that measures the magnitude of recent price
changes to evaluate overbought or oversold conditions in the price of a stock or
other asset. The RSI ranges from 0 to 100. An asset is deemed to be overbought
once the RSI approaches 70, meaning that the asset may be getting overvalued
and is a good candidate for a pullback. Likewise, if the RSI approaches 30, it is an
indication that the asset may be getting oversold and is therefore likely to become
undervalued.

Rate of change (ROC)
This is a momentum oscillator that measures the percentage change between the
current price and the n period past prices. Assets with higher ROC values are
considered more likely to be overbought; those with lower ROC, more likely to
be oversold.

182 | Chapter 6: Supervised Learning: Classification

Momentum (MOM)
This is the rate of acceleration of a security’s price or volume—that is, the speed
at which the price is changing.

The following steps show how to generate some useful features for prediction. The
features for trend and momentum can be leveraged for other trading strategy models:

#calculation of exponential moving average
def EMA(df, n):
 EMA = pd.Series(df['Close'].ewm(span=n, min_periods=n).mean(), name='EMA_'\
 + str(n))
 return EMA
dataset['EMA10'] = EMA(dataset, 10)
dataset['EMA30'] = EMA(dataset, 30)
dataset['EMA200'] = EMA(dataset, 200)
dataset.head()

#calculation of rate of change
def ROC(df, n):
 M = df.diff(n - 1)
 N = df.shift(n - 1)
 ROC = pd.Series(((M / N) * 100), name = 'ROC_' + str(n))
 return ROC
dataset['ROC10'] = ROC(dataset['Close'], 10)
dataset['ROC30'] = ROC(dataset['Close'], 30)

#calculation of price momentum
def MOM(df, n):
 MOM = pd.Series(df.diff(n), name='Momentum_' + str(n))
 return MOM
dataset['MOM10'] = MOM(dataset['Close'], 10)
dataset['MOM30'] = MOM(dataset['Close'], 30)

#calculation of relative strength index
def RSI(series, period):
 delta = series.diff().dropna()
 u = delta * 0
 d = u.copy()
 u[delta > 0] = delta[delta > 0]
 d[delta < 0] = -delta[delta < 0]
 u[u.index[period-1]] = np.mean(u[:period]) #first value is sum of avg gains
 u = u.drop(u.index[:(period-1)])
 d[d.index[period-1]] = np.mean(d[:period]) #first value is sum of avg losses
 d = d.drop(d.index[:(period-1)])
 rs = u.ewm(com=period-1, adjust=False).mean() / \
 d.ewm(com=period-1, adjust=False).mean()
 return 100 - 100 / (1 + rs)
dataset['RSI10'] = RSI(dataset['Close'], 10)
dataset['RSI30'] = RSI(dataset['Close'], 30)
dataset['RSI200'] = RSI(dataset['Close'], 200)

#calculation of stochastic osillator.

Case Study 3: Bitcoin Trading Strategy | 183

def STOK(close, low, high, n):
 STOK = ((close - low.rolling(n).min()) / (high.rolling(n).max() - \
 low.rolling(n).min())) * 100
 return STOK

def STOD(close, low, high, n):
 STOK = ((close - low.rolling(n).min()) / (high.rolling(n).max() - \
 low.rolling(n).min())) * 100
 STOD = STOK.rolling(3).mean()
 return STOD

dataset['%K10'] = STOK(dataset['Close'], dataset['Low'], dataset['High'], 10)
dataset['%D10'] = STOD(dataset['Close'], dataset['Low'], dataset['High'], 10)
dataset['%K30'] = STOK(dataset['Close'], dataset['Low'], dataset['High'], 30)
dataset['%D30'] = STOD(dataset['Close'], dataset['Low'], dataset['High'], 30)
dataset['%K200'] = STOK(dataset['Close'], dataset['Low'], dataset['High'], 200)
dataset['%D200'] = STOD(dataset['Close'], dataset['Low'], dataset['High'], 200)

#calculation of moving average
def MA(df, n):
 MA = pd.Series(df['Close'].rolling(n, min_periods=n).mean(), name='MA_'\
 + str(n))
 return MA
dataset['MA21'] = MA(dataset, 10)
dataset['MA63'] = MA(dataset, 30)
dataset['MA252'] = MA(dataset, 200)

With our features completed, we’ll prepare them for use.

4.4. Data visualization. In this step, we visualize different properties of the features
and the predicted variable:

dataset[['Weighted_Price']].plot(grid=True)
plt.show()

Output

184 | Chapter 6: Supervised Learning: Classification

The chart illustrates a sharp rise in the price of bitcoin, increasing from close to $0 to
around $2,500 in 2017. Also, high price volatility is readily visible.

Let us look at the distribution of the predicted variable:

fig = plt.figure()
plot = dataset.groupby(['signal']).size().plot(kind='barh', color='red')
plt.show()

Output

The predicted variable is 1 more than 52% of the time, meaning there are more buy
signals than sell signals. The predicted variable is relatively balanced, especially as
compared to the fraud dataset we saw in the first case study.

5. Evaluate algorithms and models
In this step, we will evaluate different algorithms.

5.1. Train-test split. We first split the dataset into training (80%) and test (20%) sets.
For this case study we use 100,000 observations for a faster calculation. The next steps
would be same in the event we want to use the entire dataset:

split out validation dataset for the end
subset_dataset= dataset.iloc[-100000:]
Y= subset_dataset["signal"]
X = subset_dataset.loc[:, dataset.columns != 'signal']
validation_size = 0.2
seed = 1
X_train, X_validation, Y_train, Y_validation =\
train_test_split(X, Y, test_size=validation_size, random_state=1)

Case Study 3: Bitcoin Trading Strategy | 185

5.2. Test options and evaluation metrics. Accuracy can be used as the evaluation metric
since there is not a significant class imbalance in the data:

test options for classification
num_folds = 10
scoring = 'accuracy'

5.3. Compare models and algorithms. In order to know which algorithm is best for our
strategy, we evaluate the linear, nonlinear, and ensemble models.

5.3.1. Models. Checking the classification algorithms:

models = []
models.append(('LR', LogisticRegression(n_jobs=-1)))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
#Neural Network
models.append(('NN', MLPClassifier()))
Ensemble Models
Boosting methods
models.append(('AB', AdaBoostClassifier()))
models.append(('GBM', GradientBoostingClassifier()))
Bagging methods
models.append(('RF', RandomForestClassifier(n_jobs=-1)))

After performing the k-fold cross validation, the comparison of the models is as
follows:

186 | Chapter 6: Supervised Learning: Classification

Although some of the models show promising results, we prefer an ensemble model
given the huge size of the dataset, the large number of features, and an expected non‐
linear relationship between the predicted variable and the features. Random forest
has the best performance among the ensemble models.

6. Model tuning and grid search
A grid search is performed for the random forest model by varying the number of
estimators and maximum depth. The details of the random forest model and the
parameters to tune are discussed in Chapter 4:

n_estimators = [20,80]
max_depth= [5,10]
criterion = ["gini","entropy"]
param_grid = dict(n_estimators=n_estimators, max_depth=max_depth, \
 criterion = criterion)
model = RandomForestClassifier(n_jobs=-1)
kfold = KFold(n_splits=num_folds, random_state=seed)
grid = GridSearchCV(estimator=model, param_grid=param_grid, \
 scoring=scoring, cv=kfold)
grid_result = grid.fit(X_train, Y_train)
print("Best: %f using %s" % (grid_result.best_score_,\
 grid_result.best_params_))

Output

Best: 0.903438 using {'criterion': 'gini', 'max_depth': 10, 'n_estimators': 80}

7. Finalize the model
Let us finalize the model with the best parameters found during the tuning step and
perform the variable intuition.

7.1. Results on the test dataset. In this step, we evaluate the selected model on the test
set:

prepare model
model = RandomForestClassifier(criterion='gini', n_estimators=80,max_depth=10)

#model = LogisticRegression()
model.fit(X_train, Y_train)

estimate accuracy on validation set
predictions = model.predict(X_validation)
print(accuracy_score(Y_validation, predictions))

Output

0.9075

Case Study 3: Bitcoin Trading Strategy | 187

The selected model performs quite well, with an accuracy of 90.75%. Let us look at
the confusion matrix:

The overall model performance is reasonable and is in line with the training set
results.

7.2. Variable intuition/feature importance. Let us look into the feature importance of the
model:

Importance = pd.DataFrame({'Importance':model.feature_importances_*100},\
 index=X.columns)
Importance.sort_values('Importance', axis=0, ascending=True).plot(kind='barh', \
color='r')
plt.xlabel('Variable Importance')

Output

The result of the variable importance looks intuitive, and the momentum indicators
of RSI and MOM over the last 30 days seem to be the two most important features.

188 | Chapter 6: Supervised Learning: Classification

The feature importance chart corroborates the fact that introducing new features
leads to an improvement in the model performance.

7.3. Backtesting results. In this additional step, we perform a backtest on the model
we’ve developed. We create a column for strategy returns by multiplying the daily
returns by the position that was held at the close of business the previous day and
compare it against the actual returns.

Backtesting Trading Strategies

A backtesting approach similar to the one presented in this case
study can be used to quickly backtest any trading strategy.

backtestdata = pd.DataFrame(index=X_validation.index)
backtestdata['signal_pred'] = predictions
backtestdata['signal_actual'] = Y_validation
backtestdata['Market Returns'] = X_validation['Close'].pct_change()
backtestdata['Actual Returns'] = backtestdata['Market Returns'] *\
backtestdata['signal_actual'].shift(1)
backtestdata['Strategy Returns'] = backtestdata['Market Returns'] * \
backtestdata['signal_pred'].shift(1)
backtestdata=backtestdata.reset_index()
backtestdata.head()
backtestdata[['Strategy Returns','Actual Returns']].cumsum().hist()
backtestdata[['Strategy Returns','Actual Returns']].cumsum().plot()

Output

Case Study 3: Bitcoin Trading Strategy | 189

Looking at the backtesting results, we do not deviate significantly from the actual
market return. Indeed, the achieved momentum trading strategy made us better at
predicting the price direction to buy or sell in order to make profits. However, as our
accuracy is not 100% (but more than 96%), we made relatively few losses compared
to the actual returns.

Conclusion
This case study demonstrated that framing the problem is a key step when tackling a
finance problem with machine learning. In doing so, it was detemined that trans‐
forming the labels according to an investment objective and performing feature engi‐
neering were required for this trading strategy. We demonstrated the efficiency of
using intuitive features related to the trend and momentum of the price movement.
This helped increase the predictive power of the model. Finally, we introduced a
backtesting framework, which allowed us to simulate a trading strategy using histori‐
cal data. This enabled us to generate results and analyze risk and profitability before
risking any actual capital.

Chapter Summary
In “Case Study 1: Fraud Detection” on page 153, we explored the issue of an unbal‐
anced dataset and the importance of having the right evaluation metric. In “Case
Study 2: Loan Default Probability” on page 166, various techniques and concepts of
data processing, feature selection, and exploratory analysis were covered. In “Case
Study 3: Bitcoin Trading Strategy” on page 179, we looked at ways to create technical

190 | Chapter 6: Supervised Learning: Classification

indicators as features in order to use them for model enhancement. We also prepared
a backtesting framework for a trading strategy.

Overall, the concepts in Python, machine learning, and finance presented in this
chapter can used as a blueprint for any other classification-based problem in finance.

Exercises
• Predict whether a stock price will go up or down using the features related to the

stock or macroeconomic variables (use the ideas from the bitcoin-based case
study presented in this chapter).

• Create a model to detect money laundering using the features of a transaction. A
sample dataset for this exercise can be obtained from Kaggle.

• Perform a credit rating analysis of corporations using the features related to
creditworthiness.

Exercises | 191

https://oreil.ly/GcinN

PART III

Unsupervised Learning

CHAPTER 7

Unsupervised Learning:
Dimensionality Reduction

In previous chapters, we used supervised learning techniques to build machine learn‐
ing models using data where the answer was already known (i.e., the class labels were
available in our input data). Now we will explore unsupervised learning, where we
draw inferences from datasets consisting of input data when the answer is unknown.
Unsupervised learning algorithms attempt to infer patterns from the data without
any knowledge of the output the data is meant to yield. Without requiring labeled
data, which can be time-consuming and impractical to create or acquire, this family
of models allows for easy use of larger datasets for analysis and model development.

Dimensionality reduction is a key technique within unsupervised learning. It com‐
presses the data by finding a smaller, different set of variables that capture what mat‐
ters most in the original features, while minimizing the loss of information.
Dimensionality reduction helps mitigate problems associated with high dimensional‐
ity and permits the visualization of salient aspects of higher-dimensional data that is
otherwise difficult to explore.

In the context of finance, where datasets are often large and contain many dimen‐
sions, dimensionality reduction techniques prove to be quite practical and useful.
Dimensionality reduction enables us to reduce noise and redundancy in the dataset
and find an approximate version of the dataset using fewer features. With fewer vari‐
ables to consider, exploration and visualization of a dataset becomes more straight‐
forward. Dimensionality reduction techniques also enhance supervised learning–
based models by reducing the number of features or by finding new ones. Practition‐
ers use these dimensionality reduction techniques to allocate funds across asset
classes and individual investments, identify trading strategies and signals, implement
portfolio hedging and risk management, and develop instrument pricing models.

195

In this chapter, we will discuss fundamental dimensionality reduction techniques and
walk through three case studies in the areas of portfolio management, interest rate
modeling, and trading strategy development. The case studies are designed to not
only cover diverse topics from a finance standpoint but also highlight multiple
machine learning and data science concepts. The standardized template containing
the detailed implementation of modeling steps in Python and machine learning and
finance concepts can be used as a blueprint for any other dimensionality reduction–
based problem in finance.

In “Case Study 1: Portfolio Management: Finding an Eigen Portfolio” on page 202, we
use a dimensionality reduction algorithm to allocate capital into different asset classes
to maximize risk-adjusted returns. We also introduce a backtesting framework to
assess the performance of the portfolio we constructed.

In “Case Study 2: Yield Curve Construction and Interest Rate Modeling” on page 217,
we use dimensionality reduction techniques to generate the typical movements of a
yield curve. This will illustrate how dimensionality reduction techniques can be used
for reducing the dimension of market variables across a number of asset classes to
promote faster and effective portfolio management, trading, hedging, and risk man‐
agement.

In “Case Study 3: Bitcoin Trading: Enhancing Speed and Accuracy” on page 227, we
use dimensionality reduction techniques for algorithmic trading. This case study
demonstrates data exploration in low dimension.

In addition to the points mentioned above, readers will understand the following
points by the end of this chapter:

• Basic concepts of models and techniques used for dimensionality reduction and
how to implement them in Python.

• Concepts of eigenvalues and eigenvectors of Principal Component Analysis
(PCA), selecting the right number of principal components, and extracting the
factor weights of principal components.

• Usage of dimensionality reduction techniques such as singular value decomposi‐
tion (SVD) and t-SNE to summarize high-dimensional data for effective data
exploration and visualization.

• How to reconstruct the original data using the reduced principal components.
• How to enhance the speed and accuracy of supervised learning algorithms using

dimensionality reduction.

196 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

• A backtesting framework for the portfolio performance computing and analyz‐
ing portfolio performance metrics such as the Sharpe ratio and the annualized
return of the portfolio.

This Chapter’s Code Repository

A Python-based master template for dimensionality reduction,
along with the Jupyter notebook for all the case studies in this
chapter, is included in the folder Chapter 7 - Unsup. Learning -
Dimensionality Reduction in the code repository for this book. To
work through any dimensionality reduction–modeling machine
learning problems in Python involving the dimensionality reduc‐
tion models (such as PCA, SVD, Kernel PCA, or t-SNE) presented
in this chapter, readers need to modify the template slightly to
align with their problem statement. All the case studies presented
in this chapter use the standard Python master template with the
standardized model development steps presented in Chapter 3. For
the dimensionality reduction case studies, steps 6 (i.e., model tun‐
ing) and 7 (i.e., finalizing the model) are relatively lighter com‐
pared to the supervised learning models, so these steps have been
merged with step 5. For situations in which steps are irrelevant,
they have been skipped or combined with others to make the flow
of the case study more intuitive.

Dimensionality Reduction Techniques
Dimensionality reduction represents the information in a given dataset more effi‐
ciently by using fewer features. These techniques project data onto a lower dimen‐
sional space by either discarding variation in the data that is not informative or
identifying a lower dimensional subspace on or near where the data resides.

There are many types of dimensionality reduction techniques. In this chapter, we will
cover these most frequently used techniques for dimensionality reduction:

• Principal component analysis (PCA)
• Kernel principal component analysis (KPCA)
• t-distributed stochastic neighbor embedding (t-SNE)

After application of these dimensionality reduction techniques, the low-dimension
feature subspace can be a linear or nonlinear function of the corresponding high-
dimensional feature subspace. Hence, on a broad level these dimensionality reduc‐
tion algorithms can be classified as linear and nonlinear. Linear algorithms, such as
PCA, force the new variables to be linear combinations of the original features.

Dimensionality Reduction Techniques | 197

https://oreil.ly/tI-KJ
https://oreil.ly/tI-KJ

Nonlinear algorithms such KPCA and t-SNE can capture more complex structures in
the data. However, given the infinite number of options, the algorithms still need to
make assumptions to arrive at a solution.

Principal Component Analysis
The idea of principal component analysis (PCA) is to reduce the dimensionality of a
dataset with a large number of variables, while retaining as much variance in the data
as possible. PCA allows us to understand whether there is a different representation
of the data that can explain a majority of the original data points.

PCA finds a set of new variables that, through a linear combination, yield the original
variables. The new variables are called principal components (PCs). These principal
components are orthogonal (or independent) and can represent the original data.
The number of components is a hyperparameter of the PCA algorithm that sets the
target dimensionality.

The PCA algorithm works by projecting the original data onto the principal compo‐
nent space. It then identifies a sequence of principal components, each of which
aligns with the direction of maximum variance in the data (after accounting for var‐
iation captured by previously computed components). The sequential optimization
also ensures that new components are not correlated with existing components. Thus
the resulting set constitutes an orthogonal basis for a vector space.

The decline in the amount of variance of the original data explained by each principal
component reflects the extent of correlation among the original features. The number
of components that capture, for example, 95% of the original variation relative to the
total number of features provides an insight into the linearly independent informa‐
tion of the original data. In order to understand how PCA works, let’s consider the
distribution of data shown in Figure 7-1.

Figure 7-1. PCA-1

PCA finds a new quadrant system (y’ and x’ axes) that is obtained from the original
through translation and rotation. It will move the center of the coordinate system
from the original point (0, 0) to the center of the distribution of data points. It will
then move the x-axis into the principal axis of variation, which is the one with the

198 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

1 Eigenvectors and eigenvalues are concepts of linear algebra.

most variation relative to data points (i.e., the direction of maximum spread). Then it
moves the other axis orthogonally to the principal one, into a less important direction
of variation.

Figure 7-2 shows an example of PCA in which two dimensions explain nearly all the
variance of the underlying data.

Figure 7-2. PCA-2

These new directions that contain the maximum variance are called principal compo‐
nents and are orthogonal to each other by design.

There are two approaches to finding the principal components: Eigen decomposition
and singular value decomposition (SVD).

Eigen decomposition
The steps of Eigen decomposition are as follows:

1. First, a covariance matrix is created for the features.
2. Once the covariance matrix is computed, the eigenvectors of the covariance

matrix are calculated.1 These are the directions of maximum variance.
3. The eigenvalues are then created. They define the magnitude of the principal

components.

So, for n dimensions, there will be an n × n variance-covariance matrix, and as a
result, we will have an eigenvector of n values and n eigenvalues.

Python’s sklearn library offers a powerful implementation of PCA. The
sklearn.decomposition.PCA function computes the desired number of principal
components and projects the data into the component space. The following code
snippet illustrates how to create two principal components from a dataset.

Dimensionality Reduction Techniques | 199

https://oreil.ly/fDaLg

Implementation

Import PCA Algorithm
from sklearn.decomposition import PCA
Initialize the algorithm and set the number of PC's
pca = PCA(n_components=2)
Fit the model to data
pca.fit(data)
Get list of PC's
pca.components_
Transform the model to data
pca.transform(data)
Get the eigenvalues
pca.explained_variance_ratio

There are additional items, such as factor loading, that can be obtained using the
functions in the sklearn library. Their use will be demonstrated in the case studies.

Singular value decomposition
Singular value decomposition (SVD) is factorization of a matrix into three matrices
and is applicable to a more general case of m × n rectangular matrices.

If A is an m × n matrix, then SVD can express the matrix as:

A = UΣV T

where A is an m × n matrix, U is an (m × m) orthogonal matrix, Σ is an (m × n)
nonnegative rectangular diagonal matrix, and V is an (n × n) orthogonal matrix. SVD
of a given matrix tells us exactly how we can decompose the matrix. Σ is a diagonal
matrix with m diagonal values called singular values. Their magnitude indicates how
significant they are to preserving the information of the original data. V contains the
principal components as column vectors.

As shown above, both Eigen decomposition and SVD tell us that using PCA is effec‐
tively looking at the initial data from a different angle. Both will always give the same
answer; however, SVD can be much more efficient than Eigen decomposition, as it is
able to handle sparse matrices (those which contain very few nonzero elements). In
addition, SVD yields better numerical stability, especially when some of the features
are strongly correlated.

Truncated SVD is a variant of SVD that computes only the largest singular values,
where the number of computes is a user-specified parameter. This method is differ‐
ent from regular SVD in that it produces a factorization where the number of col‐
umns is equal to the specified truncation. For example, given an n × n matrix, SVD
will produce matrices with n columns, whereas truncated SVD will produce matrices
with a specified number of columns that may be less than n.

200 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

Implementation

from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(ncomps=20).fit(X)

In terms of the weaknesses of the PCA technique, although it is very effective in
reducing the number of dimensions, the resulting principal components may be less
interpretable than the original features. Additionally, the results may be sensitive to
the selected number of principal components. For example, too few principal compo‐
nents may miss some information compared to the original list of features. Also, PCA
may not work well if the data is strongly nonlinear.

Kernel Principal Component Analysis
A main limitation of PCA is that it only applies linear transformations. Kernel princi‐
pal component analysis (KPCA) extends PCA to handle nonlinearity. It first maps
the original data to some nonlinear feature space (usually one of higher dimension).
Then it applies PCA to extract the principal components in that space.

A simple example of when KPCA is applicable is shown in Figure 7-3. Linear trans‐
formations are suitable for the blue and red data points on the left-hand plot.
However, if all dots are arranged as per the graph on the right, the result is not line‐
arly separable. We would then need to apply KPCA to separate the components.

Figure 7-3. Kernel PCA

Implementation

from sklearn.decomposition import KernelPCA
kpca = KernelPCA(n_components=4, kernel='rbf').fit_transform(X)

In the Python code, we specify kernel='rbf', which is the radial basis function ker‐
nel. This is commonly used as a kernel in machine learning techniques, such as in
SVMs (see Chapter 4).

Using KPCA, component separation becomes easier in a higher dimensional space,
as mapping into a higher dimensional space often provides greater classification
power.

Dimensionality Reduction Techniques | 201

https://oreil.ly/zCo-X
https://oreil.ly/zCo-X

t-distributed Stochastic Neighbor Embedding
t-distributed stochastic neighbor embedding (t-SNE) is a dimensionality reduction
algorithm that reduces the dimensions by modeling the probability distribution of
neighbors around each point. Here, the term neighbors refers to the set of points clos‐
est to a given point. The algorithm emphasizes keeping similar points together in low
dimensions as opposed to maintaining the distance between points that are apart in
high dimensions.

The algorithm starts by calculating the probability of similarity of data points in cor‐
responding high and low dimensional space. The similarity of points is calculated as
the conditional probability that a point A would choose point B as its neighbor if
neighbors were picked in proportion to their probability density under a normal dis‐
tribution centered at A. The algorithm then tries to minimize the difference between
these conditional probabilities (or similarities) in the high and low dimensional
spaces for a perfect representation of data points in the low dimensional space.

Implementation

from sklearn.manifold import TSNE
X_tsne = TSNE().fit_transform(X)

An implementation of t-SNE is shown in the third case study presented in this
chapter.

Case Study 1: Portfolio Management: Finding an Eigen
Portfolio
A primary objective of portfolio management is to allocate capital into different asset
classes to maximize risk-adjusted returns. Mean-variance portfolio optimization is
the most commonly used technique for asset allocation. This method requires an
estimated covariance matrix and expected returns of the assets considered. However,
the erratic nature of financial returns leads to estimation errors in these inputs, espe‐
cially when the sample size of returns is insufficient compared to the number of
assets being allocated. These errors greatly jeopardize the optimality of the resulting
portfolios, leading to poor and unstable outcomes.

Dimensionality reduction is a technique we can use to address this issue. Using PCA,
we can take an n × n covariance matrix of our assets and create a set of n linearly
uncorrelated principal portfolios (sometimes referred to in literature as an eigen port‐
folio) made up of our assets and their corresponding variances. The principal compo‐
nents of the covariance matrix capture most of the covariation among the assets and
are mutually uncorrelated. Moreover, we can use standardized principal components
as the portfolio weights, with the statistical guarantee that the returns from these
principal portfolios are linearly uncorrelated.

202 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

By the end of this case study, readers will be familiar with a general approach to find‐
ing an eigen portfolio for asset allocation, from understanding concepts of PCA to
backtesting different principal components.

This case study will focus on:

• Understanding eigenvalues and eigenvectors of PCA and deriving portfolio
weights using the principal components.

• Developing a backtesting framework to evaluate portfolio performance.
• Understanding how to work through a dimensionality reduction modeling prob‐

lem from end to end.

Blueprint for Using Dimensionality Reduction for Asset
Allocation

1. Problem definition
Our goal in this case study is to maximize the risk-adjusted returns of an equity port‐
folio using PCA on a dataset of stock returns.

The dataset used for this case study is the Dow Jones Industrial Average (DJIA) index
and its respective 30 stocks. The return data used will be from the year 2000 onwards
and can be downloaded from Yahoo Finance.

We will also compare the performance of our hypothetical portfolios against a bench‐
mark and backtest the model to evaluate the effectiveness of the approach.

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The list of the libraries used for data loading, data
analysis, data preparation, model evaluation, and model tuning are shown below. The
details of most of these packages and functions can be found in Chapters 2 and 4.

Packages for dimensionality reduction

from sklearn.decomposition import PCA
from sklearn.decomposition import TruncatedSVD
from numpy.linalg import inv, eig, svd
from sklearn.manifold import TSNE
from sklearn.decomposition import KernelPCA

Case Study 1: Portfolio Management: Finding an Eigen Portfolio | 203

Packages for data processing and visualization

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import read_csv, set_option
from pandas.plotting import scatter_matrix
import seaborn as sns
from sklearn.preprocessing import StandardScaler

2.2. Loading the data. We import the dataframe containing the adjusted closing prices
for all the companies in the DJIA index:

load dataset
dataset = read_csv('Dow_adjcloses.csv', index_col=0)

3. Exploratory data analysis
Next, we inspect the dataset.

3.1. Descriptive statistics. Let’s look at the shape of the data:

dataset.shape

Output

(4804, 30)

The data is comprised of 30 columns and 4,804 rows containing the daily closing
prices of the 30 stocks in the index since 2000.

3.2. Data visualization. The first thing we must do is gather a basic sense of our data.
Let us take a look at the return correlations:

correlation = dataset.corr()
plt.figure(figsize=(15, 15))
plt.title('Correlation Matrix')
sns.heatmap(correlation, vmax=1, square=True,annot=True, cmap='cubehelix')

There is a significant positive correlation between the daily returns. The plot (full-size
version available on GitHub) also indicates that the information embedded in the
data may be represented by fewer variables (i.e., something smaller than the 30
dimensions we have now). We will perform another detailed look at the data after
implementing dimensionality reduction.

204 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

https://oreil.ly/yFwu-

Output

4. Data preparation
We prepare the data for modeling in the following sections.

4.1. Data cleaning. First, we check for NAs in the rows and either drop them or fill
them with the mean of the column:

#Checking for any null values and removing the null values'''
print('Null Values =',dataset.isnull().values.any())

Output

Null Values = True

Case Study 1: Portfolio Management: Finding an Eigen Portfolio | 205

Some stocks were added to the index after our start date. To ensure proper analysis,
we will drop those with more than 30% missing values. Two stocks fit this criteria—
Dow Chemicals and Visa:

missing_fractions = dataset.isnull().mean().sort_values(ascending=False)
missing_fractions.head(10)
drop_list = sorted(list(missing_fractions[missing_fractions > 0.3].index))
dataset.drop(labels=drop_list, axis=1, inplace=True)
dataset.shape

Output

(4804, 28)

We end up with return data for 28 companies and an additional one for the DJIA
index. Now we fill the NAs with the mean of the columns:

Fill the missing values with the last value available in the dataset.
dataset=dataset.fillna(method='ffill')

4.2. Data transformation. In addition to handling the missing values, we also want to
standardize the dataset features onto a unit scale (mean = 0 and variance = 1). All the
variables should be on the same scale before applying PCA; otherwise, a feature with
large values will dominate the result. We use StandardScaler in sklearn to standard‐
ize the dataset, as shown below:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(datareturns)
rescaledDataset = pd.DataFrame(scaler.fit_transform(datareturns),columns =\
 datareturns.columns, index = datareturns.index)
summarize transformed data
datareturns.dropna(how='any', inplace=True)
rescaledDataset.dropna(how='any', inplace=True)

Overall, cleaning and standardizing the data is important in order to create a mean‐
ingful and reliable dataset to be used in dimensionality reduction without error.

Let us look at the returns of one of the stocks from the cleaned and standardized
dataset:

Visualizing Log Returns for the DJIA
plt.figure(figsize=(16, 5))
plt.title("AAPL Return")
rescaledDataset.AAPL.plot()
plt.grid(True);
plt.legend()
plt.show()

206 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

Output

5. Evaluate algorithms and models

5.1. Train-test split. The portfolio is divided into training and test sets to perform the
analysis regarding the best portfolio and to perform backtesting:

Dividing the dataset into training and testing sets
percentage = int(len(rescaledDataset) * 0.8)
X_train = rescaledDataset[:percentage]
X_test = rescaledDataset[percentage:]

stock_tickers = rescaledDataset.columns.values
n_tickers = len(stock_tickers)

5.2. Model evaluation: applying principal component analysis. As the next step, we create a
function to perform PCA using the sklearn library. This function generates the prin‐
cipal components from the data that will be used for further analysis:

pca = PCA()
PrincipalComponent=pca.fit(X_train)

5.2.1. Explained variance using PCA. In this step, we look at the variance explained using
PCA. The decline in the amount of variance of the original data explained by each
principal component reflects the extent of correlation among the original features.
The first principal component captures the most variance in the original data, the
second component is a representation of the second highest variance, and so on. The
eigenvectors with the lowest eigenvalues describe the least amount of variation within
the dataset. Therefore, these values can be dropped.

The following charts show the number of principal components and the variance
explained by each.

NumEigenvalues=20
fig, axes = plt.subplots(ncols=2, figsize=(14,4))
Series1 = pd.Series(pca.explained_variance_ratio_[:NumEigenvalues]).sort_values()

Case Study 1: Portfolio Management: Finding an Eigen Portfolio | 207

Series2 = pd.Series(pca.explained_variance_ratio_[:NumEigenvalues]).cumsum()
Series1.plot.barh(title='Explained Variance Ratio by Top Factors', ax=axes[0]);
Series1.plot(ylim=(0,1), ax=axes[1], title='Cumulative Explained Variance');

Output

We find that the most important factor explains around 40% of the daily return var‐
iation. This dominant principal component is usually interpreted as the “market” fac‐
tor. We will discuss the interpretation of this and the other factors when looking at
the portfolio weights.

The plot on the right shows the cumulative explained variance and indicates that
around ten factors explain 73% of the variance in returns of the 28 stocks analyzed.

5.2.2. Looking at portfolio weights. In this step, we look more closely at the individual
principal components. These may be less interpretable than the original features.
However, we can look at the weights of the factors on each principal component to
assess any intuitive themes relative to the 28 stocks. We construct five portfolios,
defining the weights of each stock as each of the first five principal components. We
then create a scatterplot that visualizes an organized descending plot with the respec‐
tive weight of every company at the current chosen principal component:

def PCWeights():
 #Principal Components (PC) weights for each 28 PCs

 weights = pd.DataFrame()
 for i in range(len(pca.components_)):
 weights["weights_{}".format(i)] = \
 pca.components_[i] / sum(pca.components_[i])
 weights = weights.values.T
 return weights
weights=PCWeights()

sum(pca.components_[0])

Output

-5.247808242068631

208 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

NumComponents=5
topPortfolios = pd.DataFrame(pca.components_[:NumComponents],\
 columns=dataset.columns)
eigen_portfolios = topPortfolios.div(topPortfolios.sum(1), axis=0)
eigen_portfolios.index = [f'Portfolio {i}' for i in range(NumComponents)]
np.sqrt(pca.explained_variance_)
eigen_portfolios.T.plot.bar(subplots=True, layout=(int(NumComponents),1), \
figsize=(14,10), legend=False, sharey=True, ylim= (-1,1))

Given that scale for the plots are the same, we can also look at the heatmap as follows:

Output

plotting heatmap
sns.heatmap(topPortfolios)

Case Study 1: Portfolio Management: Finding an Eigen Portfolio | 209

Output

The heatmap and barplots show the contribution of different stocks in each
eigenvector.

Traditionally, the intuition behind each principal portfolio is that it represents some
sort of independent risk factor. The manifestation of those risk factors depends on
the assets in the portfolio. In our case study, the assets are all U.S. domestic equities.
The principal portfolio with the largest variance is typically a systematic risk factor
(i.e., “market” factor). Looking at the first principal component (Portfolio 0), we see
that the weights are distributed homogeneously across the stocks. This nearly equal
weighted portfolio explains 40% of the variance in the index and is a fair representa‐
tion of a systematic risk factor.

The rest of the eigen portfolios typically correspond to sector or industry factors. For
example, Portfolio 1 assigns a high weight to JNJ and MRK, which are stocks from the
health care sector. Similarly, Portfolio 3 has high weights on technology and electron‐
ics companies, such AAPL, MSFT, and IBM.

When the asset universe for our portfolio is expanded to include broad, global invest‐
ments, we may identify factors for international equity risk, interest rate risk, com‐
modity exposure, geographic risk, and many others.

In the next step, we find the best eigen portfolio.

5.2.3. Finding the best eigen portfolio. To determine the best eigen portfolio, we use the
Sharpe ratio. This is an assessment of risk-adjusted performance that explains the
annualized returns against the annualized volatility of a portfolio. A high Sharpe ratio
explains higher returns and/or lower volatility for the specified portfolio. The annual‐
ized Sharpe ratio is computed by dividing the annualized returns against the annual‐
ized volatility. For annualized return we apply the geometric average of all the returns

210 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

in respect to the periods per year (days of operations in the exchange in a year).
Annualized volatility is computed by taking the standard deviation of the returns and
multiplying it by the square root of the periods per year.

The following code computes the Sharpe ratio of a portfolio:

Sharpe Ratio Calculation
Calculation based on conventional number of trading days per year (i.e., 252).
def sharpe_ratio(ts_returns, periods_per_year=252):
 n_years = ts_returns.shape[0]/ periods_per_year
 annualized_return = np.power(np.prod(1+ts_returns), (1/n_years))-1
 annualized_vol = ts_returns.std() * np.sqrt(periods_per_year)
 annualized_sharpe = annualized_return / annualized_vol

 return annualized_return, annualized_vol, annualized_sharpe

We construct a loop to compute the principal component weights for each eigen
portfolio. Then it uses the Sharpe ratio function to look for the portfolio with the
highest Sharpe ratio. Once we know which portfolio has the highest Sharpe ratio, we
can visualize its performance against the index for comparison:

def optimizedPortfolio():
 n_portfolios = len(pca.components_)
 annualized_ret = np.array([0.] * n_portfolios)
 sharpe_metric = np.array([0.] * n_portfolios)
 annualized_vol = np.array([0.] * n_portfolios)
 highest_sharpe = 0
 stock_tickers = rescaledDataset.columns.values
 n_tickers = len(stock_tickers)
 pcs = pca.components_

 for i in range(n_portfolios):

 pc_w = pcs[i] / sum(pcs[i])
 eigen_prtfi = pd.DataFrame(data ={'weights': pc_w.squeeze()*100}, \
 index = stock_tickers)
 eigen_prtfi.sort_values(by=['weights'], ascending=False, inplace=True)
 eigen_prti_returns = np.dot(X_train_raw.loc[:, eigen_prtfi.index], pc_w)
 eigen_prti_returns = pd.Series(eigen_prti_returns.squeeze(),\
 index=X_train_raw.index)
 er, vol, sharpe = sharpe_ratio(eigen_prti_returns)
 annualized_ret[i] = er
 annualized_vol[i] = vol
 sharpe_metric[i] = sharpe

 sharpe_metric= np.nan_to_num(sharpe_metric)

 # find portfolio with the highest Sharpe ratio
 highest_sharpe = np.argmax(sharpe_metric)

 print('Eigen portfolio #%d with the highest Sharpe. Return %.2f%%,\
 vol = %.2f%%, Sharpe = %.2f' %

Case Study 1: Portfolio Management: Finding an Eigen Portfolio | 211

 (highest_sharpe,
 annualized_ret[highest_sharpe]*100,
 annualized_vol[highest_sharpe]*100,
 sharpe_metric[highest_sharpe]))

 fig, ax = plt.subplots()
 fig.set_size_inches(12, 4)
 ax.plot(sharpe_metric, linewidth=3)
 ax.set_title('Sharpe ratio of eigen-portfolios')
 ax.set_ylabel('Sharpe ratio')
 ax.set_xlabel('Portfolios')

 results = pd.DataFrame(data={'Return': annualized_ret,\
 'Vol': annualized_vol,
 'Sharpe': sharpe_metric})
 results.dropna(inplace=True)
 results.sort_values(by=['Sharpe'], ascending=False, inplace=True)
 print(results.head(5))

 plt.show()

optimizedPortfolio()

Output

Eigen portfolio #0 with the highest Sharpe. Return 11.47%, vol = 13.31%, \
Sharpe = 0.86
 Return Vol Sharpe
0 0.115 0.133 0.862
7 0.096 0.693 0.138
5 0.100 0.845 0.118
1 0.057 0.670 0.084

As shown by the results above, Portfolio 0 is the best performing one, with the highest
return and the lowest volatility. Let us look at the composition of this portfolio:

weights = PCWeights()
portfolio = portfolio = pd.DataFrame()

212 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

def plotEigen(weights, plot=False, portfolio=portfolio):
 portfolio = pd.DataFrame(data ={'weights': weights.squeeze() * 100}, \
 index = stock_tickers)
 portfolio.sort_values(by=['weights'], ascending=False, inplace=True)
 if plot:
 portfolio.plot(title='Current Eigen-Portfolio Weights',
 figsize=(12, 6),
 xticks=range(0, len(stock_tickers), 1),
 rot=45,
 linewidth=3
)
 plt.show()

 return portfolio

Weights are stored in arrays, where 0 is the first PC's weights.
plotEigen(weights=weights[0], plot=True)

Output

Recall that this is the portfolio that explains 40% of the variance and represents the
systematic risk factor. Looking at the portfolio weights (in percentages in the y-axis),
they do not vary much and are in the range of 2.7% to 4.5% across all stocks. How‐
ever, the weights seem to be higher in the financial sector, and stocks such as AXP,
JPM, and GS have higher-than-average weights.

Case Study 1: Portfolio Management: Finding an Eigen Portfolio | 213

5.2.4. Backtesting the eigen portfolios. We will now try to backtest this algorithm on
the test set. We will look at a few of the top performers and the worst performer. For
the top performers we look at the 3rd- and 4th-ranked eigen portfolios (Portfolios 5
and 1), while the worst performer reviewed was ranked 19th (Portfolio 14):

def Backtest(eigen):

 '''
 Plots principal components returns against real returns.
 '''

 eigen_prtfi = pd.DataFrame(data ={'weights': eigen.squeeze()}, \
 index=stock_tickers)
 eigen_prtfi.sort_values(by=['weights'], ascending=False, inplace=True)

 eigen_prti_returns = np.dot(X_test_raw.loc[:, eigen_prtfi.index], eigen)
 eigen_portfolio_returns = pd.Series(eigen_prti_returns.squeeze(),\
 index=X_test_raw.index)
 returns, vol, sharpe = sharpe_ratio(eigen_portfolio_returns)
 print('Current Eigen-Portfolio:\nReturn = %.2f%%\nVolatility = %.2f%%\n\
 Sharpe = %.2f' % (returns * 100, vol * 100, sharpe))
 equal_weight_return=(X_test_raw * (1/len(pca.components_))).sum(axis=1)
 df_plot = pd.DataFrame({'EigenPorfolio Return': eigen_portfolio_returns, \
 'Equal Weight Index': equal_weight_return}, index=X_test.index)
 np.cumprod(df_plot + 1).plot(title='Returns of the equal weighted\
 index vs. First eigen-portfolio',
 figsize=(12, 6), linewidth=3)
 plt.show()

Backtest(eigen=weights[5])
Backtest(eigen=weights[1])
Backtest(eigen=weights[14])

Output

Current Eigen-Portfolio:
Return = 32.76%
Volatility = 68.64%
Sharpe = 0.48

214 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

Current Eigen-Portfolio:
Return = 99.80%
Volatility = 58.34%
Sharpe = 1.71

Current Eigen-Portfolio:
Return = -79.42%
Volatility = 185.30%
Sharpe = -0.43

Case Study 1: Portfolio Management: Finding an Eigen Portfolio | 215

As shown in the preceding charts, the eigen portfolio return of the top portfolios out‐
performs the equally weighted index. The eigen portfolio ranked 19th underper‐
formed the market significantly in the test set. The outperformance and
underperformance are attributed to the weights of the stocks or sectors in the eigen
portfolio. We can drill down further to understand the individual drivers of each
portfolio. For example, Portfolio 1 assigns high weight to several stocks in the health
care sector, as discussed previously. This sector saw a significant increase in 2017
onwards, which is reflected in the chart for Eigen Portfolio 1.

Given that these eigen portfolios are independent, they also provide diversification
opportunities. As such, we can invest across these uncorrelated eigen portfolios, pro‐
viding other potential portfolio management benefits.

Conclusion
In this case study, we applied dimensionality reduction techniques in the context of
portfolio management, using eigenvalues and eigenvectors from PCA to perform
asset allocation.

We demonstrated that, while some interpretability is lost, the initution behind the
resulting portfolios can be matched to risk factors. In this example, the first eigen
portfolio represented a systematic risk factor, while others exhibited sector or indus‐
try concentration.

Through backtesting, we found that the portfolio with the best result on the training
set also achieved the strongest performance on the test set. Several of the portfolios
outperformed the index based on the Sharpe ratio, the risk-adjusted performance
metric used in this exercise.

216 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

Overall, we found that using PCA and analyzing eigen portfolios can yield a robust
methodology for asset allocation and portfolio management.

Case Study 2: Yield Curve Construction and Interest Rate
Modeling
A number of problems in portfolio management, trading, and risk management
require a deep understanding and modeling of yield curves.

A yield curve represents interest rates, or yields, across a range of maturities, usually
depicted in a line graph, as discussed in “Case Study 4: Yield Curve Prediction” on
page 141 in Chapter 5. Yield curve illustrates the “price of funds” at a given point in
time and, due to the time value of money, often shows interest rates rising as a func‐
tion of maturity.

Researchers in finance have studied the yield curve and found that shifts or changes
in the shape of the yield curve are attributable to a few unobservable factors. Specifi‐
cally, empirical studies reveal that more than 99% of the movement of various U.S.
Treasury bond yields are captured by three factors, which are often referred to as
level, slope, and curvature. The names describe how each influences the yield curve
shape in response to a shock. A level shock changes the interest rates of all maturities
by almost identical amounts, inducing a parallel shift that changes the level of the
entire curve up or down. A shock to the slope factor changes the difference in short-
term and long-term rates. For instance, when long-term rates increase by a larger
amount than do short-term rates, it results in a curve that becomes steeper (i.e., visu‐
ally, the curve becomes more upward sloping). Changes in the short- and long-term
rates can also produce a flatter yield curve. The main effects of the shock to the curva‐
ture factor focuses on medium-term interest rates, leading to hump, twist, or U-
shaped characteristics.

Dimensionality reduction breaks down the movement of the yield curve into these
three factors. Reducing the yield curve into fewer components means we can focus on
a few intuitive dimensions in the yield curve. Traders and risk managers use this
technique to condense the curve in risk factors for hedging the interest rate risk. Sim‐
ilarly, portfolio managers then have fewer dimensions to analyze when allocating
funds. Interest rate structurers use this technique to model the yield curve and ana‐
lyze its shape. Overall, it promotes faster and more effective portfolio management,
trading, hedging, and risk management.

In this case study, we use PCA to generate typical movements of a yield curve and
show that the first three principal components correspond to a yield curve’s level,
slope, and curvature, respectively.

Case Study 2: Yield Curve Construction and Interest Rate Modeling | 217

This case study will focus on:

• Understanding the intuition behind eigenvectors.
• Using dimensions resulting from dimensionality reduction to reproduce the

original data.

Blueprint for Using Dimensionality Reduction to Generate a
Yield Curve

1. Problem definition
Our goal in this case study is to use dimensionality reduction techniques to generate
the typical movements of a yield curve.

The data used for this case study is obtained from Quandl, a premier source for
financial, economic, and alternative datasets. We use the data of 11 tenors (or maturi‐
ties), from 1-month to 30-years, of Treasury curves. These are of daily frequency and
are available from 1960 onwards.

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The loading of Python packages is similar to the pre‐
vious dimensionality reduction case study. Please refer to the Jupyter notebook of
this case study for more details.

2.2. Loading the data. In the first step, we load the data of different tenors of the
Treasury curves from Quandl:

In order to use quandl, ApiConfig.api_key will need to be
set to identify you to the quandl API. Please see API
Documentation of quandl for more details
quandl.ApiConfig.api_key = 'API Key'

treasury = ['FRED/DGS1MO','FRED/DGS3MO','FRED/DGS6MO','FRED/DGS1',\
'FRED/DGS2','FRED/DGS3','FRED/DGS5','FRED/DGS7','FRED/DGS10',\
'FRED/DGS20','FRED/DGS30']

treasury_df = quandl.get(treasury)
treasury_df.columns = ['TRESY1mo','TRESY3mo','TRESY6mo','TRESY1y',\
'TRESY2y','TRESY3y','TRESY5y','TRESY7y','TRESY10y',\'TRESY20y','TRESY30y']
dataset = treasury_df

218 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

https://www.quandl.com

3. Exploratory data analysis
Here, we will take our first look at the data.

3.1. Descriptive statistics. In the next step we look at the shape of the dataset:

shape
dataset.shape

Output

(14420, 11)

The dataset has 14,420 rows and has the data of 11 tenors of the Treasury curve for
more than 50 years.

3.2. Data visualization. Let us look at the movement of the rates from the downloaded
data:

dataset.plot(figsize=(10,5))
plt.ylabel("Rate")
plt.legend(bbox_to_anchor=(1.01, 0.9), loc=2)
plt.show()

Output

In the next step we look at the correlations across tenors:

correlation
correlation = dataset.corr()
plt.figure(figsize=(15, 15))
plt.title('Correlation Matrix')
sns.heatmap(correlation, vmax=1, square=True, annot=True, cmap='cubehelix')

Case Study 2: Yield Curve Construction and Interest Rate Modeling | 219

Output

There is a significant positive correlation between the tenors, as you can see in the
output (full-size version available on GitHub). This is an indication that reducing the
number dimensions may be useful when modeling with the data. Additional visuali‐
zations of the data will be performed after implementing the dimensionality reduc‐
tion models.

4. Data preparation
Data cleaning and transformation are a necessary modeling prerequisite in this case
study.

220 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

https://oreil.ly/hjQG7

4.1. Data cleaning. Here, we check for NAs in the data and either drop them or fill
them with the mean of the column.

4.2. Data transformation. We standardize the variables on the same scale before apply‐
ing PCA in order to prevent a feature with large values from dominating the result.
We use the StandardScaler function in sklearn to standardize the dataset’s features
onto a unit scale (mean = 0 and variance = 1):

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(dataset)
rescaledDataset = pd.DataFrame(scaler.fit_transform(dataset),\
columns = dataset.columns,
index = dataset.index)
summarize transformed data
dataset.dropna(how='any', inplace=True)
rescaledDataset.dropna(how='any', inplace=True)

Visualizing the standardized dataset

rescaledDataset.plot(figsize=(14, 10))
plt.ylabel("Rate")
plt.legend(bbox_to_anchor=(1.01, 0.9), loc=2)
plt.show()

Output

Case Study 2: Yield Curve Construction and Interest Rate Modeling | 221

5. Evaluate algorithms and models

5.2. Model evaluation—applying principal component analysis. As a next step, we create a
function to perform PCA using the sklearn library. This function generates the prin‐
cipal components from the data that will be used for further analysis:

pca = PCA()
PrincipalComponent=pca.fit(rescaledDataset)

5.2.1. Explained variance using PCA.
NumEigenvalues=5
fig, axes = plt.subplots(ncols=2, figsize=(14, 4))
pd.Series(pca.explained_variance_ratio_[:NumEigenvalues]).sort_values().\
plot.barh(title='Explained Variance Ratio by Top Factors',ax=axes[0]);
pd.Series(pca.explained_variance_ratio_[:NumEigenvalues]).cumsum()\
.plot(ylim=(0,1),ax=axes[1], title='Cumulative Explained Variance');
explained_variance
pd.Series(np.cumsum(pca.explained_variance_ratio_)).to_frame\
('Explained Variance_Top 5').head(NumEigenvalues).style.format('{:,.2%}'.format)

Output

Explained Variance_Top 5
0 84.36%

1 98.44%

2 99.53%

3 99.83%

4 99.94%

222 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

The first three principal components account for 84.4%, 14.08%, and 1.09% of var‐
iance, respectively. Cumulatively, they describe over 99.5% of all movement in the
data. This is an incredibly efficient reduction in dimensions. Recall that in the first
case study, we saw the first 10 components account for only 73% of variance.

5.2.2. Intuition behind the principal components. Ideally, we can have some intuition
and interpretation of these principal components. To explore this, we first have a
function to determine the weights of each principal component, and then perform
the visualization of the principal components:

def PCWeights():
 '''
 Principal Components (PC) weights for each 28 PCs
 '''
 weights = pd.DataFrame()

 for i in range(len(pca.components_)):
 weights["weights_{}".format(i)] = \
 pca.components_[i] / sum(pca.components_[i])

 weights = weights.values.T
 return weights

weights=PCWeights()

weights = PCWeights()
NumComponents=3

topPortfolios = pd.DataFrame(weights[:NumComponents], columns=dataset.columns)
topPortfolios.index = [f'Principal Component {i}' \
for i in range(1, NumComponents+1)]

axes = topPortfolios.T.plot.bar(subplots=True, legend=False, figsize=(14, 10))
plt.subplots_adjust(hspace=0.35)
axes[0].set_ylim(0, .2);

Case Study 2: Yield Curve Construction and Interest Rate Modeling | 223

Output

pd.DataFrame(pca.components_[0:3].T).plot(style= ['s-','o-','^-'], \
 legend=False, title="Principal Component")

Output

By plotting the components of the eigenvectors we can make the following
interpretation:

224 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

Principal Component 1
This eigenvector has all positive values, with all tenors weighted in the same
direction. This means that the first principal component reflects movements that
cause all maturities to move in the same direction, corresponding to directional
movements in the yield curve. These are movements that shift the entire yield
curve up or down.

Principal Component 2
The second eigenvector has the first half of the components negative and the sec‐
ond half positive. Treasury rates on the short end (long end) of the curve are
weighted positively (negatively). This means that the second principal compo‐
nent reflects movements that cause the short end to go in one direction and the
long end in the other. Consequently, it represents slope movements in the yield
curve.

Principal Component 3
The third eigenvector has the first third of the components negative, the second
third positive, and the last third negative. This means that the third principal
component reflects movements that cause the short and long end to go in one
direction, and the middle to go in the other, resulting in curvature movements of
the yield curve.

5.2.3. Reconstructing the curve using principal components. One of the key features of
PCA is the ability to reconstruct the initial dataset using the outputs of PCA. Using
simple matrix reconstruction, we can generate a near exact replica of the initial data:

pca.transform(rescaledDataset)[:, :2]

Output

array([[4.97514826, -0.48514999],
 [5.03634891, -0.52005102],
 [5.14497849, -0.58385444],
 ...,
 [-1.82544584, 2.82360062],
 [-1.69938513, 2.6936174],
 [-1.73186029, 2.73073137]])

Mechanically, PCA is just a matrix multiplication:

Y = XW

where Y is the principal components, X is input data, and W is a matrix of coeffi‐
cients, which we can use to recover the original matrix as per the equation below:

X = YW ′

Case Study 2: Yield Curve Construction and Interest Rate Modeling | 225

where W′ is the inverse of the matrix of coefficients W.

nComp=3
reconst= pd.DataFrame(np.dot(pca.transform(rescaledDataset)[:, :nComp],\
pca.components_[:nComp,:]),columns=dataset.columns)
plt.figure(figsize=(10,8))
plt.plot(reconst)
plt.ylabel("Treasury Rate")
plt.title("Reconstructed Dataset")
plt.show()

This figure shows the replicated Treasury rate chart and demonstrates that, using just
the first three principal components, we are able to replicate the original chart.
Despite reducing the data from 11 dimensions to three, we still retain more than 99%
of the information and can reproduce the original data easily. Additionally, we also
have intuition around these three drivers of yield curve moments. Reducing the yield
curve into fewer components means practictioners can focus on fewer factors that
influence interest rates. For example, in order to hedge a portfolio, it may be suffi‐
cient to protect the portfolio against moves in the first three principal components
only.

Output

226 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

Conclusion
In this case study, we introduced dimensionality reduction to break down the Treas‐
ury rate curve into fewer components. We saw that the principal components are
quite intuitive for this case study. The first three principal components explain more
than 99.5% of the variation and represent directional movements, slope movements,
and curvature movements, respectively.

By using principal component analysis, analyzing the eigenvectors, and understand‐
ing the intuition behind them, we demonstrated how using dimensionality reduction
led to fewer intuitive dimensions in the yield curve. Such dimensionality reduction of
the yield curve can potentially lead to faster and more effective portfolio manage‐
ment, trading, hedging, and risk management.

Case Study 3: Bitcoin Trading: Enhancing Speed and
Accuracy
As trading becomes more automated, traders will continue to seek to use as many
features and technical indicators as they can to make their strategies more accurate
and efficient. One of the many challenges in this is that adding more variables leads
to ever more complexity, making it increasingly difficult to arrive at solid conclu‐
sions. Using dimensionality reduction techniques, we can compress many features
and technical indicators into a few logical collections, while still maintaining a signifi‐
cant amount of the variance of the original data. This helps speed up model training
and tuning. Additionally, it helps prevent overfitting by getting rid of correlated vari‐
ables, which can ultimately cause more harm than good. Dimensionality reduction
also enhances exploration and visualization of a dataset to understand grouping or
relationships, an important task when building and continuously monitoring trading
strategies.

In this case study, we will use dimensionality reduction to enhance “Case Study 3:
Bitcoin Trading Strategy” on page 179 presented in Chapter 6. In this case study, we
design a trading strategy for bitcoin that considers the relationship between the
short-term and long-term prices to predict a buy or sell signal. We create several new
intuitive, technical indicator features, including trend, volume, volatility, and
momentum. We apply dimensionality reduction techniques on these features in
order to achieve better results.

Case Study 3: Bitcoin Trading: Enhancing Speed and Accuracy | 227

In this case study, we will focus on:

• Reducing the dimensions of a dataset to yield better and faster results for super‐
vised learning.

• Using SVD and t-SNE to visualize data in lower dimensions.

Blueprint for Using Dimensionality Reduction to Enhance a
Trading Strategy

1. Problem definition
Our goal in this case study is to use dimensionality reduction techniques to enhance
an algorithmic trading strategy. The data and the variables used in this case study are
the same as in “Case Study 3: Bitcoin Trading Strategy” on page 179. For reference,
we are using intraday bitcoin price data, volume, and weighted bitcoin price from
January 2012 to October 2017. Steps 3 and 4 presented in this case study use the same
steps as the case study in Chapter 6. As such, these steps are condensed in this case
study to avoid repetition.

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The Python packages used for this case study are the
same as those presented in the previous two case studies in this chapter.

3. Exploratory data analysis
Refer to “3. Exploratory data analysis” on page 181 for more details of this step.

4. Data preparation
We prepare the data for modeling in the following sections.

4.1. Data cleaning. We clean the data by filling the NAs with the last available values:

dataset[dataset.columns] = dataset[dataset.columns].ffill()

4.2. Preparing the data for classification. We attach the following label to each move‐
ment: 1 if the short-term price increases compared to the long-term price; 0 if the
short-term price decreases compared to the long-term price. This label is assigned to

228 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

a variable we will call signal, which is the predicted variable for this case study. Let us
look at the data for prediction:

dataset.tail(5)

Output

The dataset contains the signal column along with all other columns.

4.3. Feature engineering. In this step, we construct a dataset that contains the predic‐
tors that will be used to make the signal prediction. Using the bitcoin intraday price
data, including daily open, high, low, close, and volume, we compute the following
technical indicators:

• Moving Average
• Stochastic Oscillator %K and %D
• Relative Strength Index (RSI)
• Rate Of Change (ROC)
• Momentum (MOM)

The code for the construction of all of the indicators, along with their descriptions, is
presented in Chapter 6. The final dataset and the columns used are as follows:

4.4. Data visualization. Let us look at the distribution of the predicted variable:

fig = plt.figure()
plot = dataset.groupby(['signal']).size().plot(kind='barh', color='red')
plt.show()

Case Study 3: Bitcoin Trading: Enhancing Speed and Accuracy | 229

Output

The predicted signal is “buy” 52.9% of the time.

5. Evaluate algorithms and models
Next, we perform dimensionality reduction and evaluate the models.

5.1. Train-test split. In this step, we split the dataset into training and test sets:

Y= subset_dataset["signal"]
X = subset_dataset.loc[:, dataset.columns != 'signal'] validation_size = 0.2
X_train, X_validation, Y_train, Y_validation = train_test_split\
(X, Y, test_size=validation_size, random_state=1)

We standardize the variables on the same scale before applying dimensionality reduc‐
tion. Data standardization is performed using the following Python code:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(X_train)
rescaledDataset = pd.DataFrame(scaler.fit_transform(X_train),\
columns = X_train.columns, index = X_train.index)
summarize transformed data
X_train.dropna(how='any', inplace=True)
rescaledDataset.dropna(how='any', inplace=True)
rescaledDataset.head(2)

Output

230 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

5.2. Singular value decomposition (feature reduction). Here we will use SVD to perform
PCA. Specifically, we are using the TruncatedSVD method in the sklearn package to
transform the full dataset into a representation using the top five components:

ncomps = 5
svd = TruncatedSVD(n_components=ncomps)
svd_fit = svd.fit(rescaledDataset)
Y_pred = svd.fit_transform(rescaledDataset)
ax = pd.Series(svd_fit.explained_variance_ratio_.cumsum()).plot(kind='line', \
figsize=(10, 3))
ax.set_xlabel("Eigenvalues")
ax.set_ylabel("Percentage Explained")
print('Variance preserved by first 5 components == {:.2%}'.\
format(svd_fit.explained_variance_ratio_.cumsum()[-1]))

Output

Following the computation, we preserve 92.75% of the variance by using just five
components rather than the full 25+ original features. This is a tremendously useful
compression for the analysis and iterations of the model.

Case Study 3: Bitcoin Trading: Enhancing Speed and Accuracy | 231

For convenience, we will create a Python dataframe specifically for these top five
components:

dfsvd = pd.DataFrame(Y_pred, columns=['c{}'.format(c) for \
c in range(ncomps)], index=rescaledDataset.index)
print(dfsvd.shape)
dfsvd.head()

Output

(8000, 5)

c0 c1 c2 c3 c4
2834071 –2.252 1.920 0.538 –0.019 –0.967

2836517 5.303 –1.689 –0.678 0.473 0.643

2833945 –2.315 –0.042 1.697 –1.704 1.672

2835048 –0.977 0.782 3.706 –0.697 0.057

2838804 2.115 –1.915 0.475 –0.174 –0.299

5.2.1. Basic visualization of reduced features. Let us visualize the compressed dataset:

svdcols = [c for c in dfsvd.columns if c[0] == 'c']

Pairs-plots
Pairs-plots are a simple representation of a set of 2D scatterplots, with each com‐
ponent plotted against every other component. The data points are colored
according to their signal classification:

plotdims = 5
ploteorows = 1
dfsvdplot = dfsvd[svdcols].iloc[:, :plotdims]
dfsvdplot['signal']=Y_train
ax = sns.pairplot(dfsvdplot.iloc[::ploteorows, :], hue='signal', size=1.8)

232 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

Output

We can see that there is clear separation of the colored dots (full color version avail‐
able on GitHub), meaning that data points from the same signal tend to cluster
together. The separation is more distinct for the first components, with the character‐
istics of signal distributions growing more similar as you progress from the first to
the fifth component. That said, the plot provides support for using all five compo‐
nents in our model.

5.3. t-SNE visualization. In this step, we implement t-SNE and look at the related visu‐
alization. We will use the basic implementation available in Scikit-learn:

tsne = TSNE(n_components=2, random_state=0)

Z = tsne.fit_transform(dfsvd[svdcols])
dftsne = pd.DataFrame(Z, columns=['x','y'], index=dfsvd.index)

Case Study 3: Bitcoin Trading: Enhancing Speed and Accuracy | 233

https://oreil.ly/GWfug

dftsne['signal'] = Y_train

g = sns.lmplot('x', 'y', dftsne, hue='signal', fit_reg=False, size=8
 , scatter_kws={'alpha':0.7,'s':60})

Output

The plot shows us that there is a good degree of clustering for the trading signal.
There is some overlap of the long and short signals, but they can be distinguished
quite well using the reduced number of features.

5.4. Compare models with and without dimensionality reduction. In this step, we analyze
the impact of the dimensionality reduction on the classification and the impact on
the overall accuracy and computation time:

test options for classification
scoring = 'accuracy'

5.4.1. Models. We first look at the time taken by the model without dimensionality
reduction, where we have all the technical indicators:

import time
start_time = time.time()

spot-check the algorithms

234 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

models = RandomForestClassifier(n_jobs=-1)
cv_results_XTrain= cross_val_score(models, X_train, Y_train, cv=kfold, \
 scoring=scoring)
print("Time Without Dimensionality Reduction--- %s seconds ---" % \
(time.time() - start_time))

Output

Time Without Dimensionality Reduction
7.781347990036011 seconds

The total time taken without dimensionality reduction is around eight seconds. Let
us look at the time it takes with dimensionality reduction, when only the five princi‐
pal components from the truncated SVD are used:

start_time = time.time()
X_SVD= dfsvd[svdcols].iloc[:, :5]
cv_results_SVD = cross_val_score(models, X_SVD, Y_train, cv=kfold, \
 scoring=scoring)
print("Time with Dimensionality Reduction--- %s seconds ---" % \
(time.time() - start_time))

Output

Time with Dimensionality Reduction
2.281977653503418 seconds

The total time taken with dimensionality reduction is around two seconds—four
times a reduction in time, which is a significant improvement. Let us investigate
whether there is any decline in the accuracy when using the condensed dataset:

print("Result without dimensionality Reduction: %f (%f)" %\
 (cv_results_XTrain.mean(), cv_results_XTrain.std()))
print("Result with dimensionality Reduction: %f (%f)" %\
 (cv_results_SVD.mean(), cv_results_SVD.std()))

Output

Result without dimensionality Reduction: 0.936375 (0.010774)
Result with dimensionality Reduction: 0.887500 (0.012698)

Accuracy declines roughly 5%, from 93.6% to 88.7%. The improvement in speed has
to be balanced against this loss in accuracy. Whether the loss in accuracy is accepta‐
ble likely depends on the problem. If this is a model that needs to be recalibrated very
frequently, then a lower computation time will be essential, especially when handling
large, high-velocity datasets. The improvement in the computation time does have
other benefits, especially in the early stages of trading strategy development. It ena‐
bles us to test a greater number of features (or technical indicators) in less time.

Conclusion
In this case study, we demonstrated the efficiency of dimensionality reduction and
principal components analysis in reducing the number of dimensions in the context

Case Study 3: Bitcoin Trading: Enhancing Speed and Accuracy | 235

of a trading strategy. Through dimensionality reduction, we achieved a commensu‐
rate accuracy rate with a fourfold improvement in the modeling speed. In trading
strategy development involving expansive datasets, such speed enhancements can
lead to improvements for the entire process.

We demonstrated that both SVD and t-SNE yield reduced datasets that can easily be
visualized for evaluating trading signal data. This allowed us to distinguish the long
and short signals of this trading strategy in ways not possible with the original num‐
ber of features.

Chapter Summary
The case studies presented in this chapter focused on understanding the concepts of
the different dimensionality reduction methods, developing intuition around the
principal components, and visualizing the condensed datasets.

Overall, the concepts in Python, machine learning, and finance presented in this
chapter through the case studies can used as a blueprint for any other dimensionality
reduction–based problem in finance.

In the next chapter, we explore concepts and case studies for another type of unsu‐
pervised learning—clustering.

Exercises
1. Using dimensionality reduction, extract the different factors from the stocks

within a different index and use them to build a trading strategy.
2. Pick any of the regression-based case studies in Chapter 5 and use dimensional‐

ity reduction to see whether there is any improvement in computation time.
Explain the components using the factor loading and develop some high-level
intuition of them.

3. For case study 3 presented in this chapter, perform factor loading of the principal
components and understand the intuition of the different components.

4. Get the principal components of different currency pairs or different commodity
prices. Identify the drivers of the primary principal components and link them to
some intuitive macroeconomic variables.

236 | Chapter 7: Unsupervised Learning: Dimensionality Reduction

CHAPTER 8

Unsupervised Learning: Clustering

In the previous chapter, we explored dimensionality reduction, which is one type of
unsupervised learning. In this chapter, we will explore clustering, a category of unsu‐
pervised learning techniques that allows us to discover hidden structures in data.

Both clustering and dimensionality reduction summarize the data. Dimensionality
reduction compresses the data by representing it using new, fewer features while still
capturing the most relevant information. Similarly, clustering is a way to reduce the
volume of data and find patterns. However, it does so by categorizing the original
data and not by creating new variables. Clustering algorithms assign observations to
subgroups that consist of similar data points. The goal of clustering is to find a natu‐
ral grouping in data so that items in a given cluster are more similar to each other
than to those of different clusters. Clustering serves to better understand the data
through the lens of several categories or groups created. It also permits the automatic
categorization of new objects according to the learned criteria.

In the field of finance, clustering has been used by traders and investment managers
to find homogeneous groups of assets, classes, sectors, and countries based on similar
characteristics. Clustering analysis augments trading strategies by providing insights
into categories of trading signals. The technique has been used to segment customers
or investors into a number of groups to better understand their behavior and to per‐
form additional analysis.

In this chapter, we will discuss fundamental clustering techniques and introduce
three case studies in the areas of portfolio management and trading strategy
development.

In “Case Study 1: Clustering for Pairs Trading” on page 243, we use clustering
methods to select pairs of stocks for a trading strategy. A pairs trading strategy
involves matching a long position with a short position in two financial instruments

237

that are closely related. Finding appropriate pairs can be a challenge when the num‐
ber of instruments is high. In this case study, we demonstrate how clustering can be a
useful technique in trading strategy development and other similar situations.

In “Case Study 2: Portfolio Management: Clustering Investors” on page 259, we
identify clusters of investors with similar abilities and willingness to take risks. We
show how clustering techniques can be used for effective asset allocation and portfo‐
lio rebalancing. This illustrates how part of the portfolio management process can be
automated, which is immensely useful for investment managers and robo-advisors
alike.

In “Case Study 3: Hierarchical Risk Parity” on page 267, we use a clustering-based
algorithm to allocate capital into different asset classes and compare the results
against other portfolio allocation techniques.

In this chapter, we will learn about the following concepts related to clustering
techniques:

• Basic concepts of models and techniques used for clustering.
• How to implement different clustering techniques in Python.
• How to effectively perform visualizations of clustering outcomes.
• Understanding the intuitive meaning of clustering results.
• How to choose the right clustering techniques for a problem.
• Selecting the appropriate number of clusters in different clustering algorithms.
• Building hierarchical clustering trees using Python.

This Chapter’s Code Repository

A Python-based master template for clustering, along with the
Jupyter notebook for the case studies presented in this chapter are
in Chapter 8 - Unsup. Learning - Clustering in the code repository
for this book. To work through any machine learning problems in
Python involving the models for clustering (such as k-means, hier‐
archical clustering, etc.) presented in this chapter, readers simply
need to modify the template to align with their problem statement.
Similar to the previous chapters, the case studies presented in this
chapter use the standard Python master template with the stan‐
dardized model development steps presented in Chapter 2. For the
clustering case studies, steps 6 (Model Tuning and Grid Search)
and 7 (Finalizing the Model) have merged with step 5 (Evaluate
Algorithms and Models).

238 | Chapter 8: Unsupervised Learning: Clustering

https://oreil.ly/uzbaH

Clustering Techniques
There are many types of clustering techniques, and they differ with respect to their
strategy of identifying groupings. Choosing which technique to apply depends on the
nature and structure of the data. In this chapter, we will cover the following three
clustering techniques:

• k-means clustering
• Hierarchical clustering
• Affinity propagation clustering

The following section summarizes these clustering techniques, including their
strengths and weaknesses. Additional details for each of the clustering methods are
provided in the case studies.

k-means Clustering
k-means is the most well-known clustering technique. The algorithm of k-means
aims to find and group data points into classes that have high similarity between
them. This similarity is understood as the opposite of the distance between data
points. The closer the data points are, the more likely they are to belong to the same
cluster.

The algorithm finds k centroids and assigns each data point to exactly one cluster
with the goal of minimizing the within-cluster variance (called inertia). It typically
uses the Euclidean distance (ordinary distance between two points), but other dis‐
tance metrics can be used. The k-means algorithm delivers a local optimum for a
given k and proceeds as follows:

1. This algorithm specifies the number of clusters.
2. Data points are randomly selected as cluster centers.
3. Each data point is assigned to the cluster center it is nearest to.
4. Cluster centers are updated to the mean of the assigned points.
5. Steps 3–4 are repeated until all cluster centers remain unchanged.

In simple terms, we randomly move around the specified number of centroids in
each iteration, assigning each data point to the closest centroid. Once we have done
that, we calculate the mean distance of all points in each centroid. Then, once we can
no longer reduce the minimum distance from data points to their respective cent‐
roids, we have found our clusters.

Clustering Techniques | 239

k-means hyperparameters
The k-means hyperparameters include:

Number of clusters
The number of clusters and centroids to generate.

Maximum iterations
Maximum iterations of the algorithm for a single run.

Number initial
The number of times the algorithm will be run with different centroid seeds. The
final result will be the best output of the defined number of consecutive runs, in
terms of inertia.

With k-means, different random starting points for the cluster centers often result in
very different clustering solutions. Therefore, the k-means algorithm is run in sklearn
with at least 10 different random initializations, and the solution occurring the great‐
est number of times is chosen.

The strengths of k-means include its simplicity, wide range of applicability, fast con‐
vergence, and linear scalability to large data while producing clusters of an even size.
It is most useful when we know the exact number of clusters, k, beforehand. In fact, a
main weakness of k-means is having to tune this hyperparameter. Additional draw‐
backs include the lack of a guarantee to find a global optimum and its sensitivity to
outliers.

Implementation in Python
Python’s sklearn library offers a powerful implementation of k-means. The following
code snippet illustrates how to apply k-means clustering on a dataset:

from sklearn.cluster import KMeans
#Fit with k-means
k_means = KMeans(n_clusters=nclust)
k_means.fit(X)

The number of clusters is the key hyperparameter to be tuned. We will look at the k-
means clustering technique in case studies 1 and 2 of this chapter, in which further
details on choosing the right number of clusters and detailed visualizations are
provided.

Hierarchical Clustering
Hierarchical clustering involves creating clusters that have a predominant ordering
from top to bottom. The main advantage of hierarchical clustering is that we do not
need to specify the number of clusters; the model determines that by itself. This

240 | Chapter 8: Unsupervised Learning: Clustering

clustering technique is divided into two types: agglomerative hierarchical clustering
and divisive hierarchical clustering.

Agglomerative hierarchical clustering is the most common type of hierarchical cluster‐
ing and is used to group objects based on their similarity. It is a “bottom-up”
approach where each observation starts in its own cluster, and pairs of clusters are
merged as one moves up the hierarchy. The agglomerative hierarchical clustering
algorithm delivers a local optimum and proceeds as follows:

1. Make each data point a single-point cluster and form N clusters.
2. Take the two closest data points and combine them, leaving N-1 clusters.
3. Take the two closest clusters and combine them, forming N-2 clusters.
4. Repeat step 3 until left with only one cluster.

Divisive hierarchical clustering works “top-down” and sequentially splits the remain‐
ing clusters to produce the most distinct subgroups.

Both produce N-1 hierarchical levels and facilitate the clustering creation at the level
that best partitions data into homogeneous groups. We will focus on the more com‐
mon agglomerative clustering approach.

Hierarchical clustering enables the plotting of dendrograms, which are visualizations
of a binary hierarchical clustering. A dendrogram is a type of tree diagram showing
hierarchical relationships between different sets of data. They provide an interesting
and informative visualization of hierarchical clustering results. A dendrogram con‐
tains the memory of the hierarchical clustering algorithm, so you can tell how the
cluster is formed simply by inspecting the chart.

Figure 8-1 shows an example of dendrograms based on hierarchical clustering. The
distance between data points represents dissimilarities, and the height of the blocks
represents the distance between clusters.

Observations that fuse at the bottom are similar, while those at the top are quite dif‐
ferent. With dendrograms, conclusions are made based on the location of the vertical
axis rather than on the horizontal one.

The advantages of hierarchical clustering are that it is easy to implement it, does not
require one to specify the number of clusters, and it produces dendrograms that are
very useful in understanding the data. However, the time complexity for hierarchical
clustering can result in long computation times relative to other algorithms, such as
k-means. If we have a large dataset, it can be difficult to determine the correct num‐
ber of clusters by looking at the dendrogram. Hierarchical clustering is very sensitive
to outliers, and in their presence, model performance decreases significantly.

Clustering Techniques | 241

Figure 8-1. Hierarchical clustering

Implementation in Python
The following code snippet illustrates how to apply agglomerative hierarchical clus‐
tering with four clusters on a dataset:

from sklearn.cluster import AgglomerativeClustering
model = AgglomerativeClustering(n_clusters=4, affinity='euclidean',\
 linkage='ward')
clust_labels1 = model.fit_predict(X)

More details regarding the hyperparameters of agglomerative hierarchical clustering
can be found on the sklearn website. We will look at the hierarchical clustering tech‐
nique in case studies 1 and 3 in this chapter.

Affinity Propagation Clustering
Affinity propagation creates clusters by sending messages between data points until
convergence. Unlike clustering algorithms such as k-means, affinity propagation does
not require the number of clusters to be determined or estimated before running the
algorithm. Two important parameters are used in affinity propagation to determine
the number of clusters: the preference, which controls how many exemplars (or proto‐
types) are used; and the damping factor, which dampens the responsibility and availa‐
bility of messages to avoid numerical oscillations when updating these messages.

242 | Chapter 8: Unsupervised Learning: Clustering

https://scikit-learn.org

A dataset is described using a small number of exemplars. These are members of the
input set that are representative of clusters. The affinity propagation algorithm takes
in a set of pairwise similarities between data points and finds clusters by maximizing
the total similarity between data points and their exemplars. The messages sent
between pairs represent the suitability of one sample to be the exemplar of the other,
which is updated in response to the values from other pairs. This updating happens
iteratively until convergence, at which point the final exemplars are chosen, and we
obtain the final clustering.

In terms of strengths, affinity propagation does not require the number of clusters to
be determined before running the algorithm. The algorithm is fast and can be applied
to large similarity matrices. However, the algorithm often converges to suboptimal
solutions, and at times it can fail to converge.

Implementation in Python
The following code snippet illustrates how to implement the affinity propagation
algorithm for a dataset:

from sklearn.cluster import AffinityPropagation
Initialize the algorithm and set the number of PC's
ap = AffinityPropagation()
ap.fit(X)

More details regarding the hyperparameters of affinity propagation clustering can be
found on the sklearn website. We will look at the affinity propagation technique in
case studies 1 and 2 in this chapter.

Case Study 1: Clustering for Pairs Trading
A pairs trading strategy constructs a portfolio of correlated assets with similar market
risk factor exposure. Temporary price discrepancies in these assets can create oppor‐
tunities to profit through a long position in one instrument and a short position in
another. A pairs trading strategy is designed to eliminate market risk and exploit
these temporary discrepancies in the relative returns of stocks.

The fundamental premise in pairs trading is that mean reversion is an expected
dynamic of the assets. This mean reversion should lead to a long-run equilibrium
relationship, which we try to approximate through statistical methods. When
moments of (presumably temporary) divergence from this long-term trend arise, one
can possibly profit. The key to successful pairs trading is the ability to select the right
pairs of assets to be used.

Traditionally, trial and error was used for pairs selection. Stocks or instruments that
were merely in the same sector or industry were grouped together. The idea was that
if these stocks were for companies in similar industries, their stocks should move

Case Study 1: Clustering for Pairs Trading | 243

https://scikit-learn.org

similarly as well. However, this was and is not necessarily the case. Additionally, with
a large universe of stocks, finding a suitable pair is a difficult task, given that there are
a total of n(n–1)/2 possible pairs, where n is the number of instruments. Clustering
can be a useful technique here.

In this case study, we will use clustering algorithms to select pairs of stocks for a pairs
trading strategy.

This case study will focus on:

• Evaluating three main clustering methods: k-means, hierarchical clustering, and
affinity propagation clustering.

• Understanding approaches to finding the right number of clusters in k-means
and hierarchical clustering.

• Visualizing data in the clusters, including viewing dendrograms.
• Selecting the right clustering algorithm.

Blueprint for Using Clustering to Select Pairs

1. Problem definition
Our goal in this case study is to perform clustering analysis on the stocks in the S&P
500 to come up with pairs for a pairs trading strategy. S&P 500 stock data was
obtained using pandas_datareader from Yahoo Finance. It includes price data from
2018 onwards.

2. Getting started—loading the data and Python packages
The list of the libraries used for data loading, data analysis, data preparation, and
model evaluation are shown below.

2.1. Loading the Python packages. The details of most of these packages and functions
have been provided in Chapters 2 and 4. The use of these packages will be demon‐
strated in different steps of the model development process.

Packages for clustering

from sklearn.cluster import KMeans, AgglomerativeClustering, AffinityPropagation
from scipy.cluster.hierarchy import fcluster

244 | Chapter 8: Unsupervised Learning: Clustering

1 Refer to the Jupyter notebook to understand fetching price data using pandas_datareader.

from scipy.cluster.hierarchy import dendrogram, linkage, cophenet
from scipy.spatial.distance import pdist
from sklearn.metrics import adjusted_mutual_info_score
from sklearn import cluster, covariance, manifold

Packages for data processing and visualization

Load libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import read_csv, set_option
from pandas.plotting import scatter_matrix
import seaborn as sns
from sklearn.preprocessing import StandardScaler
import datetime
import pandas_datareader as dr
import matplotlib.ticker as ticker
from itertools import cycle

2.2. Loading the data. The stock data is loaded below.1

dataset = read_csv('SP500Data.csv', index_col=0)

3. Exploratory data analysis
We take a quick look at the data in this section.

3.1. Descriptive statistics. Let us look at the shape of the data:

shape
dataset.shape

Output

(448, 502)

The data contains 502 columns and 448 observations.

3.2. Data visualization. We will take a detailed look into the visualization postcluster‐
ing.

4. Data preparation
We prepare the data for modeling in the following sections.

Case Study 1: Clustering for Pairs Trading | 245

4.1. Data cleaning. In this step, we check for NAs in the rows and either drop them or
fill them with the mean of the column:

#Checking for any null values and removing the null values'''
print('Null Values =',dataset.isnull().values.any())

Output

Null Values = True

Let us get rid of the columns with more than 30% missing values:

missing_fractions = dataset.isnull().mean().sort_values(ascending=False)
missing_fractions.head(10)
drop_list = sorted(list(missing_fractions[missing_fractions > 0.3].index))
dataset.drop(labels=drop_list, axis=1, inplace=True)
dataset.shape

Output

(448, 498)

Given that there are null values, we drop some rows:

Fill the missing values with the last value available in the dataset.
dataset=dataset.fillna(method='ffill')

The data cleaning steps identified those with missing values and populated them.
This step is important for creating a meaningful, reliable, and clean dataset that can
be used without any errors in the clustering.

4.2. Data transformation. For the purpose of clustering, we will be using annual
returns and variance as the variables, as they are primary indicators of stock perfor‐
mance and volatility. The following code prepares these variables:

#Calculate average annual percentage return and volatilities
returns = pd.DataFrame(dataset.pct_change().mean() * 252)
returns.columns = ['Returns']
returns['Volatility'] = dataset.pct_change().std() * np.sqrt(252)
data = returns

All the variables should be on the same scale before applying clustering; otherwise, a
feature with large values will dominate the result. We use StandardScaler in sklearn
to standardize the dataset features onto unit scale (mean = 0 and variance = 1):

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(data)
rescaledDataset = pd.DataFrame(scaler.fit_transform(data),\
 columns = data.columns, index = data.index)
summarize transformed data
rescaledDataset.head(2)

246 | Chapter 8: Unsupervised Learning: Clustering

Output

Returns Volatility
ABT 0.794067 –0.702741 ABBV

With the data prepared, we can now explore the clustering algorithms.

5. Evaluate algorithms and models
We will look at the following models:

• k-means
• Hierarchical clustering (agglomerative clustering)
• Affinity propagation

5.1. k-means clustering. Here, we model using k-means and evaluate two ways to find
the optimal number of clusters.

5.1.1. Finding the optimal number of clusters. We know that k-means initially assigns
data points to clusters randomly and then calculates centroids or mean values. Fur‐
ther, it calculates the distances within each cluster, squares these, and sums them to
get the sum of squared errors.

The basic idea is to define k clusters so that the total within-cluster variation (or
error) is minimized. The following two methods are useful in finding the number of
clusters in k-means:

Elbow method
Based on the sum of squared errors (SSE) within clusters

Silhouette method
Based on the silhouette score

First, let’s examine the elbow method. The SSE for each point is the square of the dis‐
tance of the point from its representation (i.e., its predicted cluster center). The sum
of squared errors is plotted for a range of values for the number of clusters. The first
cluster will add much information (explain a lot of variance), but eventually the
marginal gain will drop, giving an angle in the graph. The number of clusters is
chosen at this point; hence it is referred to as the “elbow criterion.”

Let us implement this in Python using the sklearn library and plot the SSE for a range
of values for k:

distortions = []
max_loop=20
for k in range(2, max_loop):

Case Study 1: Clustering for Pairs Trading | 247

 kmeans = KMeans(n_clusters=k)
 kmeans.fit(X)
 distortions.append(kmeans.inertia_)
fig = plt.figure(figsize=(15, 5))
plt.plot(range(2, max_loop), distortions)
plt.xticks([i for i in range(2, max_loop)], rotation=75)
plt.grid(True)

Output

Inspecting the sum of squared errors chart, it appears the elbow kink occurs around
five or six clusters for this data. Certainly we can see that as the number of clusters
increases past six, the SSE within clusters begins to plateau.

Now let’s look at the silhouette method. The silhouette score measures how similar a
point is to its own cluster (cohesion) compared to other clusters (separation). The
range of the silhouette value is between 1 and –1. A high value is desirable and indi‐
cates that the point is placed in the correct cluster. If many points have a negative
silhouette value, that may indicate that we have created too many or too few clusters.

Let us implement this in Python using the sklearn library and plot the silhouette
score for a range of values for k:

from sklearn import metrics

silhouette_score = []
for k in range(2, max_loop):
 kmeans = KMeans(n_clusters=k, random_state=10, n_init=10, n_jobs=-1)
 kmeans.fit(X)
 silhouette_score.append(metrics.silhouette_score(X, kmeans.labels_, \
 random_state=10))
fig = plt.figure(figsize=(15, 5))

248 | Chapter 8: Unsupervised Learning: Clustering

plt.plot(range(2, max_loop), silhouette_score)
plt.xticks([i for i in range(2, max_loop)], rotation=75)
plt.grid(True)

Output

Looking at the silhouette score chart, we can see that there are various parts of the
graph at which a kink can be seen. Since there is not much of a difference in the SSE
after six clusters, it implies that six clusters is a preferred choice in this k-means
model.

Combining information from both methods, we infer the optimum number of clus‐
ters to be six.

5.1.2. Clustering and visualization. Let us build the k-means model with six clusters and
visualize the results:

nclust=6
#Fit with k-means
k_means = cluster.KMeans(n_clusters=nclust)
k_means.fit(X)
#Extracting labels
target_labels = k_means.predict(X)

Visualizing how clusters are formed is no easy task when the number of variables in
the dataset is very large. A basic scatterplot is one method for visualizing a cluster in a
two-dimensional space. We create one below to identify the relationships inherent in
our data:

centroids = k_means.cluster_centers_
fig = plt.figure(figsize=(16,10))
ax = fig.add_subplot(111)

Case Study 1: Clustering for Pairs Trading | 249

scatter = ax.scatter(X.iloc[:,0],X.iloc[:,1], c=k_means.labels_, \
 cmap="rainbow", label = X.index)
ax.set_title('k-means results')
ax.set_xlabel('Mean Return')
ax.set_ylabel('Volatility')
plt.colorbar(scatter)

plt.plot(centroids[:,0],centroids[:,1],'sg',markersize=11)

Output

In the preceding plot, we can somewhat see that there are distinct clusters separated
by different colors (full-color version available on GitHub). The grouping of data in
the plot seems to be separated quite well. There is also a degree of separation in the
centroids of the clusters, represented by square dots.

Let us look at the number of stocks in each of the clusters:

show number of stocks in each cluster
clustered_series = pd.Series(index=X.index, data=k_means.labels_.flatten())
clustered stock with its cluster label
clustered_series_all = pd.Series(index=X.index, data=k_means.labels_.flatten())
clustered_series = clustered_series[clustered_series != -1]

plt.figure(figsize=(12,7))
plt.barh(

250 | Chapter 8: Unsupervised Learning: Clustering

https://oreil.ly/8RvSp

 range(len(clustered_series.value_counts())), # cluster labels, y axis
 clustered_series.value_counts()
)
plt.title('Cluster Member Counts')
plt.xlabel('Stocks in Cluster')
plt.ylabel('Cluster Number')
plt.show()

Output

The number of stocks per cluster ranges from around 40 to 120. Although the distri‐
bution is not equal, we have a significant number of stocks in each cluster.

Let’s look at the hierarchical clustering.

5.2. Hierarchical clustering (agglomerative clustering). In the first step, we look at the
hierarchy graph and check for the number of clusters.

5.2.1. Building hierarchy graph/dendrogram. The hierarchy class has a dendrogram
method that takes the value returned by the linkage method of the same class. The
linkage method takes the dataset and the method to minimize distances as parame‐
ters. We use ward as the method since it minimizes the variance of distances between
the clusters:

Case Study 1: Clustering for Pairs Trading | 251

from scipy.cluster.hierarchy import dendrogram, linkage, ward

#Calculate linkage
Z= linkage(X, method='ward')
Z[0]

Output

array([3.30000000e+01, 3.14000000e+02, 3.62580431e-03, 2.00000000e+00])

The best way to visualize an agglomerative clustering algorithm is through a dendro‐
gram, which displays a cluster tree, the leaves being the individual stocks and the root
being the final single cluster. The distance between each cluster is shown on the y-
axis. The longer the branches are, the less correlated the two clusters are:

#Plot Dendrogram
plt.figure(figsize=(10, 7))
plt.title("Stocks Dendrograms")
dendrogram(Z,labels = X.index)
plt.show()

Output

252 | Chapter 8: Unsupervised Learning: Clustering

This chart can be used to visually inspect the number of clusters that would be cre‐
ated for a selected distance threshold (although the names of the stocks on the hori‐
zontal axis are not very clear, we can see that they are grouped into several clusters).
The number of vertical lines a hypothetical straight, horizontal line will pass through
is the number of clusters created for that distance threshold value. For example, at a
value of 20, the horizontal line would pass through two vertical branches of the den‐
drogram, implying two clusters at that distance threshold. All data points (leaves)
from that branch would be labeled as that cluster that the horizontal line passed
through.

Choosing a threshold cut at 13 yields four clusters, as confirmed in the following
Python code:

distance_threshold = 13
clusters = fcluster(Z, distance_threshold, criterion='distance')
chosen_clusters = pd.DataFrame(data=clusters, columns=['cluster'])
chosen_clusters['cluster'].unique()

Output

array([1, 4, 3, 2], dtype=int64)

5.2.2. Clustering and visualization. Let us build the hierarchical clustering model with
four clusters and visualize the results:

nclust = 4
hc = AgglomerativeClustering(n_clusters=nclust, affinity='euclidean', \
linkage='ward')
clust_labels1 = hc.fit_predict(X)

fig = plt.figure(figsize=(16,10))
ax = fig.add_subplot(111)
scatter = ax.scatter(X.iloc[:,0],X.iloc[:,1], c=clust_labels1, cmap="rainbow")
ax.set_title('Hierarchical Clustering')
ax.set_xlabel('Mean Return')
ax.set_ylabel('Volatility')
plt.colorbar(scatter)

Similar to the plot of k-means clustering, we see that there are some distinct clusters
separated by different colors (full-size version available on GitHub).

Case Study 1: Clustering for Pairs Trading | 253

https://oreil.ly/8RvSp

Output

Now let us look at affinity propagation clustering.

5.3. Affinity propagation. Let us build the affinity propagation model and visualize the
results:

ap = AffinityPropagation()
ap.fit(X)
clust_labels2 = ap.predict(X)

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111)
scatter = ax.scatter(X.iloc[:,0],X.iloc[:,1], c=clust_labels2, cmap="rainbow")
ax.set_title('Affinity')
ax.set_xlabel('Mean Return')
ax.set_ylabel('Volatility')
plt.colorbar(scatter)

254 | Chapter 8: Unsupervised Learning: Clustering

Output

The affinity propagation model with the chosen hyperparameters produced many
more clusters than k-means and hierarchical clustering. There is some clear group‐
ing, but also more overlap due to the larger number of clusters (full-size version
available on GitHub). In the next step, we will evaluate the clustering techniques.

5.4. Cluster evaluation. If the ground truth labels are not known, evaluation must be
performed using the model itself. The silhouette coefficient (sklearn.metrics.sil
houette_score) is one example we can use. A higher silhouette coefficient score
implies a model with better defined clusters. The silhouette coefficient is computed
for each of the clustering methods defined above:

from sklearn import metrics
print("km", metrics.silhouette_score(X, k_means.labels_, metric='euclidean'))
print("hc", metrics.silhouette_score(X, hc.fit_predict(X), metric='euclidean'))
print("ap", metrics.silhouette_score(X, ap.labels_, metric='euclidean'))

Case Study 1: Clustering for Pairs Trading | 255

https://oreil.ly/8RvSp

Output

km 0.3350720873411941
hc 0.3432149515640865
ap 0.3450647315156527

Given that affinity propagation performs the best, we proceed with affinity propaga‐
tion and use 27 clusters as specified by this clustering method.

Visualizing the return within a cluster. We have the clustering technique and the num‐
ber of clusters finalized, but we need to check whether the clustering leads to a sensi‐
ble output. To do this, we visualize the historical behavior of the stocks in a few
clusters:

all stock with its cluster label (including -1)
clustered_series = pd.Series(index=X.index, data=ap.fit_predict(X).flatten())
clustered stock with its cluster label
clustered_series_all = pd.Series(index=X.index, data=ap.fit_predict(X).flatten())
clustered_series = clustered_series[clustered_series != -1]
get the number of stocks in each cluster
counts = clustered_series_ap.value_counts()
let's visualize some clusters
cluster_vis_list = list(counts[(counts<25) & (counts>1)].index)[::-1]
cluster_vis_list
plot a handful of the smallest clusters
plt.figure(figsize=(12, 7))
cluster_vis_list[0:min(len(cluster_vis_list), 4)]

for clust in cluster_vis_list[0:min(len(cluster_vis_list), 4)]:
 tickers = list(clustered_series[clustered_series==clust].index)
 # calculate the return (lognormal) of the stocks
 means = np.log(dataset.loc[:"2018-02-01", tickers].mean())
 data = np.log(dataset.loc[:"2018-02-01", tickers]).sub(means)
 data.plot(title='Stock Time Series for Cluster %d' % clust)
plt.show()

Output

256 | Chapter 8: Unsupervised Learning: Clustering

2 Refer to Chapter 5 for more details.

Looking at the charts above, across all the clusters with small number of stocks, we
see similar movement of the stocks under different clusters, which corroborates the
effectiveness of the clustering technique.

6. Pairs selection
Once the clusters are created, several cointegration-based statistical techniques can be
applied on the stocks within a cluster to create the pairs. Two or more time series are
considered to be cointegrated if they are nonstationary and tend to move together.2

The presence of cointegration between time series can be validated through several
statistical techniques, including the Augmented Dickey-Fuller test and the Johansen
test.

In this step, we scan through a list of securities within a cluster and test for cointegra‐
tion between the pairs. First, we write a function that returns a cointegration test
score matrix, a p-value matrix, and any pairs for which the p-value was less than 0.05.

Cointegration and pair selection function.
def find_cointegrated_pairs(data, significance=0.05):
 # This function is from https://www.quantopian.com
 n = data.shape[1]
 score_matrix = np.zeros((n, n))
 pvalue_matrix = np.ones((n, n))
 keys = data.keys()
 pairs = []
 for i in range(1):
 for j in range(i+1, n):
 S1 = data[keys[i]]
 S2 = data[keys[j]]
 result = coint(S1, S2)
 score = result[0]
 pvalue = result[1]
 score_matrix[i, j] = score

Case Study 1: Clustering for Pairs Trading | 257

https://oreil.ly/5xKZy
https://oreil.ly/9zbnC
https://oreil.ly/9zbnC

 pvalue_matrix[i, j] = pvalue
 if pvalue < significance:
 pairs.append((keys[i], keys[j]))
 return score_matrix, pvalue_matrix, pairs

Next, we check the cointegration of different pairs within several clusters using the
function created above and return the pairs found:

from statsmodels.tsa.stattools import coint
cluster_dict = {}
for i, which_clust in enumerate(ticker_count_reduced.index):
 tickers = clustered_series[clustered_series == which_clust].index
 score_matrix, pvalue_matrix, pairs = find_cointegrated_pairs(
 dataset[tickers]
)
 cluster_dict[which_clust] = {}
 cluster_dict[which_clust]['score_matrix'] = score_matrix
 cluster_dict[which_clust]['pvalue_matrix'] = pvalue_matrix
 cluster_dict[which_clust]['pairs'] = pairs

pairs = []
for clust in cluster_dict.keys():
 pairs.extend(cluster_dict[clust]['pairs'])

print ("Number of pairs found : %d" % len(pairs))
print ("In those pairs, there are %d unique tickers." % len(np.unique(pairs)))

Output

Number of pairs found : 32
In those pairs, there are 47 unique tickers.

Let us visualize the results of the pair selection process now. Refer to the Jupyter
notebook of this case study for the details of the steps related to the pair visualization
using the t-SNE technique.

The following chart shows the strength of k-means for finding nontraditional pairs
(pointed out with an arrow in the visualization). DXC is the ticker symbol for DXC
Technology, and XEC is the ticker symbol for Cimarex Energy. These two stocks are
from different sectors and appear to have nothing in common on the surface, but
they are identified as pairs using k-means clustering and cointegration testing. This
implies that a long-run stable relationship exists between their stock price move‐
ments.

258 | Chapter 8: Unsupervised Learning: Clustering

Once the pairs are created, they can be used in a pairs trading strategy. When the
share prices of the pair deviate from the identified long-run relationship, an investor
would seek to take a long position in the underperforming security and sell short the
outperforming security. If the securities return to their historical relationship, a profit
is made from the convergence of the prices.

Conclusion
In this case study, we demonstrated the efficiency of clustering techniques by finding
small pools of stocks in which to identify pairs to be used in a pairs trading strategy.
A next step beyond this case study would be to explore and backtest various long/
short trading strategies with pairs of stocks from the groupings of stocks.

Clustering can be used for dividing stocks and other types of assets into groups with
similar characteristics for several other kinds of trading strategies. It can also be effec‐
tive in portfolio construction, helping to ensure we choose a pool of assets with suffi‐
cient diversification between them.

Case Study 2: Portfolio Management: Clustering Investors
Asset management and investment allocation is a tedious and time-consuming pro‐
cess in which investment managers often must design customized approaches for
each client or investor.

What if we were able to organize these clients into particular investor profiles, or
clusters, wherein each group is indicative of investors with similar characteristics?

Case Study 2: Portfolio Management: Clustering Investors | 259

Clustering investors based on similar characteristics can lead to simplicity and stand‐
ardization in the investment management process. These algorithms can group
investors based on different factors, such as age, income, and risk tolerance. It can
help investment managers identify distinct groups within their investors base. Addi‐
tionally, by using these techniques, managers can avoid introducing any biases that
otherwise could adversely impact decision making. The factors analyzed through
clustering can have a big impact on asset allocation and rebalancing, making it an
invaluable tool for faster and effective investment management.

In this case study, we will use clustering methods to identify different types of
investors.

The data used for this case study is from the Survey of Consumer Finances, which is
conducted by the Federal Reserve Board. The same dataset was used in “Case Study 3:
Investor Risk Tolerance and Robo-Advisors” on page 125 in Chapter 5.

In this case study, we focus on:

• Understanding the intuitive meaning of the groupings coming out of clustering.
• Choosing the right clustering techniques.
• Visualization of the clustering outcome and selecting the correct number of clus‐

ters in k-means.

Blueprint for Using Clustering for Grouping Investors

1. Problem definition
The goal of this case study is to build a clustering model to group individuals or
investors based on parameters related to the ability and willingness to take risk. We
will focus on using common demographic and financial characteristics to accomplish
this.

The survey data we’re using includes responses from 10,000+ individuals in 2007
(precrisis) and 2009 (postcrisis). There are over 500 features. Since the data has many
variables, we will first reduce the number of variables and select the most intuitive
features directly linked to an investor’s ability and willingness to take risk.

260 | Chapter 8: Unsupervised Learning: Clustering

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The packages loaded for this case study are similar
to those loaded in the case study presented in Chapter 5. However, some additional
packages related to the clustering techniques are shown in the following code snippet:

#Import packages for clustering techniques
from sklearn.cluster import KMeans, AgglomerativeClustering,AffinityPropagation
from sklearn.metrics import adjusted_mutual_info_score
from sklearn import cluster, covariance, manifold

2.2. Loading the data. The data (again, previously used in Chapter 5) is further pro‐
cessed to give the following attributes that represent an individual’s ability and will‐
ingness to take risk. This preprocessed data is for the 2007 survey and is loaded
below:

load dataset
dataset = pd.read_excel('ProcessedData.xlsx')

3. Exploratory data analysis
Next, we take a closer look at the different columns and features found in the data.

3.1. Descriptive statistics. First, looking at the shape of the data:

dataset.shape

Output

(3866, 13)

The data has information for 3,886 individuals across 13 columns:

peek at data
set_option('display.width', 100)
dataset.head(5)

As we can see in the table above, there are 12 attributes for each of the individuals.
These attributes can be categorized as demographic, financial, and behavioral
attributes. They are summarized in Figure 8-2.

Case Study 2: Portfolio Management: Clustering Investors | 261

Figure 8-2. Attributes for clustering individuals

Many of these were previously used and defined in the Chapter 5 case study. A few
additional attributes (LIFECYCL, HHOUSES, and SPENDMOR) are used in this case
study and are defined below:

LIFECYCL
This is a lifecycle variable, used to approximate a person’s ability to take on risk.
There are six categories in increasing level of ability to take risk. A value of 1 rep‐
resents “age under 55, not married, and no kids,” and a value of 6 represents “age
over 55 and not working.”

HHOUSES
This is a flag indicating whether the individual is a homeowner. A value of 1 (0)
implies the individual does (does not) own a home.

SPENDMOR
This represents higher spending preference if assets appreciated on a scale of 1 to
5.

3.2. Data visualization. We will take a detailed look into the visualization
postclustering.

4. Data preparation
Here, we perform any necessary changes to the data in preparation for modeling.

4.1. Data cleaning. In this step, we check for NAs in the rows and either drop them or
fill them with the mean of the column:

print('Null Values =', dataset.isnull().values.any())

Output

Null Values = False

262 | Chapter 8: Unsupervised Learning: Clustering

Given that there is not any missing data, and the data is already in categorical format,
no further data cleaning was performed. The ID column is unnecessary and is
dropped:

X=X.drop(['ID'], axis=1)

4.2. Data transformation. As we saw in Section 3.1, all the columns represent categori‐
cal data with similar numeric scale, with no outliers. Hence, no data transformation
will be required for clustering.

5. Evaluate algorithms and models
We will analyze the performance of k-means and affinity propagation.

5.1. k-means clustering. We look at the details of the k-means clustering in this step.
First, we find the optimal number of clusters, followed by the creation of a model.

5.1.1. Finding the optimal number of clusters. We look at the following two metrics to
evaluate the number of clusters in the k-means model. The Python code to get these
two metrics is the same as in case study 1:

1. Sum of squared errors (SSE)
2. Silhouette score

Sum of squared errors (SSE) within clusters

Case Study 2: Portfolio Management: Clustering Investors | 263

Silhouette score

Looking at both of the preceding charts, the optimum number of clusters seems to be
around 7. We can see that as the number of clusters increases past 6, the SSE within
clusters begins to plateau. From the second graph, we can see that there are various
parts of the graph where a kink can be seen. Since there is not much of a difference in
the SSE after 7 clusters, we proceed with using 7 clusters in the k-means model below.

5.1.2. Clustering and visualization. Let us create a k-means model with 7 clusters:

nclust=7

#Fit with k-means
k_means = cluster.KMeans(n_clusters=nclust)
k_means.fit(X)

Let us assign a target cluster to each individual in the dataset. This assignment is used
further for exploratory data analysis to understand the behavior of each cluster:

#Extracting labels
target_labels = k_means.predict(X)

5.2. Affinity propagation. Here, we build an affinity propagation model and look at the
number of clusters:

ap = AffinityPropagation()
ap.fit(X)
clust_labels2 = ap.predict(X)

cluster_centers_indices = ap.cluster_centers_indices_
labels = ap.labels_

264 | Chapter 8: Unsupervised Learning: Clustering

n_clusters_ = len(cluster_centers_indices)
print('Estimated number of clusters: %d' % n_clusters_)

Output

Estimated number of clusters: 161

The affinity propagation resulted in over 150 clusters. Such a large number will likely
make it difficult to ascertain proper differentiation between them.

5.3. Cluster evaluation. In this step, we check the performance of the clusters using sil‐
houette coefficient (sklearn.metrics.silhouette_score). Recall that a higher silhouette
coefficient score relates to a model with better defined clusters:

from sklearn import metrics
print("km", metrics.silhouette_score(X, k_means.labels_))
print("ap", metrics.silhouette_score(X, ap.labels_))

Output

km 0.170585217843582
ap 0.09736878398868973

The k-means model has a much higher silhouette coefficient compared to the affinity
propagation. Additionally, the large number of clusters resulting from the affinity
propagation is untenable. In the context of the problem at hand, having fewer clus‐
ters, or categorizations of investors, helps build simplicity and standardization in the
investment management process. It gives the users of this information (e.g., financial
advisors) some manageable intuition around the representation of the clusters. Com‐
prehending and being able to speak to six to eight investor types is much more prac‐
tical than maintaining a meaningful understanding of over 100 different profiles.
With this in mind, we proceed with k-means as the preferred clustering technique.

6. Cluster intuition
In the next step, we will analyze the clusters and attempt to draw conclusions from
them. We do that by plotting the average of each variable of the cluster and summa‐
rizing the findings:

cluster_output= pd.concat([pd.DataFrame(X), pd.DataFrame(k_means.labels_, \
 columns = ['cluster'])],axis=1)
output=cluster_output.groupby('cluster').mean()

Demographics Features: Plot for each of the clusters

output[['AGE','EDUC','MARRIED','KIDS','LIFECL','OCCAT']].\
plot.bar(rot=0, figsize=(18,5));

Case Study 2: Portfolio Management: Clustering Investors | 265

Output

The plot here shows the average values of the attributes for each of the clusters (full
size version available on GitHub). For example, in comparing clusters 0 and 1, cluster
0 has lower average age, yet higher average education. However, these two clusters are
more similar in marital status and number of children. So, based on the demographic
attributes, the individuals in cluster 0 will, on average, have higher risk tolerance
compared to those in cluster 1.

Financial and Behavioral Attributes: Plot for each of the clusters

output[['HHOUSES','NWCAT','INCCL','WSAVED','SPENDMOR','RISK']].\
plot.bar(rot=0, figsize=(18,5));

Output

The plot here shows the average values of the financial and behavior attributes for
each of the clusters (full size version available on GitHub). Again, comparing clusters
0 and 1, the former has higher average house ownership, higher average net worth
and income, and a lower willingness to take risk compared to the latter. In terms of
saving versus income comparison and willingness to save, the two clusters are com‐
parable. Therefore, we can posit that the individuals in cluster 0 will, on average, have
a higher ability and yet a lower willingness to take risks compared to the individuals
in cluster 1.

266 | Chapter 8: Unsupervised Learning: Clustering

https://oreil.ly/61d9_
https://oreil.ly/61d9_

Combining the information from the demographics, financial, and behavioral
attributes for these two clusters, the overall ability to take risks for an individual in
cluster 0 is higher than someone in cluster 1. Performing similar analyses across all
other clusters, we summarize the results in the table below. The risk tolerance col‐
umn represents the subjective assessment of the risk tolerance of each cluster.

Cluster Features Risk capacity
Cluster 0 Low age, high net worth and income, less risky life category, willingness to spend more High

Cluster 1 High age, low net worth and income, highly risky life category, willingness to take risk, low
education

Low

Cluster 2 High age, high net worth and income, highly risky life category, willingness to take risk, owns
home

Medium

Cluster 3 Low age, very low income and net worth, high willingness to take risk, many kids Low

Cluster 4 Medium age, very high income and net worth, high willingness to take risk, many kids, owns
home

High

Cluster 5 Low age, very low income and net worth, high willingness to take risk, no kids Medium

Cluster 6 Low age, medium income and net worth, high willingness to take risk, many kids, owns home Low

Conclusion
One of the key takeaways from this case study is the approach to understanding the
cluster intuition. We used visualization techniques to understand the expected
behavior of a cluster member by qualitatively interpreting mean values of the vari‐
ables in each cluster. We demonstrated the efficiency of clustering in discovering the
natural groups of different investors based on their risk tolerance.

Given that clustering algorithms can successfully group investors based on different
factors (such as age, income, and risk tolerance), they can be further used by portfolio
managers to standardize portfolio allocation and rebalance strategies across the clus‐
ters, making the investment management process faster and more effective.

Case Study 3: Hierarchical Risk Parity
Markowitz’s mean-variance portfolio optimization is the most commonly used tech‐
nique for portfolio construction and asset allocation. In this technique, we need to
estimate the covariance matrix and expected returns of assets to be used as inputs. As
discussed in “Case Study 1: Portfolio Management: Finding an Eigen Portfolio” on
page 202 in Chapter 7, the erratic nature of financial returns causes estimation errors
in the expected returns and the covariance matrix, especially when the number of
assets is large compared to the sample size. These errors greatly jeopardize the opti‐
mality of the resulting portfolios, which leads to erroneous and unstable results.
Additionally, small changes in the assumed asset returns, volatilities, or covariances

Case Study 3: Hierarchical Risk Parity | 267

can lead to large effects on the output of the optimization procedure. In this sense,
the Markowitz mean-variance optimization is an ill-posed (or ill-conditioned)
inverse problem.

In “Building Diversified Portfolios That Outperform Out-of-Sample” by Marcos
López de Prado (2016), the author proposes a portfolio allocation method based on
clustering called hierarchical risk parity. The main idea of hierarchical risk parity is to
run hierarchical clustering on the covariance matrix of stock returns and then find a
diversified weighting by distributing capital equally to each cluster hierarchy (so that
many correlated strategies will receive the same total allocation as a single uncorrela‐
ted one). This alleviates some of the issues (highlighted above) found in Markowitz’s
mean-variance optimization and improves numerical stability.

In this case study, we will implement hierarchical risk parity based on clustering
methods and compare it against Markowitz’s mean-variance optimization method.

The dataset used for this case study is price data for stocks in the S&P 500 from 2018
onwards. The dataset can be downloaded from Yahoo Finance. It is the same dataset
as was used in case study 1.

In this case study, we will focus on:

• Application of clustering-based techniques for portfolio allocation.
• Developing a framework for comparing portfolio allocation methods.

Blueprint for Using Clustering to Implement Hierarchical
Risk Parity

1. Problem definition
Our goal in this case study is to use a clustering-based algorithm on a dataset of
stocks to allocate capital into different asset classes. In order to backtest and compare
the portfolio allocation against the traditional Markowitz mean-variance optimiza‐
tion, we will perform visualization and use performance metrics, such as the Sharpe
ratio.

268 | Chapter 8: Unsupervised Learning: Clustering

https://oreil.ly/2BmW5

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The packages loaded for this case study are similar
to those loaded in the previous case study. However, some additional packages
related to the clustering techniques are shown in the following code snippet:

#Import Model Packages
import scipy.cluster.hierarchy as sch
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import fcluster
from scipy.cluster.hierarchy import dendrogram, linkage, cophenet
from sklearn.metrics import adjusted_mutual_info_score
from sklearn import cluster, covariance, manifold
import ffn

#Package for optimization of mean variance optimization
import cvxopt as opt
from cvxopt import blas, solvers

Since this case study uses the same data as case study 1, some of the next steps (i.e.,
loading the data) have been skipped to avoid repetition. As a reminder, the data con‐
tains around 500 stocks and 448 observations.

3. Exploratory data analysis
We will take a detailed look into the visualization postclustering later in this case
study.

4. Data preparation

4.1. Data cleaning. Refer to case study 1 for data cleaning steps.

4.2. Data transformation. We will be using annual returns for clustering. Additionally,
we will train the data and then test the data. Here, we prepare the dataset for training
and testing by separating 20% of the dataset for testing, and we generate the return
series:

X= dataset.copy('deep')
row= len(X)
train_len = int(row*.8)

X_train = X.head(train_len)
X_test = X.tail(row-train_len)

#Calculate percentage return
returns = X_train.to_returns().dropna()
returns_test=X_test.to_returns().dropna()

Case Study 3: Hierarchical Risk Parity | 269

5. Evaluate algorithms and models
In this step, we will look at hierarchical clustering and perform further analysis and
visualization.

5.1. Building a hierarchy graph/dendrogram. The first step is to look for clusters of cor‐
relations using the agglomerative hierarchical clustering technique. The hierarchy
class has a dendrogram method that takes the value returned by the linkage method
of the same class. The linkage method takes the dataset and the method to minimize
distances as parameters. There are different options for measurement of the distance.
The option we will choose is ward, since it minimizes the variance of distances
between the clusters. Other possible measures of distance include single and centroid.

Linkage does the actual clustering in one line of code and returns a list of the clusters
joined in the format:

Z= [stock_1, stock_2, distance, sample_count]

As a precursor, we define a function to convert correlation into distances:

def correlDist(corr):
 # A distance matrix based on correlation, where 0<=d[i,j]<=1
 # This is a proper distance metric
 dist = ((1 - corr) / 2.) ** .5 # distance matrix
 return dist

Now we convert the correlation of the returns of the stocks into distances, followed
by the computation of linkages in the step below. Computation of linkages is fol‐
lowed by the visualization of the clusters through a dendrogram. Again, the leaves are
the individual stocks, and the root is the final single cluster. The distance between
each cluster is shown on the y-axis; the longer the branches are, the less correlated
two clusters are.

#Calculate linkage
dist = correlDist(returns.corr())
link = linkage(dist, 'ward')

#Plot Dendrogram
plt.figure(figsize=(20, 7))
plt.title("Dendrograms")
dendrogram(link,labels = X.columns)
plt.show()

In the following chart, the horizontal axis represents the clusters. Although the names
of the stocks on the horizontal axis are not very clear (not surprising, given that there
are 500 stocks), we can see that they are grouped into several clusters. The appropri‐
ate number of clusters appears to be 2, 3, or 6, depending on the desired distance
threshold level. Next, we will leverage the linkages computed from this step to com‐
pute the asset allocation based on hierarchical risk parity.

270 | Chapter 8: Unsupervised Learning: Clustering

Output

5.2. Steps for hierarchical risk parity. The hierarchical risk parity (HRP) algorithm
works in three stages, as outlined in Prado’s paper:

Tree clustering
Grouping similar investments into clusters based on their correlation matrix.
Having a hierarchical structure helps us improve stability issues of quadratic
optimizers when inverting the covariance matrix.

Quasi-diagonalization
Reorganizing the covariance matrix so similar investments will be placed
together. This matrix diagonalization allows us to distribute weights optimally
following an inverse-variance allocation.

Recursive bisection
Distributing the allocation through recursive bisection based on cluster
covariance.

Having performed the first stage in the previous section, where we identified clusters
based on the distance metrics, we proceed to quasi-diagonalization.

5.2.1. Quasi-diagonalization. Quasi-diagonalization is a process known as matrix seria‐
tion, which reorganizes the rows and columns of a covariance matrix so that the larg‐
est values lie along the diagonal. As shown in the following code, the process
reorganizes the covariance matrix so similar investments are placed together. This
matrix diagonalization allows us to distribute weights optimally following an inverse-
variance allocation:

def getQuasiDiag(link):
 # Sort clustered items by distance
 link = link.astype(int)
 sortIx = pd.Series([link[-1, 0], link[-1, 1]])
 numItems = link[-1, 3] # number of original items

Case Study 3: Hierarchical Risk Parity | 271

 while sortIx.max() >= numItems:
 sortIx.index = range(0, sortIx.shape[0] * 2, 2) # make space
 df0 = sortIx[sortIx >= numItems] # find clusters
 i = df0.index
 j = df0.values - numItems
 sortIx[i] = link[j, 0] # item 1
 df0 = pd.Series(link[j, 1], index=i + 1)
 sortIx = sortIx.append(df0) # item 2
 sortIx = sortIx.sort_index() # re-sort
 sortIx.index = range(sortIx.shape[0]) # re-index
 return sortIx.tolist()

5.2.2. Recursive bisection. In the next step, we perform recursive bisection, which is a
top-down approach to splitting portfolio weights between subsets based on the
inverse proportion to their aggregated variances. The function getClusterVar com‐
putes the cluster variance, and in this process, it requires the inverse-variance portfo‐
lio from the function getIVP. The output of the function getClusterVar is used by
the function getRecBipart to compute the final allocation through recursive bisec‐
tion based on cluster covariance:

def getIVP(cov, **kargs):
Compute the inverse-variance portfolio
ivp = 1. / np.diag(cov)
ivp /= ivp.sum()
return ivp

def getClusterVar(cov,cItems):
 # Compute variance per cluster
 cov_=cov.loc[cItems,cItems] # matrix slice
 w_=getIVP(cov_).reshape(-1, 1)
 cVar=np.dot(np.dot(w_.T,cov_),w_)[0, 0]
 return cVar

def getRecBipart(cov, sortIx):
 # Compute HRP alloc
 w = pd.Series(1, index=sortIx)
 cItems = [sortIx] # initialize all items in one cluster
 while len(cItems) > 0:
 cItems = [i[j:k] for i in cItems for j, k in ((0,\
 len(i) // 2), (len(i) // 2, len(i))) if len(i) > 1] # bi-section
 for i in range(0, len(cItems), 2): # parse in pairs
 cItems0 = cItems[i] # cluster 1
 cItems1 = cItems[i + 1] # cluster 2
 cVar0 = getClusterVar(cov, cItems0)
 cVar1 = getClusterVar(cov, cItems1)
 alpha = 1 - cVar0 / (cVar0 + cVar1)
 w[cItems0] *= alpha # weight 1
 w[cItems1] *= 1 - alpha # weight 2
 return w

272 | Chapter 8: Unsupervised Learning: Clustering

The following function getHRP combines the three stages—clustering, quasi-
diagonalization, and recursive bisection—to produce the final weights:

def getHRP(cov, corr):
 # Construct a hierarchical portfolio
 dist = correlDist(corr)
 link = sch.linkage(dist, 'single')
 #plt.figure(figsize=(20, 10))
 #dn = sch.dendrogram(link, labels=cov.index.values)
 #plt.show()
 sortIx = getQuasiDiag(link)
 sortIx = corr.index[sortIx].tolist()
 hrp = getRecBipart(cov, sortIx)
 return hrp.sort_index()

5.3. Comparison against other asset allocation methods. A main focus of this case study is
to develop an alternative to Markowitz’s mean-variance portfolio optimization using
clustering. In this step, we define a function to compute the allocation of a portfolio
based on Markowitz’s mean-variance technique. This function (getMVP) takes the
covariance matrix of the assets as an input, performs the mean-variance optimiza‐
tion, and produces the portfolio allocations:

def getMVP(cov):
 cov = cov.T.values
 n = len(cov)
 N = 100
 mus = [10 ** (5.0 * t / N - 1.0) for t in range(N)]

 # Convert to cvxopt matrices
 S = opt.matrix(cov)
 #pbar = opt.matrix(np.mean(returns, axis=1))
 pbar = opt.matrix(np.ones(cov.shape[0]))

 # Create constraint matrices
 G = -opt.matrix(np.eye(n)) # negative n x n identity matrix
 h = opt.matrix(0.0, (n, 1))
 A = opt.matrix(1.0, (1, n))
 b = opt.matrix(1.0)

 # Calculate efficient frontier weights using quadratic programming
 solvers.options['show_progress'] = False
 portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x']
 for mu in mus]
 ## Calculate risk and return of the frontier
 returns = [blas.dot(pbar, x) for x in portfolios]
 risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]
 ## Calculate the 2nd degree polynomial of the frontier curve.
 m1 = np.polyfit(returns, risks, 2)
 x1 = np.sqrt(m1[2] / m1[0])
 # CALCULATE THE OPTIMAL PORTFOLIO
 wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']

Case Study 3: Hierarchical Risk Parity | 273

 return list(wt)

5.4. Getting the portfolio weights for all types of asset allocation. In this step, we use the
functions above to compute the asset allocation using the two asset allocation meth‐
ods. We then visualize the asset allocation results:

def get_all_portfolios(returns):

 cov, corr = returns.cov(), returns.corr()
 hrp = getHRP(cov, corr)
 mvp = getMVP(cov)
 mvp = pd.Series(mvp, index=cov.index)
 portfolios = pd.DataFrame([mvp, hrp], index=['MVP', 'HRP']).T
 return portfolios

#Now getting the portfolios and plotting the pie chart
portfolios = get_all_portfolios(returns)

portfolios.plot.pie(subplots=True, figsize=(20, 10),legend = False);
fig, (ax1, ax2) = plt.subplots(1, 2,figsize=(30,20))
ax1.pie(portfolios.iloc[:, 0],);
ax1.set_title('MVP',fontsize=30)
ax2.pie(portfolios.iloc[:, 1]);
ax2.set_title('HRP',fontsize=30)

The following pie charts show the asset allocation of MVP versus HRP. We clearly
see more diversification in HRP. Now let us look at the backtesting results.

Output

274 | Chapter 8: Unsupervised Learning: Clustering

6. Backtesting
We will now backtest the performance of portfolios produced by the algorithms,
looking at both in-sample and out-of-sample results:

Insample_Result=pd.DataFrame(np.dot(returns,np.array(portfolios)), \
'MVP','HRP'], index = returns.index)
OutOfSample_Result=pd.DataFrame(np.dot(returns_test,np.array(portfolios)), \
columns=['MVP', 'HRP'], index = returns_test.index)

Insample_Result.cumsum().plot(figsize=(10, 5), title ="In-Sample Results",\
 style=['--','-'])
OutOfSample_Result.cumsum().plot(figsize=(10, 5), title ="Out Of Sample Results",\
 style=['--','-'])

Output

Case Study 3: Hierarchical Risk Parity | 275

Looking at the charts, MVP underperforms for a significant amount of time in the in-
sample test. In the out-of-sample test, MVP performed better than HRP for a brief
period of time from August 2019 to mid-September 2019. In the next step, we exam‐
ine the Sharpe ratio for the two allocation methods:

In-sample results.
#In_sample Results
stddev = Insample_Result.std() * np.sqrt(252)
sharp_ratio = (Insample_Result.mean()*np.sqrt(252))/(Insample_Result).std()
Results = pd.DataFrame(dict(stdev=stddev, sharp_ratio = sharp_ratio))
Results

Output

stdev sharp_ratio
MVP 0.086 0.785

HRP 0.127 0.524

Out-of-sample results.
#OutOf_sample Results
stddev_oos = OutOfSample_Result.std() * np.sqrt(252)
sharp_ratio_oos = (OutOfSample_Result.mean()*np.sqrt(252))/(OutOfSample_Result).\
std()
Results_oos = pd.DataFrame(dict(stdev_oos=stddev_oos, sharp_ratio_oos = \
 sharp_ratio_oos))
Results_oos

Output

stdev_oos sharp_ratio_oos
MVP 0.103 0.787

HRP 0.126 0.836

Although the in-sample results of MVP look promising, the out-of-sample Sharpe
ratio and overall return of the portfolio constructed using the hierarchical clustering
approach are better. The diversification that HRP achieves across uncorrelated assets
makes the methodology more robust against shocks.

Conclusion
In this case study, we saw that portfolio allocation based on hierarchical clustering
offers better separation of assets into clusters with similar characteristics without
relying on classical correlation analysis used in Markowitz’s mean-variance portfolio
optimization.

276 | Chapter 8: Unsupervised Learning: Clustering

Using Markowitz’s technique yields a less diverse portfolio, concentrated in a few
stocks. The HRP approach, leveraging hierarchical clustering–based allocation,
results in a more diverse and distributed portfolio. This approach presented the best
out-of-sample performance and offers better tail risk management due to the
diversification.

Indeed, the corresponding hierarchical risk parity strategies address the shortcom‐
ings of minimum-variance-based portfolio allocation. It is visual and flexible, and it
seems to offer a robust methodology for portfolio allocation and portfolio
management.

Chapter Summary
In this chapter, we learned about different clustering techniques and used them to
capture the natural structure of data to enhance decision making across several areas
of finance. Through the case studies, we demonstrated that clustering techniques can
be useful in enhancing trading strategies and portfolio management.

In addition to offering an approach to different finance problems, the case studies
focused on understanding the concepts of clustering models, developing intuition,
and visualizing clusters. Overall, the concepts in Python, machine learning, and
finance presented in this chapter through the case studies can used as a blueprint for
any other clustering-based problem in finance.

Having covered supervised and unsupervised learning, we will explore another type
of machine learning, reinforcement learning, in the next chapter.

Exercises
• Use hierarchical clustering to form clusters of investments in a different asset

class, such as forex or commodities.
• Apply clustering analysis for pairs trading in the interest rate market on the uni‐

verse of bonds.

Chapter Summary | 277

PART IV

Reinforcement Learning and Natural
Language Processing

1 Reinforcement learning is also referred to as RL throughout this chapter.

CHAPTER 9

Reinforcement Learning

Incentives drive nearly everything, and finance is not an exception. Humans do not
learn from millions of labeled examples. Instead, we often learn from positive or neg‐
ative experiences that we associate with our actions. Learning from experiences and
the associated rewards or punishments is the core idea behind reinforcement learning
(RL).1

Reinforcement learning is an approach toward training a machine to find the best
course of action through optimal policies that maximize rewards and minimize pun‐
ishments.

The RL algorithms that empowered AlphaGo (the first computer program to defeat a
professional human Go player) are also finding inroads into finance. Reinforcement
learning’s main idea of maximizing the rewards aligns beautifully with several areas in
finance, including algorithmic trading and portfolio management. Reinforcement
learning is particularly suitable for algorithmic trading, because the concept of a
return-maximizing agent in an uncertain, dynamic environment has much in com‐
mon with an investor or a trading strategy that interacts with financial markets. Rein‐
forcement learning–based models go one step further than the price prediction–
based trading strategies discussed in previous chapters and determine rule-based pol‐
icies for actions (i.e., place an order, do nothing, cancel an order, and so on).

Similarly, in portfolio management and asset allocation, reinforcement learning–
based algorithms do not yield predictions and do not learn the structure of the mar‐
ket implicitly. They do more. They directly learn the policy of changing the portfolio
allocation weights dynamically in the continuously changing market. Reinforcement
learning models are also useful for order execution problems, which involve the

281

process of completing a buy or sell order for a market instrument. Here, the algo‐
rithms learn through trial and error, figuring out the optimal path of execution on
their own.

Reinforcement learning algorithms, with their ability to tackle more nuances and
parameters within the operational environment, can also produce derivatives hedg‐
ing strategies. Unlike traditional finance-based hedging strategies, these hedging
strategies are optimal and valid under real-world market frictions, such as transaction
costs, market impact, liquidity constraints, and risk limits.

In this chapter, we cover three reinforcement learning–based case studies covering
major finance applications: algorithmic trading, derivatives hedging, and portfolio
allocation. In terms of the model development steps, the case studies follow a stan‐
dardized seven-step model development process presented in Chapter 2. Model
development and evaluation are key steps for reinforcement learning, and these steps
will be emphasized. With multiple concepts in machine learning and finance imple‐
mented, these case studies can be used as a blueprint for any other reinforcement
learning–based problem in finance.

In “Case Study 1: Reinforcement Learning–Based Trading Strategy” on page 298, we
demonstrate the use of RL to develop an algorithmic trading strategy.

In “Case Study 2: Derivatives Hedging” on page 316, we implement and analyze rein‐
forcement learning–based techniques to calculate the optimal hedging strategies for
portfolios of derivatives under market frictions.

In “Case Study 3: Portfolio Allocation” on page 334, we illustrate the use of a
reinforcement learning–based technique on a dataset of cryptocurrency in order to
allocate capital into different cryptocurrencies to maximize risk-adjusted returns. We
also introduce a reinforcement learning–based simulation environment to train and
test the model.

In addition to the points mentioned above, readers will understand the following
points by the end of this chapter:

• Key components of reinforcement learning (i.e., reward, agent, environment,
action, and policy).

• Model-based and model-free algorithms for reinforcement learning along with
policy and value-based models.

• Fundamental approaches to solving reinforcement learning problems, such as
Markov decision processes (MDP), temporal difference (TD) learning, and artifi‐
cial neural networks (ANNs).

• Methods to train and test value-based and policy-based reinforcement learning
algorithms using artificial neural networks and deep learning.

282 | Chapter 9: Reinforcement Learning

2 For more details, be sure to check out Reinforcement Learning: An Introduction by Richard Sutton and
Andrew Barto (MIT Press), or David Silver’s free online RL course at University College London.

• How to set up an agent or simulation environment for reinforcement learning
problems using Python.

• How to design and implement a problem statement related to algorithmic trad‐
ing strategy, portfolio management, and instrument hedging in a classification-
based machine learning framework.

This Chapter’s Code Repository

A Python-based Jupyter notebook for all the case studies presented
in this chapter is included under the folder Chapter 9 - Reinforce‐
ment Learning in the code repository for this book. To work
through any machine learning problems in Python involving RL
models (such as DQN or policy gradient) presented in this chapter,
readers need to modify the template slightly to align with their
problem statement.

Reinforcement Learning—Theory and Concepts
Reinforcement learning is an extensive topic covering a wide range of concepts and
terminology. The theory section of this chapter covers the items and topics listed in
Figure 9-1.2

Figure 9-1. RL summary of concepts

In order to solve any problem using RL, it is important to first understand and define
the RL components.

Reinforcement Learning—Theory and Concepts | 283

https://oreil.ly/niRu-
https://oreil.ly/Fp0xD
https://oreil.ly/Fp0xD

RL Components
The main components of an RL system are agent, actions, environment, state, and
reward.

Agent
The entity that performs actions.

Actions
The things an agent can do within its environment.

Environment
The world in which the agent resides.

State
The current situation.

Reward
The immediate return sent by the environment to evaluate the last action by the
agent.

The goal of reinforcement learning is to learn an optimal strategy through experi‐
mental trials and relatively simple feedback loops. With the optimal strategy, the
agent is capable of actively adapting to the environment to maximize the rewards.
Unlike in supervised learning, these reward signals are not given to the model imme‐
diately. Instead, they are returned as a consequence of a sequence of actions that the
agent makes.

An agent’s actions are usually conditioned on what the agent perceives from the envi‐
ronment. What the agent perceives is referred to as the observation or the state of the
environment. Figure 9-2 summarizes the components of a reinforcement learning
system.

Figure 9-2. RL components

284 | Chapter 9: Reinforcement Learning

The interaction between the agent and the environment involves a sequence of
actions and observed rewards in time, t = 1, 2...T . During the process, the agent
accumulates knowledge about the environment, learns the optimal policy, and makes
decisions on which action to take next so as to efficiently learn the best policy. Let’s
label the state, action, and reward at time step t as St , At ...Rt , respectively. Thus, the
interaction sequence is fully described by one episode (also known as “trial” or “tra‐
jectory”), and the sequence ends at the terminal state ST : S1, A1, R2, S2, A2...AT .

In addition to the five components of reinforcement learning mentioned so far, there
are three additional components of reinforcement learning: policy, value function
(and Q-value), and model of the environment. Let us discuss the components in
detail.

Policy
A policy is an algorithm or a set of rules that describes how an agent makes its deci‐
sions. More formally, a policy is a function, usually denoted as π, that maps a state (s)
and an action (a):

at = π(st)

This means that an agent decides its action given its current state. The policy can be
can be either deterministic or stochastic. A deterministic policy maps a state to
actions. On the other hand, a stochastic policy outputs a probability distribution over
actions. It means that instead of being sure of taking action a, there is a probability
assigned to the action given a state.

Our goal in reinforcement learning is to learn an optimal policy (which is also
referred to as π *). An optimal policy tells us how to act to maximize return in every
state.

Value function (and Q-value)
The goal of a reinforcement learning agent is to learn to perform a task well in an
environment. Mathematically, this means maximizing the future reward, or cumula‐
tive discounted reward, G, which can be expressed in the following equation as a
function of reward function R at different times:

Gt = Rt +1 + γRt +2 + ... = ∑
0

∞
y k Rt +k +1

The discounting factor γ is a value between 0 and 1 to penalize the rewards in the
future, as future rewards do not provide immediate benefits and may have higher
uncertainty. Future reward is an important input to the value function.

Reinforcement Learning—Theory and Concepts | 285

The value function (or state value) measures the attractiveness of a state through a
prediction of future reward Gt . The value function of a state s is the expected return,
with a policy π if we are in this state at time t:

V (s) = E Gt | St = s

Similarly, we define the action-value function (Q-value) of a state-action pair (s, a)
as:

Q(s, a) = E Gt | St = s, At = a

So the value function is the expected return for a state following a policy π. The Q-
value is the expected reward for the state-action pair following a policy π.

The value function and the Q-value are interconnected as well. Since we follow the
target policy π, we can make use of the probability distribution over possible actions
and the Q-values to recover the value function:

V (s) = ∑
a∈A

Q(s, a)π(a | s)

The preceding equation represents the relationship between the value function and
Q-value.

The relationship between reward function (R), future rewards (G), value function,
and Q-value is used to derive the Bellman equations (discussed later in this chapter),
which are one of the key components of many reinforcement learning models.

Model
The model is a descriptor of the environment. With the model, we can learn or infer
how the environment would interact with and provide feedback to the agent. Models
are used for planning, by which we mean any way of deciding on a course of action
by considering possible future situations. A model of the stock market, for example,
is tasked with predicting what the prices will look like in the future. The model has
two major parts: transition probability function (P) and reward function. We already
discussed the reward function. The transition function (P) records the probability of
transitioning from one state to another after taking an action.

Overall, an RL agent may be directly or indirectly trying to learn a policy or value
function shown in Figure 9-3. The approach to learning a policy varies depending on
the RL model type. When we fully know the environment, we can find the optimal

286 | Chapter 9: Reinforcement Learning

3 See “Reinforcement Learning Models” on page 293 for more details on model-based and model-free
approaches.

4 A maximum drawdown is the maximum observed loss from peak to trough of a portfolio before a new peak is
attained; it is an indicator of downside risk over a specified time period.

solution by using model-based approaches.3 When we do not know the environment,
we follow a model-free approach and try to learn the model explicitly as part of the
algorithm.

Figure 9-3. Model, value, and policy

RL components in a trading context
Let’s try to understand what the RL components correspond to in a trading setting:

Agent
The agent is our trading agent. We can think of the agent as a human trader who
makes trading decisions based on the current state of the exchange and their
account.

Action
There would be three actions: Buy, Hold, and Sell.

Reward function
An obvious reward function would be the realized PnL (Profit and Loss). Other
reward functions can be Sharpe ratio or maximum drawdown.4 There can be a
wide range of complex reward functions that offer a trade-off between profit and
risk.

Environment
The environment in a trading context would be the exchange. In the case of trad‐
ing on an exchange, we do not observe the complete state of the environment.
Specifically, we are unaware of the other agents, and what an agent observes is
not the true state of the environment but some derivation of it.

Reinforcement Learning—Theory and Concepts | 287

This is referred to as a partially observable Markov decision process (POMDP). This is
the most common type of environment that we encounter in finance.

RL Modeling Framework
In this section, we describe the core framework of reinforcement learning used across
several RL models.

Bellman equations
Bellman equations refer to a set of equations that decompose the value function and
Q-value into the immediate reward plus the discounted future values.

In RL, the main aim of an agent is to get the most expected sum of rewards from
every state it lands in. To achieve that, we must try to get the optimal value function
and Q-value; the Bellman equations help us to do so.

We use the relationship between reward function (R), future rewards (G), value func‐
tion, and Q-value to derive the Bellman equation for value function, as shown in
Equation 9-1.

Equation 9-1. Bellman equation for value function

V (s) = E Rt +1 + γV (St +1) | St = s

Here, the value function is decomposed into two parts; an immediate reward, Rt +1,
and the discounted value of the successor state, γV (St +1), as shown in the preceding
equation. Hence, we have broken down the problem into the immediate reward and
the discounted successor state. The state value V(s) for the state s at time t can be
computed using the current reward Rt +1 and the value function at the time t+1. This
is the Bellman equation for value function. This equation can be maximized to get an
equation called Bellman Optimality Equation for value function, represented by
V*(s).

We follow a very similar algorithm to estimate the optimal state-action values (Q-
values). The simplified iteration algorithms for value function and Q-value are shown
in Equations 9-2 and 9-3.

Equation 9-2. Iteration algorithm for value function

V k +1(s) = m
a

ax∑
s ′

P
ss ′
a (R

ss ′
a + γV k (s ′))

Equation 9-3. Iteration algorithm for Q-value

Qk +1(s, a) = ∑
s ′

P
ss ′
a R

ss ′
a + γ * m

a ′
ax * Qk (s ′, a ′)

288 | Chapter 9: Reinforcement Learning

where

• Pss ′
a is the transition probability from state s to state s′, given that action a was

chosen.
• Rss ′

a is the reward that the agent gets when it goes from state s to state s′, given
that action a was chosen.

Bellman equations are important because they let us express values of states as values
of other states. This means that if we know the value function or Q-value of st+1, we
can very easily calculate the value of st. This opens a lot of doors for iterative
approaches for calculating the value for each state, since if we know the value of the
next state, we can know the value of the current state.

If we have complete information about the environment, the iteration algorithms
shown in Equations 9-2 and 9-3 turn into a planning problem, solvable by dynamic
programming that we will demonstrate in the next section. Unfortunately, in most
scenarios, we do not know Rss ′ or Pss ′ and thus cannot apply the Bellman equations
directly, but they lay the theoretical foundation for many RL algorithms.

Markov decision processes
Almost all RL problems can be framed as Markov decision processes (MDPs). MDPs
formally describe an environment for reinforcement learning. A Markov decision
process consists of five elements: M = S , A, P , R, γ, where the symbols carry the
same meanings as defined in the previous section:

• S: a set of states
• A: a set of actions
• P: transition probability
• R: reward function
• γ: discounting factor for future rewards

MDPs frame the agent–environment interaction as a sequential decision problem
over a series of time steps t = 1, …, T. The agent and the environment interact con‐
tinually, the agent selecting actions and the environment responding to these actions
and presenting new situations to the agent, with the aim of coming up with an opti‐
mal policy or strategy. Bellman equations form the basis for the overall algorithm.

All states in MDP have the Markov property, referring to the fact that the future
depends only on the current state, not on the history.

Let us look into an example of MDP in a financial context and analyze the Bellman
equation. Trading in the market can be formalized as an MDP, which is a process

Reinforcement Learning—Theory and Concepts | 289

that has specified transition probabilities from state to state. Figure 9-4 shows an
example of MDP in the financial market, with a set of states, transition probability,
action, and reward.

Figure 9-4. Markov decision process

The MDP presented here has three states: bull, bear, and stagnant market, repre‐
sented by three states (s0, s1, s2). The three actions of a trader are hold, buy, and sell,
represented by a0, a1, a2, respectively. This is a hypothetical setup in which we assume
that transition probabilities are known and the action of the trader leads to a change
in the state of the market. In the subsequent sections we will look at approaches for
solving RL problems without making such assumptions. The chart also shows the
transition probabilities and the rewards for different actions. If we start in state s0
(bull market), the agent can choose between actions a0, a1, a2 (sell, buy, or hold). If it
chooses action buy (a1), it remains in state s0 with certainty, and without any reward.
It can thus decide to stay there forever if it wants. But if it chooses action hold (a0), it
has a 70% probability of gaining a reward of +50, and remaining in state s0. It can
then try again to gain as much reward as possible. But at some point, it is going to
end up instead in state s1 (stagnant market). In state s1 it has only two possible
actions: hold (a0) or buy (a1). It can choose to stay put by repeatedly choosing action
a1, or it can choose to move on to state s2 (bear market) and get a negative reward of –
250. In state s3 it has no other choice than to take action buy (a1), which will most
likely lead it back to state s0 (bull market), gaining a reward of +200 on the way.

Now, by looking at this MDP, it is possible to come up with an optimal policy or a
strategy to achieve the most reward over time. In state s0 it is clear that action a0 is the

290 | Chapter 9: Reinforcement Learning

best option, and in state s2 the agent has no choice but to take action a1, but in state s1
it is not obvious whether the agent should stay put (a0) or sell (a2).

Let’s apply the following Bellman equation as per Equation 9-3 to get the optimal Q-
value:

Qk +1(s, a) = ∑
s ′

P
ss ′
a R

ss ′
a + γ * m

a ′
ax * Qk (s ′, a ′)

import numpy as np
nan=np.nan # represents impossible actions
#Array for transition probability
P = np.array([# shape=[s, a, s']
[[0.7, 0.3, 0.0], [1.0, 0.0, 0.0], [0.8, 0.2, 0.0]],
[[0.0, 1.0, 0.0], [nan, nan, nan], [0.0, 0.0, 1.0]],
[[nan, nan, nan], [0.8, 0.1, 0.1], [nan, nan, nan]],
])

Array for the return
R = np.array([# shape=[s, a, s']
[[50., 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[50., 0.0, 0.0], [nan, nan, nan], [0.0, 0.0, -250.]],
[[nan, nan, nan], [200., 0.0, 0.0], [nan, nan, nan]],
])
#Actions
A = [[0, 1, 2], [0, 2], [1]]
#The data already obtained from yahoo finance is imported.

#Now let's run the Q-Value Iteration algorithm:
Q = np.full((3, 3), -np.inf) # -inf for impossible actions
for state, actions in enumerate(A):
 Q[state, actions] = 0.0 # Initial value = 0.0, for all possible actions
discount_rate = 0.95
n_iterations = 100
for iteration in range(n_iterations):
 Q_prev = Q.copy()
 for s in range(3):
 for a in A[s]:
 Q[s, a] = np.sum([
 T[s, a, sp] * (R[s, a, sp] + discount_rate * np.max(Q_prev[sp]))
 for sp in range(3)])
print(Q)

Output

[[109.43230584 103.95749333 84.274035]
 [5.5402017 -inf 5.83515676]
 [-inf 269.30353051 -inf]]

This gives us the optimal policy (Q-value) for this MDP, when using a discount rate
of 0.95. Looking for the highest Q-value for each of the states: in a bull market (s0)

Reinforcement Learning—Theory and Concepts | 291

choose action hold (a0); in a stagnant market (s1) choose action sell (a2); and in a bear
market (s2) choose action buy (a1).

The preceding example is a demonstration of a dynamic programming (DP) algo‐
rithm for obtaining optimal policy. These methods make an unrealistic assumption
of complete knowledge of the environment but are the conceptual foundations for
most other approaches.

Temporal difference learning
Reinforcement learning problems with discrete actions can often be modeled as Mar‐
kov decision processes, as we saw in the previous example, but in most cases the
agent initially has no insight into the transition probabilities. It also does not know
what the rewards are going to be. This is where temporal difference (TD) learning
can be useful.

A TD learning algorithm is very similar to the value iteration algorithm (Equation
9-2) based on the Bellman equation but is tweaked to take into account the fact that
the agent has only partial knowledge of the MDP. In general, we assume that the
agent initially knows only the possible states and actions and nothing more. For
example, the agent uses an exploration policy, a purely random policy, to explore the
MDP, and as it progresses, the TD learning algorithm updates the estimates of the
state values based on the transitions and rewards that are actually observed.

The key idea in TD learning is to update the value function V(St) toward an estimated
return Rt +1 + γV (St +1) (known as the TD target). The extent to which we want to
update the value function is controlled by the learning rate hyperparameter α, which
defines how aggressive we want to be when updating our value. When α is close to
zero, we’re not updating very aggressively. When α is close to one, we’re simply
replacing the old value with the updated value:

V (st) ← V (st) + α(Rt +1 + γV (st +1) – V (st))

Similarly, for Q-value estimation:

Q(st , at) ← Q(st , at) + α(Rt +1 + γQ(st +1, at +1) – Q(st , at))

Many RL models use the TD learning algorithm that we will see in the next section.

Artificial neural network and deep learning
Reinforcement learning models often leverage an artificial neural network and deep
learning methods to approximate a value or policy function. That is, ANN can learn
to map states to values, or state-action pairs to Q-values. ANNs use coefficients, or
weights, to approximate the function relating inputs to outputs. In the context of RL,

292 | Chapter 9: Reinforcement Learning

5 If the state and action spaces of MDP are finite, then it is called a finite Markov decision process.

6 The MDP example based on dynamic programming that was discussed in the previous section was an exam‐
ple of a model-based algorithm. As seen there, example rewards and transition probabilities are needed for
such algorithms.

the learning of ANNs means finding the right weights by iteratively adjusting them in
such a way that the rewards are maximized. Refer to 3 and 5 for more details on
methods related to ANN (including deep learning).

Reinforcement Learning Models
Reinforcement learning can be categorized into model-based and model-free algo‐
rithms, based on whether the rewards and probabilities for each step are readily
accessible.

Model-based algorithms
Model-based algorithms try to understand the environment and create a model to
represent it. When the RL problem includes well-defined transition probabilities and
a limited number of states and actions, it can be framed as a finite MDP for which
dynamic programming (DP) can compute an exact solution, similar to the previous
example.5

Model-free algorithms
Model-free algorithms try to maximize the expected reward only from real experi‐
ence, without a model or prior knowledge. Model-free algorithms are used when we
have incomplete information about the model. The agent’s policy π(s) provides the
guideline on what is the optimal action to take in a certain state with the goal of max‐
imizing the total rewards. Each state is associated with a value function V(s) predict‐
ing the expected amount of future rewards we are able to receive in this state by
acting on the corresponding policy. In other words, the value function quantifies how
good a state is. Model-free algorithms are further divided into value-based and policy-
based. Value-based algorithms learn the state, or Q-value, by choosing the best action
in a state. These algorithms are generally based upon temporal difference learning
that we discussed in the RL framework section. Policy-based algorithms (also known
as direct policy search) directly learn an optimal policy that maps state to action (or
tries to approximate optimal policy, if true optimal policy is not attainable).

In most situations in finance, we do not fully know the environment, rewards, or
transition probabilities, and we must fall back to model-free algorithms and related
approaches.6 Hence, the focus of the next section and of the case studies will be the
model-free methods and related algorithms.

Reinforcement Learning—Theory and Concepts | 293

7 There are some models, such as the actor-critic model, that leverage both policy-based and value-based
methods.

Figure 9-5 shows a taxonomy of model-free reinforcement learning. We highly rec‐
ommend that readers refer to Reinforcement Learning: An Introduction for a more in-
depth understanding of the algorithms and the concepts.

Figure 9-5. Taxonomy of RL models

In the context of model-free methods, temporal difference learning is one of the most
used approaches. In TD, the algorithm refines its estimates based on its own prior
estimates. The value-based algorithms Q-learning and SARSA use this approach.

Model-free methods often leverage an artificial neural network to approximate a
value or policy function. Policy gradient and deep Q-network (DQN) are two com‐
monly used model-free algorithms that use artificial neutral networks. Policy gradi‐
ent is a policy-based approach that directly parameterizes the policy. Deep Q-
network is a value-based method that combines deep learning with Q-learning, which
sets the learning objective to optimize the estimates of Q-value.7

Q-Learning
Q-learning is an adaptation of TD learning. The algorithm evaluates which action to
take based on a Q-value (or action-value) function that determines the value of being
in a certain state and taking a certain action at that state. For each state-action pair (s,
a), this algorithm keeps track of a running average of the rewards, R, which the agent
gets upon leaving the state s with action a, plus the rewards it expects to earn later.

294 | Chapter 9: Reinforcement Learning

8 Off-policy, ε-greedy, exploration, and exploitation are commonly used terms in RL and will be used in other
sections and case studies as well.

Since the target policy would act optimally, we take the maximum of the Q-value esti‐
mates for the next state.

The learning proceeds off-policy—that is, the algorithm does not need to select
actions based on the policy that is implied by the value function alone. However, con‐
vergence requires that all state-action pairs continue to be updated throughout the
training process, and a straightforward way to ensure that this occurs is to use an ε-
greedy policy, which is defined further in the following section.

The steps of Q-learning are:

1. At time step t, we start from state st and pick an action according to Q-values,
at = maxaQ(st , a).

2. We apply an ε-greedy approach that selects an action randomly with a probability
of ε or otherwise chooses the best action according to the Q-value function. This
ensures the exploration of new actions in a given state while also exploiting the
learning experience.8

3. With action at, we observe reward Rt+1 and get into the next state St+1.
4. We update the action-value function:

Q(st , at) ← Q(st , at) + α(Rt +1 + γmax
a

Q(st +1, at) – Q(st , at))

5. We increment the time step, t = t+1, and repeat the steps.

Given enough iterations of the steps above, this algorithm will converge to the opti‐
mal Q-value.

SARSA
SARSA is also a TD learning–based algorithm. It refers to the procedure of updating
the Q-value by following a sequence of ...St , At , Rt +1, St +1, At +1, The first two steps
of SARSA are similar to the steps of Q-learning. However, unlike Q-learning, SARSA
is an on-policy algorithm in which the agent grasps the optimal policy and uses the
same to act. In this algorithm, the policies used for updating and for acting are the
same. Q-learning is considered an off-policy algorithm.

Reinforcement Learning—Theory and Concepts | 295

9 Refer to Chapter 3 for more details on gradient descent.

Deep Q-Network
In the previous section, we saw how Q-learning allows us to learn the optimal Q-
value function in an environment with discrete state actions using iterative updates
based on the Bellman equation. However, Q-learning may have the following
drawbacks:

• In cases where the state and action space are large, the optimal Q-value table
quickly becomes computationally infeasible.

• Q-learning may suffer from instability and divergence.

To address these shortcomings, we use ANNs to approximate Q-values. For example,
if we use a function with parameter θ to calculate Q-values, we can label the Q-value
function as Q(s,a;θ). The deep Q-learning algorithm approximates the Q-values by
learning a set of weights, θ, of a multilayered deep Q-network that maps states to
actions. The algorithm aims to greatly improve and stabilize the training procedure
of Q-learning through two innovative mechanisms:

Experience replay
Instead of running Q-learning on state-action pairs as they occur during simula‐
tion or actual experience, the algorithm stores the history of state, action, reward,
and next state transitions that are experienced by the agent in one large replay
memory. This can be referred to as a mini-batch of observations. During Q-
learning updates, samples are drawn at random from the replay memory, and
thus one sample could be used multiple times. Experience replay improves data
efficiency, removes correlations in the observation sequences, and smooths over
changes in the data distribution.

Periodically updated target
Q is optimized toward target values that are only periodically updated. The Q-
network is cloned and kept frozen as the optimization targets every C step (C is a
hyperparameter). This modification makes the training more stable as it over‐
comes the short-term oscillations. To learn the network parameters, the algo‐
rithm applies gradient descent9 to a loss function defined as the squared
difference between the DQN’s estimate of the target and its estimate of the Q-
value of the current state-action pair, Q(s,a:θ). The loss function is as follows:

L (θi) = � (r + γmax
a ′

Q(s ′, a ′ ; θi–1) – Q(s, a; θi))2

296 | Chapter 9: Reinforcement Learning

The loss function is essentially a mean squared error (MSE) function, where
(r + γmaxa ′ Q(s ′, a ′ ; θi–1)) represents the target value and Q s, a; θi represents the
predicted value. θ are the weights of the network, which are computed when the loss
function is minimized. Both the target and the current estimate depend on the set of
weights, underlining the distinction from supervised learning, in which targets are
fixed prior to training.

An example of the DQN for the trading example containing buy, sell, and hold
actions is represented in Figure 9-6. Here, we provide the network only the state (s)
as input, and we receive Q-values for all possible actions (i.e., buy, sell, and hold) at
once. We will be using DQN in the first and third case studies of this chapter.

Figure 9-6. DQN

Policy gradient
Policy gradient is a policy-based method in which we learn a policy function, π, which
is a direct map from each state to the best corresponding action at that state. It is a
more straightforward approach than the value-based method, without the need for a
Q-value function.

Policy gradient methods learn the policy directly with a parameterized function
respect to θ, π(a|s;θ). This function can be a complex function and might require a
sophisticated model. In policy gradient methods, we use ANNs to map state to action
because they are efficient at learning complex functions. The loss function of the
ANN is the opposite of the expected return (cumulative future rewards).

The objective function of the policy gradient method can be defined as:

J (θ) = V πθ
(S1) = �πθ

V 1

where θ represents a set of weights of the ANN that maps states to actions. The idea
here is to maximize the objective function and compute the weights (θ) of the ANN.

Reinforcement Learning—Theory and Concepts | 297

Since this is a maximization problem, we optimize the policy by taking the gradient
ascent (as opposed to gradient descent, which is used to minimize the loss function),
with the partial derivative of the objective with respect to the policy parameter θ:

θ ← θ +
∂

∂θ J (θ)

Using gradient ascent, we can find the best θ that produces the highest return. Com‐
puting the gradient numerically can be done by perturbing θ by a small amount ε in
the kth dimension or by using an analytical approach for deriving the gradient.

We will be using the policy gradient method for case study 2 later in this chapter.

Key Challenges in Reinforcement Learning
So far, we have covered only what reinforcement learning algorithms can do. How‐
ever, several shortcomings are outlined below:

Resource efficiency
Current deep reinforcement learning algorithms require vast amounts of time,
training data, and computational resources in order to reach a desirable level of
proficiency. Thus, making reinforcement learning algorithms trainable under
limited resources will continue to be an important issue.

Credit assignment
In RL, reward signals can occur significantly later than actions that contributed
to the result, complicating the association of actions with their consequences.

Interpretability
In RL, it is relatively difficult for a model to provide any meaningful, intuitive
relationships between input and their corresponding output that can be easily
understood. Most advanced reinforcement learning algorithms incorporate deep
neural networks, which make interpretability even more difficult due to a large
number of layers and nodes inside the neural network.

Let us look at the case studies now.

Case Study 1: Reinforcement Learning–Based Trading
Strategy
Algorithmic trading primarily has three components: policy development, parameter
optimization, and backtesting. The policy determines what actions to take based on
the current state of the market. Parameter optimization is performed using a search
over possible values of strategy parameters, such as thresholds or coefficients. Finally,

298 | Chapter 9: Reinforcement Learning

backtesting assesses the viability of a trading strategy by exploring how it would have
played out using historical data.

RL is based around coming up with a policy to maximize the reward in a given envi‐
ronment. Instead of needing to hand code a rule-based trading policy, RL learns one
directly. There is no need to explicitly specify rules and thresholds. Their ability to
decide policy on their own makes RL models very suitable machine learning algo‐
rithms to create automated algorithmic trading models, or trading bots.

In terms of parameter optimization and backtesting steps, RL allows for end-to-end
optimization and maximizes (potentially delayed) rewards. Reinforcement learning
agents are trained in a simulation, which can be as complex as desired. Taking into
account latencies, liquidity, and fees, we can seamlessly combine the backtesting and
parameter optimization steps without needing to go through separate stages.

Additionally, RL algorithms learn powerful policies parameterized by artificial neural
networks. RL algorithms can also learn to adapt to various market conditions by
experiencing them in historical data, given that they are trained over a long-time
horizon and have sufficient memory. This allows them to be much more robust to
changing markets than supervised learning–based trading strategies, which, due to
the simplistic nature of the policy, may not have a parameterization powerful enough
to learn to adapt to changing market conditions.

Reinforcement learning, with its capability to easily handle policy, parameter optimi‐
zation, and backtesting, is ideal for the next wave of algorithmic trading. Anecdotally,
it seems that several of the more sophisticated algorithmic execution desks at large
investment banks and hedge funds are beginning to use reinforcement learning to
optimize their decision making.

In this case study, we will create an end-to-end trading strategy based on reinforce‐
ment learning. We will use the Q-learning approach with deep Q-network (DQN) to
come up with a policy and an implementation of the trading strategy. As discussed
before, the name “Q-learning” is in reference to the Q(s, a) function, which returns
the expected reward based on the state s and provided action a. In addition to
developing a specific trading strategy, this case study will discuss the general frame‐
work and components of a reinforcement learning–based trading strategy.

In this case study, we will focus on:

• Understanding the key components of an RL framework from a trading strategy
standpoint.

• Evaluating the Q-learning method of RL in Python by defining an agent, fol‐
lowed by training and testing setup.

Case Study 1: Reinforcement Learning–Based Trading Strategy | 299

10 Refer to Chapter 3 for more details on the sigmoid function.

• Implementing a deep neural network to be used for RL problems in Python
using the Keras package.

• Understanding the class structure of Python programming while implementing
an RL-based model.

• Understanding the intuition and interpretation of RL-based algorithms.

Blueprint for Creating a Reinforcement Learning–Based
Trading Strategy

1. Problem definition
In the reinforcement learning framework for this case study, the algorithm takes an
action (buy, sell, or hold) depending on the current state of the stock price. The algo‐
rithm is trained using a deep Q-learning model to perform the best action. The key
components of the reinforcement learning framework for this case study are:

Agent
Trading agent.

Action
Buy, sell, or hold.

Reward function
Realized profit and loss (PnL) is used as the reward function for this case study.
The reward depends on the action: sell (realized profit and loss), buy (no
reward), or hold (no reward).

State
A sigmoid function10 of the differences of past stock prices for a given time win‐
dow is used as the state. State St is described as (dt -τ+1, dt -1, dt), where
dT = sigmoid(pt – pt –1), pt is price at time t, and τ is the time window size. A sig‐
moid function converts the differences of the past stock prices into a number
between zero and one, which helps to normalize the values to probabilities and
makes the state simpler to interpret.

Environment
Stock exchange or the stock market.

300 | Chapter 9: Reinforcement Learning

Selecting the RL Components for a Trading Strategy

Formulating an intelligent behavior for a reinforcement learning–
based trading strategy begins with identification of the correct
components of the RL model. Hence, before we go into the model
development, we should carefully identify the following RL com‐
ponents:

Reward function
This is an important parameter, as it decides whether the RL
algorithm will learn to optimize the appropriate metric. In
addition to the return or PnL, the reward function can incor‐
porate risk embedded in the underlying instrument or include
other parameters such as volatility or maximum drawdown. It
can also include the transaction costs of the buy/sell actions.

State
State determines the observations that the agent receives from
the environment for taking a decision. The state should be
representative of current market behavior as compared to the
past and can also include values of any signals that are
believed to be predictive or items related to market micro‐
structure, such as volume traded.

The data that we will use will be the S&P 500 closing prices. The data is extracted
from Yahoo Finance and contains ten years of daily data from 2010 to 2019.

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The list of libraries used for all of the steps of model
implementation, from data loading to model evaluation, including deep learning–
based model development, are included here. The details of most of these packages
and functions have been provided in Chapters 2, 3, and 4. The packages used for dif‐
ferent purposes have been separated in the Python code here, and their usage will be
demonstrated in different steps of the model development process.

Packages for reinforcement learning

import keras
from keras import layers, models, optimizers from keras import backend as K
from collections import namedtuple, deque
from keras.models import Sequential
from keras.models import load_model
from keras.layers import Dense
from keras.optimizers import Adam

Case Study 1: Reinforcement Learning–Based Trading Strategy | 301

Packages/modules for data processing and visualization

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import read_csv, set_option
import datetime
import math
from numpy.random import choice
import random
from collections import deque

2.2. Loading the data. The fetched data for the time period of 2010 to 2019 is loaded:

dataset = read_csv('data/SP500.csv', index_col=0)

3. Exploratory data analysis
We will look at descriptive statistics and data visualization in this section. Let us have
a look at the dataset we have:

shape
dataset.shape

Output

(2515, 6)

peek at data
set_option('display.width', 100)
dataset.head(5)

Output

The data has a total of 2,515 rows and six columns, which contain the categories
open, high, low, close, adjusted close price, and total volume. The adjusted close price is
the closing price adjusted for the split and dividends. For the purpose of this case
study, we will be focusing on the closing price.

302 | Chapter 9: Reinforcement Learning

The chart shows that S&P 500 has been in an upward-trending series between 2010
and 2019. Let us perform the data preparation.

4. Data preparation
This step is important in order to create a meaningful, reliable, and clean dataset that
can be used without any errors in the reinforcement learning algorithm.

4.1. Data cleaning. In this step, we check for NAs in the rows and either drop them or
fill them with the mean of the column:

#Checking for any null values and removing the null values'''
print('Null Values =', dataset.isnull().values.any())

Output

Null Values = False

As there are no null values in the data, there is no need to perform any further data
cleaning.

5. Evaluate algorithms and models
This is the key step of the reinforcement learning model development, where we will
define all the relevant functions and classes and train the algorithm. In the first step,
we prepare the data for the training set and the test set.

5.1. Train-test split. In this step, we partition the original dataset into training set and
test set. We use the test set to confirm the performance of our final model and to
understand if there is any overfitting. We will use 80% of the dataset for modeling
and 20% for testing:

Case Study 1: Reinforcement Learning–Based Trading Strategy | 303

X=list(dataset["Close"])
X=[float(x) for x in X]
validation_size = 0.2
train_size = int(len(X) * (1-validation_size))
X_train, X_test = X[0:train_size], X[train_size:len(X)]

5.2. Implementation steps and modules. The overall algorithm of this case study (and of
reinforcement learning in general) is a bit complex as it requires building class-based
code structure and the simultaneous use of many modules and functions. This addi‐
tional section was added for this case study to provide a functional explanation of
what is happening in the program.

The algorithm, in simple terms, decides whether to buy, sell, or hold when provided
with the current market price.

Figure 9-7 provides an overview of the training of the Q-learning-based algorithm in
the context of this case study. The algorithm evaluates which action to take based on
a Q-value, which determines the value of being in a certain state and taking a certain
action at that state.

As per Figure 9-7, the state (s) is decided on the basis of the current and historical
behavior of the price (Pt, Pt–1,…). Based on the current state, the action is “buy.” With
this action, we observe a reward of $10 (i.e., the PnL associated with the action) and
move into the next state. Using the current reward and the next state’s Q-value, the
algorithm updates the Q-value function. The algorithm keeps on moving through the
next time steps. Given sufficient iterations of the steps above, this algorithm will con‐
verge to the optimal Q-value.

Figure 9-7. Reinforcement learning for trading

The deep Q-network that we use in this case study uses an ANN to approximate Q-
values; hence, the action value function is defined as Q(s,a;θ). The deep Q-learning
algorithm approximates the Q-value function by learning a set of weights, θ, of a
multilayered DQN that maps states to actions.

304 | Chapter 9: Reinforcement Learning

Modules and functions
Implementing this DQN algorithm requires implementation of several functions and
modules that interact with each other during the model training. Here is a summary
of the modules and functions:

Agent class
The agent is defined as “Agent” class. This holds the variables and member func‐
tions that perform the Q-learning. An object of the Agent class is created using
the training phase and is used for training the model.

Helper functions
In this module, we create additional functions that are helpful for training.

Training module
In this step, we perform the training of the data using the variables and the func‐
tions defined in the agent and helper methods. During training, the prescribed
action for each day is predicted, the rewards are computed, and the deep learn‐
ing–based Q-learning model weights are updated iteratively over a number of
episodes. Additionally, the profit and loss of each action is summed to determine
whether an overall profit has occurred. The aim is to maximize the total profit.

We provide a deep dive into the interaction between the different modules and func‐
tions in “5.5. Training the model” on page 308.

Let us look at each of these in detail.

5.3. Agent class. The agent class consists of the following components:
• Constructor

• Function model
• Function act
• Function expReplay

The Constructor is defined as init function and contains important parameters
such as discount factor for reward function, epsilon for the ε-greedy approach,
state size, and action size. The number of actions is set at three (i.e., buy, sell,
and hold). The memory variable defines the replay memory size. The input parameter
of this function also consists of is_eval parameter, which defines whether training is
ongoing. This variable is changed to True during the evaluation/testing phase. Also, if
the pretrained model has to be used in the evaluation/training phase, it is passed
using the model_name variable:

Case Study 1: Reinforcement Learning–Based Trading Strategy | 305

11 The details of the Keras-based implementation of deep learning models are shown in Chapter 3.

12 Refer to Chapter 3 for more details on the linear and ReLU activation functions.

class Agent:
 def __init__(self, state_size, is_eval=False, model_name=""):
 self.state_size = state_size # normalized previous days
 self.action_size = 3 # hold, buy, sell
 self.memory = deque(maxlen=1000)
 self.inventory = []
 self.model_name = model_name
 self.is_eval = is_eval

 self.gamma = 0.95
 self.epsilon = 1.0
 self.epsilon_min = 0.01
 self.epsilon_decay = 0.995

 self.model = load_model("models/" + model_name) if is_eval \
 else self._model()

The function model is a deep learning model that maps the states to actions. This
function takes in the state of the environment and returns a Q-value table or a policy
that refers to a probability distribution over actions. This function is built using the
Keras Python library.11 The architecture for the deep learning model used is:

• The model expects rows of data with number of variables equal to the state size,
which comes as an input.

• The first, second, and third hidden layers have 64, 32, and 8 nodes, respectively,
and all of these layers use the ReLU activation function.

• The output layer has the number of nodes equal to the action size (i.e., three),
and the node uses a linear activation function:12

 def _model(self):
 model = Sequential()
 model.add(Dense(units=64, input_dim=self.state_size, activation="relu"))
 model.add(Dense(units=32, activation="relu"))
 model.add(Dense(units=8, activation="relu"))
 model.add(Dense(self.action_size, activation="linear"))
 model.compile(loss="mse", optimizer=Adam(lr=0.001))

 return model

The function act returns an action given a state. The function uses the model func‐
tion and returns a buy, sell, or hold action:

306 | Chapter 9: Reinforcement Learning

 def act(self, state):
 if not self.is_eval and random.random() <= self.epsilon:
 return random.randrange(self.action_size)

 options = self.model.predict(state)
 return np.argmax(options[0])

The function expReplay is the key function, where the neural network is trained
based on the observed experience. This function implements the Experience replay
mechanism as previously discussed. Experience replay stores a history of state, action,
reward, and next state transitions that are experienced by the agent. It takes a mini‐
batch of the observations (replay memory) as an input and updates the deep learn‐
ing–based Q-learning model weights by minimizing the loss function. The epsilon
greedy approach implemented in this function prevents overfitting. In order to
explain the function, different steps are numbered in the comments of the following
Python code, along with an outline of the steps:

1. Prepare the replay buffer memory, which is the set of observation used for train‐
ing. New experiences are added to the replay buffer memory using a for loop.

2. Loop across all the observations of state, action, reward, and next state transitions
in the mini-batch.

3. The target variable for the Q-table is updated based on the Bellman equation.
The update happens if the current state is the terminal state or the end of the epi‐
sode. This is represented by the variable done and is defined further in the train‐
ing function. If it is not done, the target is just set to reward.

4. Predict the Q-value of the next state using a deep learning model.
5. The Q-value of this state for the action in the current replay buffer is set to the

target.
6. The deep learning model weights are updated by using the model.fit function.
7. The epsilon greedy approach is implemented. Recall that this approach selects an

action randomly with a probability of ε or the best action, according to the Q-
value function, with probability 1–ε.

 def expReplay(self, batch_size):
 mini_batch = []
 l = len(self.memory)
 #1: prepare replay memory
 for i in range(l - batch_size + 1, l):
 mini_batch.append(self.memory[i])

 #2: Loop across the replay memory batch.
 for state, action, reward, next_state, done in mini_batch:
 target = reward # reward or Q at time t
 #3: update the target for Q table. table equation
 if not done:

Case Study 1: Reinforcement Learning–Based Trading Strategy | 307

 target = reward + self.gamma * \
 np.amax(self.model.predict(next_state)[0])
 #set_trace()

 # 4: Q-value of the state currently from the table
 target_f = self.model.predict(state)
 # 5: Update the output Q table for the given action in the table
 target_f[0][action] = target
 # 6. train and fit the model.
 self.model.fit(state, target_f, epochs=1, verbose=0)

 #7. Implement epsilon greedy algorithm
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

5.4. Helper functions. In this module, we create additional functions that are helpful
for training. Some of the important helper functions are discussed here. For details
about other helper functions, refer to the Jupyter notebook in the GitHub repository
for this book.

The function getState generates the states given the stock data, time t (the day of
prediction), and window n (number of days to go back in time). First, the vector of
price difference is computed, followed by scaling this vector from zero to one with a
sigmoid function. This is returned as the state.

def getState(data, t, n):
 d = t - n + 1
 block = data[d:t + 1] if d >= 0 else -d * [data[0]] + data[0:t + 1]
 res = []
 for i in range(n - 1):
 res.append(sigmoid(block[i + 1] - block[i]))
 return np.array([res])

The function plot_behavior returns the plot of the market price along with indica‐
tors for the buy and sell actions. It is used for the overall evaluation of the algorithm
during the training and testing phase.

def plot_behavior(data_input, states_buy, states_sell, profit):
 fig = plt.figure(figsize = (15, 5))
 plt.plot(data_input, color='r', lw=2.)
 plt.plot(data_input, '^', markersize=10, color='m', label='Buying signal',\
 markevery=states_buy)
 plt.plot(data_input, 'v', markersize=10, color='k', label='Selling signal',\
 markevery = states_sell)
 plt.title('Total gains: %f'%(profit))
 plt.legend()
 plt.show()

5.5. Training the model. We will proceed to train the data. Based on our agent, we
define the following variables and instantiate the stock agent:

308 | Chapter 9: Reinforcement Learning

Episode
The number of times the code is trained through the entire data. In this case
study, we use 10 episodes.

Windows size
Number of market days to consider to evaluate the state.

Batch size
Size of the replay buffer or memory use during training.

Once these variables are defined, we train the model iterating through the episodes.
Figure 9-8 provides a deep dive into the training steps and brings together all the ele‐
ments discussed so far. The upper section showing steps 1 to 7 describes the steps in
the training module, and the lower section describes the steps in the replay buffer
function (i.e., exeReplay function).

Figure 9-8. Training steps of Q-trading

Steps 1 to 6 shown in Figure 9-8 are numbered in the following Python code and are
described as follows:

1. Get the current state using the helper function getState. It returns a vector of
states, where the length of the vector is defined by windows size and the values of
the states are between zero and one.

2. Get the action for the given state using the act function of the agent class.
3. Get the reward for the given action. The mapping of the action and reward is

described in the problem definition section of this case study.
4. Get the next state using the getState function. The detail of the next state is fur‐

ther used in the Bellman equation for updating the Q-function.

Case Study 1: Reinforcement Learning–Based Trading Strategy | 309

5. The details of the state, next state, action, etc., are saved in the memory of the
agent object, which is used further by the exeReply function. A sample mini-
batch is as follows:

6. Check if the batch is complete. The size of a batch is defined by the batch size
variable. If the batch is complete, then we move to the Replay buffer function
and update the Q-function by minimizing the MSE between the Q-predicted and
the Q-target. If not, then we move to the next time step.

The code produces the final results of each episode, along with the plot showing the
buy and sell actions and the total profit for each episode of the training phase.

window_size = 1
agent = Agent(window_size)
l = len(data) - 1
batch_size = 10
states_sell = []
states_buy = []
episode_count = 3

for e in range(episode_count + 1):
 print("Episode " + str(e) + "/" + str(episode_count))
 # 1-get state
 state = getState(data, 0, window_size + 1)

 total_profit = 0
 agent.inventory = []

 for t in range(l):
 # 2-apply best action
 action = agent.act(state)

 # sit
 next_state = getState(data, t + 1, window_size + 1)
 reward = 0

 if action == 1: # buy

310 | Chapter 9: Reinforcement Learning

 agent.inventory.append(data[t])
 states_buy.append(t)
 print("Buy: " + formatPrice(data[t]))

 elif action == 2 and len(agent.inventory) > 0: # sell
 bought_price = agent.inventory.pop(0)
 #3: Get Reward

 reward = max(data[t] - bought_price, 0)
 total_profit += data[t] - bought_price
 states_sell.append(t)
 print("Sell: " + formatPrice(data[t]) + " | Profit: " \
 + formatPrice(data[t] - bought_price))

 done = True if t == l - 1 else False
 # 4: get next state to be used in bellman's equation
 next_state = getState(data, t + 1, window_size + 1)

 # 5: add to the memory
 agent.memory.append((state, action, reward, next_state, done))
 state = next_state

 if done:

 print("--------------------------------")
 print("Total Profit: " + formatPrice(total_profit))
 print("--------------------------------")

 # 6: Run replay buffer function
 if len(agent.memory) > batch_size:
 agent.expReplay(batch_size)

 if e % 10 == 0:
 agent.model.save("models/model_ep" + str(e))

Output

Running episode 0/10
Total Profit: $6738.87

Case Study 1: Reinforcement Learning–Based Trading Strategy | 311

Running episode 1/10
Total Profit: –$45.07

Running episode 9/10
Total Profit: $1971.54

Running episode 10/10
Total Profit: $1926.84

312 | Chapter 9: Reinforcement Learning

The charts show the details of the buy/sell pattern and the total gains of the first two
(zero and one) and last two (9 and 10) episodes. The details of other episodes can be
seen in Jupyter notebook under the GitHub repository for this book.

As we can see, in the beginning of episodes 0 and 1, since the agent has no precon‐
ception of the consequences of its actions, it takes randomized actions to observe the
rewards associated with it. In episode zero, there is an overall profit of $6,738, a
strong result indeed, but in episode one we experience an overall loss of $45. The fact
that the cumulative reward per episode fluctuates substantially in the beginning illus‐
trates the exploration process the algorithm is going through. Looking at episodes 9
and 10, it seems as though the agent begins learning from its training. It discovers the
strategy and starts to exploit it consistently. The buy and sell actions of these last two
episodes lead a PnL that is perhaps less than that of episode zero, but far more robust.
The buy and sell actions in the later episodes have been performed uniformly over
the entire time period, and the overall profit is stable.

Ideally, the number of training episodes should be higher than the number used in
this case study. A higher number of training episodes will lead to a better training
performance. Before we move on to the testing, let us go through the details about
model tuning.

5.6. Model tuning. Similar to other machine learning techniques, we can find the best
combination of model hyperparameters in RL by using techniques such as grid
search. The grid search for RL-based problems are computationally intensive. Hence,
in this section, rather than performing the grid search, we present the key hyperpara‐
meters to consider, along with their intuition and potential impact on the model
output.

Gamma (discount factor)
Decaying gamma will have the agent prioritize short-term rewards as it learns
what those rewards are, and place less emphasis on long-term rewards. Lowering
the discount factor in this case study may cause the algorithm to focus on the
long-term rewards.

Epsilon
The epsilon variable drives the exploration versus exploitation property of the
model. The more we get to know our environment, the less random exploration
we want to do. When we reduce epsilon, the likelihood of a random action
becomes smaller, and we take more opportunities to benefit from the high-
valued actions that we already discovered. However, in the trading setup, we do
not want the algorithm to overfit to the training data, and the epsilon should be
modified accordingly.

Case Study 1: Reinforcement Learning–Based Trading Strategy | 313

Episodes and batch size
A higher number of episodes and larger batch size in the training set will lead to
better training and a more optimal Q-value. However, there is a trade-off, as
increasing the number of episodes and batch size increases the total training
time.

Window size
Window size determines the number of market days to consider to evaluate the
state. This can be increased in case we want the state to be determined by a
greater number of days in the past.

Number of layers and nodes of the deep learning model
This can be modified for better training and a more optimal Q-value. The details
about the impact of changing the layers and nodes of ANN models are discussed
in Chapter 3, and the grid search for a deep learning model is discussed in
Chapter 5.

6. Testing the data
After training the data, it is evaluated against the test dataset. This is an important
step, especially for reinforcement learning, as the agent may mistakenly correlate
reward with certain spurious features from the data, or it may overfit a particular
chart pattern. In the testing step, we look at the performance of the already trained
model (model_ep10) from the training step on the test data. The Python code looks
similar to the training set we saw before. However, the is_eval flag is set to true, the
reply buffer function is not called, and there is no training. Let us look at the
results:

#agent is already defined in the training set above.
test_data = X_test
l_test = len(test_data) - 1
state = getState(test_data, 0, window_size + 1)
total_profit = 0
is_eval = True
done = False
states_sell_test = []
states_buy_test = []
model_name = "model_ep10"
agent = Agent(window_size, is_eval, model_name)
state = getState(data, 0, window_size + 1)
total_profit = 0
agent.inventory = []

for t in range(l_test):
 action = agent.act(state)

 next_state = getState(test_data, t + 1, window_size + 1)
 reward = 0

314 | Chapter 9: Reinforcement Learning

 if action == 1:

 agent.inventory.append(test_data[t])
 print("Buy: " + formatPrice(test_data[t]))

 elif action == 2 and len(agent.inventory) > 0:
 bought_price = agent.inventory.pop(0)
 reward = max(test_data[t] - bought_price, 0)
 total_profit += test_data[t] - bought_price
 print("Sell: " + formatPrice(test_data[t]) + " | profit: " +\
 formatPrice(test_data[t] - bought_price))

 if t == l_test - 1:
 done = True
 agent.memory.append((state, action, reward, next_state, done))
 state = next_state

 if done:
 print("--")
 print("Total Profit: " + formatPrice(total_profit))
 print("--")

Output

Total Profit: $1280.40

Looking at the results above, our model resulted in an overall profit of $1,280, and we
can say that our DQN agent performs quite well on the test set.

Conclusion
In this case study, we created an automated trading strategy, or a trading bot, that
simply needs to be fed running stock market data to produce a trading signal. We saw
that the algorithm decides the policy by itself, and the overall approach is much sim‐
pler and more principled than the supervised learning–based approach. The trained

Case Study 1: Reinforcement Learning–Based Trading Strategy | 315

model was profitable in the test set, corroborating the effectiveness of the RL-based
trading strategy.

In using a reinforcement learning model such as DQN, which is based on a deep neu‐
ral network, we can learn policies that are more complex and powerful than what a
human trader could learn.

Given the high complexity and low interpretability of the RL-based model, visualiza‐
tion and testing steps become quite important. For interpretability, we used the plots
of the training episodes of the training algorithm and found that the model starts to
learn over a period of time, discovers the strategy, and starts to exploit it. A sufficient
number of tests should be conducted on different time periods before deploying the
model for live trading.

While using RL-based models, we should carefully select the RL components, such as
the reward function and state, and ensure understanding of their impact on the over‐
all model results. Before implementing or training the model, it is important to think
of questions, such as “How can we engineer the reward function or the state so that
the RL algorithm has the potential to learn to optimize the right metric?”

Overall, these RL-based models can enable financial practitioners to create trading
strategies with a very flexible approach. The framework provided in this case study
can be a great starting point to develop more powerful models for algorithmic
trading.

Case Study 2: Derivatives Hedging
Much of traditional finance theory for handling derivatives pricing and risk manage‐
ment is based on the idealized complete markets assumption of perfect hedgability,
without trading restrictions, transaction costs, market impact, or liquidity con‐
straints. In practice, however, these frictions are very real. As a consequence, practical
risk management using derivatives requires human oversight and maintenance; the
models themselves are insufficient. Implementation is still partially driven by the
trader’s intuitive understanding of the shortcomings of the existing tools.

Reinforcement learning algorithms, with their ability to tackle more nuances and
parameters within the operational environment, are inherently aligned with the
objective of hedging. These models can produce dynamic strategies that are optimal,
even in a world with frictions. The model-free RL approaches demand very few theo‐
retical assumptions. This allows for automation of hedging without requiring fre‐
quent human intervention, making the overall hedging process significantly faster.
These models can learn from large amounts of historical data and can consider many
variables to make more precise and accurate hedging decisions. Moreover, the availa‐

316 | Chapter 9: Reinforcement Learning

bility of vast amounts of data makes RL-based models more useful and effective than
ever before.

In this case study, we implement a reinforcement learning–based hedging strategy
that adopts the ideas presented in the paper “Deep Hedging” by Hans Bühler et al.
We will build an optimal hedging strategy for a specific type of derivative (call
options) by minimizing the risk-adjusted PnL. We use the measure CVaR (condi‐
tional value at risk), which quantifies the amount of tail risk of a position or portfolio
as a risk assessment measure.

In this case study, we will focus on:

• Using policy-based (or direct policy search–based) reinforcement learning and
implementing it using a deep neural network.

• Comparing the effectiveness of an RL-based trading strategy to the traditional
Black-Scholes model.

• Setting up an agent for an RL problem using class structure in Python.
• Implementing and evaluating a policy gradient–based RL method.
• Introducing the basic concept of functions in the TensorFlow Python package.
• Implementing a Monte Carlo simulation of stock price and the Black-Scholes

pricing model, and computing option Greeks.

Blueprint for Implementing a Reinforcement Learning–
Based Hedging Strategy

1. Problem definition
In the reinforcement learning framework for this case study, the algorithm decides
the best hedging strategy for call options using market prices of the underlying asset.
A direct policy search reinforcement learning strategy is used. The overall idea,
derived from the “Deep Hedging” paper, is based on minimizing the hedge error
under a risk assessment measure. The overall PnL of a call option hedging strategy
over a period of time, from t=1 to t=T, can be written as:

PnL T (Z , δ) = – ZT + ∑
t=1

T
δt –1(St – St –1) – ∑

t=1

T
Ct

Case Study 2: Derivatives Hedging | 317

https://oreil.ly/6_Qvz

13 The expected shortfall is the expected value of an investment in the tail scenario.

where

• ZT is the payoff of a call option at maturity.
• δt –1(St – St –1) is the cash flow from the hedging instruments on day t , where δ is

the hedge and St is the spot price on day t .
• Ct is the transaction cost at time t and may be constant or proportional to the

hedge size.

The individual components in the equation are the components of the cash flow.
However, it would be preferable to take into account the risk arising from any posi‐
tion while designing the reward function. We use the measure CVaR as the risk
assessment measure. CVaR quantifies the amount of tail risk and is the expected
shortfall (risk aversion parameter)13 for the confidence level α. Now the reward
function is modified to the following:

V T = f (– ZT + ∑
t=1

T
δt –1(St – St –1) – ∑

t=1

T
Ct)

where f represents the CVaR.

We will train an RNN-based network to learn the optimal hedging strategy (i.e.,
δ1, δ2..., δT) given the stock price, strike price, and risk aversion parameter, (α), by
minimizing CVaR. We assume transaction costs to be zero for simplicity. The model
can easily be extended to incorporate transaction costs and other market frictions.

The data used for the synthetic underlying stock price is generated using Monte
Carlo simulation, assuming a lognormal price distribution. We assume an interest
rate of 0% and annual volatility of 20%.

The key components of the model are:

Agent
Trader or trading agent.

Action
Hedging strategy (i.e., δ1, δ2..., δT).

Reward function
CVaR—this is a convex function and is minimized during the model training.

318 | Chapter 9: Reinforcement Learning

State
State is the representation of the current market and relevant product variables.
The state represents the model inputs, which include the simulated stock price
path (i.e., S1, S2..., ST), strike, and risk aversion parameter (α).

Environment
Stock exchange or stock market.

2. Getting started

2.1. Loading the Python packages. The loading of Python packages is similar to the pre‐
vious case studies. Please refer to the Jupyter notebook for this case study for more
details.

2.2. Generating the data. In this step we generate the data for this case study using a
Black-Scholes simulation.

This function generates the Monte Carlo paths for the stock price and gets the option
price on each of the Monte Carlo paths. The calculation as shown is based on the log‐
normal assumption of stock prices:

St +1 = Ste
(μ–

1
2 σ 2)Δt +σ Δt Z

where S is stock price, σ is volatility, μ is the drift, t is time, and Z is a standard nor‐
mal variable.

def monte_carlo_paths(S_0, time_to_expiry, sigma, drift, seed, n_sims, \
 n_timesteps):
 """
 Create random paths of a stock price following a brownian geometric motion
 return:

 a (n_timesteps x n_sims x 1) matrix
 """
 if seed > 0:
 np.random.seed(seed)
 stdnorm_random_variates = np.random.randn(n_sims, n_timesteps)
 S = S_0
 dt = time_to_expiry / stdnorm_random_variates.shape[1]
 r = drift
 S_T = S * np.cumprod(np.exp((r-sigma**2/2)*dt+sigma*np.sqrt(dt)*\
 stdnorm_random_variates), axis=1)
 return np.reshape(np.transpose(np.c_[np.ones(n_sims)*S_0, S_T]), \
 (n_timesteps+1, n_sims, 1))

Case Study 2: Derivatives Hedging | 319

We generate 50,000 simulations of the spot price over a period of one month. The
total number of time steps is 30. Hence, for each Monte Carlo scenario, there is one
observation per day. The parameters needed for the simulation are defined below:

S_0 = 100; K = 100; r = 0; vol = 0.2; T = 1/12
timesteps = 30; seed = 42; n_sims = 5000

Generate the monte carlo paths
paths_train = monte_carlo_paths(S_0, T, vol, r, seed, n_sims, timesteps)

3. Exploratory data analysis
We will look at descriptive statistics and data visualization in this section. Given that
the data was generated by the simulation, we simply inspect one path as a sanity
check of the simulation algorithm:

#Plot Paths for one simulation
plt.figure(figsize=(20, 10))
plt.plot(paths_train[1])
plt.xlabel('Time Steps')
plt.title('Stock Price Sample Paths')
plt.show()

Output

320 | Chapter 9: Reinforcement Learning

4. Evaluate algorithms and models
In this direct policy search approach, we use an artificial neural network (ANN) to
map the state to action. In a traditional ANN, we assume that all inputs (and outputs)
are independent of each other. However, the hedging decision at time t (represented
by δt) is path dependent and is influenced by the stock price and hedging decisions at
previous time steps. Hence, using a traditional ANN is not feasible. RNN is a type of
ANN that can capture the time-varying dynamics of the underlying system and is
more appropriate in this context. RNNs have a memory, which captures information
about what has been calculated so far. We used this property of the RNN model for
time series modeling in Chapter 5. LSTM (also discussed in Chapter 5) is a special
kind of RNN capable of learning long-term dependencies. Past state information is
made available to the network when mapping to an action; the extraction of relevant
past data is then learned as part of the training process. We will use an LSTM model
to map the state to action and get the hedging strategy (i.e., δ1, δ2,…δT).

4.1. Policy gradient script. We will cover the implementation steps and model training
in this section. We provide the input variables—stock price path (S1, S2, ...ST), strike,
and risk aversion parameter, α—to the trained model and receive the hedging
strategy (i.e., δ1, δ2, ...δT) as the output. Figure 9-9 provides an overview of the train‐
ing of the policy gradient for this case study.

Figure 9-9. Policy gradient training for derivatives hedging

We already performed step 1 in section 2 of this case study. Steps 2 to 5 are self-
explanatory and are implemented in the agent class defined later. The agent holds
the variables and member functions that perform the training. An object of the
agent class is created using the training phase and is used for training the model.
After a sufficient number of iterations of steps 2 to 5, an optimal policy gradient
model is generated.

Case Study 2: Derivatives Hedging | 321

The class consists of the following modules:

• Constructor

• The function execute_graph_batchwise
• The functions training, predict, and restore

Let us dig deeper into the Python code for each of the functions.

The Constructor is defined as an init function, where we define the model parame‐
ters. We can pass the timesteps, batch_size, and number of nodes in each layer of
the LSTM model to the constructor. We define the input variables of the model (i.e.,
stock price path, strike, and risk aversion parameter) as TensorFlow placeholders.
Placeholders are used to feed in data from outside the computational graph, and we
feed the data of these input variables during the training phase. We implement an
LSTM network in TensorFlow by using the tf.MultiRNNCell function. The LSTM
model uses four layers with 62, 46, 46, and 1 nodes. The loss function is the CVaR,
which is minimized when tf.train is called during the training step. We sort the
negative realized PnLs of the trading strategy and calculate the mean of the (1−α) top
losses:

class Agent(object):
 def __init__(self, time_steps, batch_size, features,\
 nodes = [62, 46, 46, 1], name='model'):

 #1. Initialize the variables
 tf.reset_default_graph()
 self.batch_size = batch_size # Number of options in a batch
 self.S_t_input = tf.placeholder(tf.float32, [time_steps, batch_size, \
 features]) #Spot
 self.K = tf.placeholder(tf.float32, batch_size) #Strike
 self.alpha = tf.placeholder(tf.float32) #alpha for cVaR

 S_T = self.S_t_input[-1,:,0] #Spot at time T
 # Change in the Spot
 dS = self.S_t_input[1:, :, 0] - self.S_t_input[0:-1, :, 0]
 #dS = tf.reshape(dS, (time_steps, batch_size))

 #2. Prepare S_t for use in the RNN remove the \
 #last time step (at T the portfolio is zero)
 S_t = tf.unstack(self.S_t_input[:-1, :,:], axis=0)

 # Build the lstm
 lstm = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(n) \
 for n in nodes])

 #3. So the state is a convenient tensor that holds the last
 #actual RNN state,ignoring the zeros.

322 | Chapter 9: Reinforcement Learning

 #The strategy tensor holds the outputs of all cells.
 self.strategy, state = tf.nn.static_rnn(lstm, S_t, initial_state=\
 lstm.zero_state(batch_size, tf.float32), dtype=tf.float32)

 self.strategy = tf.reshape(self.strategy, (time_steps-1, batch_size))

 #4. Option Price
 self.option = tf.maximum(S_T-self.K, 0)

 self.Hedging_PnL = - self.option + tf.reduce_sum(dS*self.strategy, \
 axis=0)

 #5. Total Hedged PnL of each path
 self.Hedging_PnL_Paths = - self.option + dS*self.strategy

 # 6. Calculate the CVaR for a given confidence level alpha
 # Take the 1-alpha largest losses (top 1-alpha negative PnLs)
 #and calculate the mean
 CVaR, idx = tf.nn.top_k(-self.Hedging_PnL, tf.cast((1-self.alpha)*\
 batch_size, tf.int32))
 CVaR = tf.reduce_mean(CVaR)
 #7. Minimize the CVaR
 self.train = tf.train.AdamOptimizer().minimize(CVaR)
 self.saver = tf.train.Saver()
 self.modelname = name

The function execute_graph_batchwise is the key function of the program, in which
we train the neural network based on the observed experience. It takes a batch of the
states as input and updates the policy gradient–based LSTM model weights by mini‐
mizing CVaR. This function trains the LSTM model to predict a hedging strategy by
looping across the epochs and batches. First, it prepares a batch of market variables
(stock price, strike, and risk aversion) and uses sess.run function for training. This
sess.run is a TensorFlow function to run any operation defined within it. Here, it
takes the inputs and runs the tf.train function that was defined in the constructor.
After a sufficient number of iterations, an optimal policy gradient model is generated:

 def _execute_graph_batchwise(self, paths, strikes, riskaversion, sess, \
 epochs=1, train_flag=False):
 #1: Initialize the variables.
 sample_size = paths.shape[1]
 batch_size=self.batch_size
 idx = np.arange(sample_size)
 start = dt.datetime.now()
 #2:Loop across all the epochs
 for epoch in range(epochs):
 # Save the hedging Pnl for each batch
 pnls = []
 strategies = []
 if train_flag:
 np.random.shuffle(idx)
 #3. Loop across the observations

Case Study 2: Derivatives Hedging | 323

 for i in range(int(sample_size/batch_size)):
 indices = idx[i*batch_size : (i+1)*batch_size]
 batch = paths[:,indices,:]

 #4. Train the LSTM
 if train_flag:#runs the train, hedging PnL and strategy.
 _, pnl, strategy = sess.run([self.train, self.Hedging_PnL, \
 self.strategy], {self.S_t_input: batch,\
 self.K : strikes[indices],\
 self.alpha: riskaversion})
 #5. Evaluation and no training
 else:
 pnl, strategy = sess.run([self.Hedging_PnL, self.strategy], \
 {self.S_t_input: batch,\
 self.K : strikes[indices],
 self.alpha: riskaversion})\

 pnls.append(pnl)
 strategies.append(strategy)
 #6. Calculate the option price # given the risk aversion level alpha

 CVaR = np.mean(-np.sort(np.concatenate(pnls))\
 [:int((1-riskaversion)*sample_size)])
 #7. Return training metrics, \
 #if it is in the training phase
 if train_flag:
 if epoch % 10 == 0:
 print('Time elapsed:', dt.datetime.now()-start)
 print('Epoch', epoch, 'CVaR', CVaR)
 #Saving the model
 self.saver.save(sess, "model.ckpt")
 self.saver.save(sess, "model.ckpt")

 #8. return CVaR and other parameters
 return CVaR, np.concatenate(pnls), np.concatenate(strategies,axis=1)

The training function simply triggers the execute_graph_batchwise function and
provides all the inputs required for training to this function. The predict function
returns the action (hedging strategy) given a state (market variables). The restore
function restores the saved trained model, to be used further for training or
prediction:

 def training(self, paths, strikes, riskaversion, epochs, session, init=True):
 if init:
 sess.run(tf.global_variables_initializer())
 self._execute_graph_batchwise(paths, strikes, riskaversion, session, \
 epochs, train_flag=True)

 def predict(self, paths, strikes, riskaversion, session):
 return self._execute_graph_batchwise(paths, strikes, riskaversion,\
 session,1, train_flag=False)

324 | Chapter 9: Reinforcement Learning

 def restore(self, session, checkpoint):
 self.saver.restore(session, checkpoint)

4.2. Training the data. The steps of training our policy-based model are:
1. Define the risk aversion parameter for CVaR, number of features (this is total

number of stocks, and in this case we just have one), strike price, and batch size.
The CVaR represents the amount of loss we want to minimize. For example, a
CVaR of 99% means that we want to avoid extreme loss, while a CVaR of 50%
minimizes average loss. We train with a CVaR of 50% to have smaller mean loss.

2. Instantiate the policy gradient agent, which has the RNN based-policy with the
loss function based on the CVaR.

3. Iterate through the batches; the strategy is defined by the policy output of the
LSTM-based network.

4. Finally, the trained model is saved.

batch_size = 1000
features = 1
K = 100
alpha = 0.50 #risk aversion parameter for CVaR
epoch = 101 #It is set to 11, but should ideally be a high number
model_1 = Agent(paths_train.shape[0], batch_size, features, name='rnn_final')
Training the model takes a few minutes
start = dt.datetime.now()
with tf.Session() as sess:
 # Train Model
 model_1.training(paths_train, np.ones(paths_train.shape[1])*K, alpha,\
 epoch, sess)
print('Training finished, Time elapsed:', dt.datetime.now()-start)

Output

Time elapsed: 0:00:03.326560
Epoch 0 CVaR 4.0718956
Epoch 100 CVaR 2.853285
Training finished, Time elapsed: 0:01:56.299444

5. Testing the data
Testing is an important step, especially for RL, as it is difficult for a model to provide
any meaningful, intuitive relationships between input and their corresponding out‐
put that is easily understood. In the testing step, we will compare the effectiveness of
the hedging strategy and compare it to a delta hedging strategy based on the Black-
Scholes model. We first define the helper functions used in this step.

Case Study 2: Derivatives Hedging | 325

5.1. Helper functions for comparison against Black-Scholes. In this module, we create
additional functions that are used for comparison against the traditional Black-
Scholes model.

5.1.1. Black-Scholes price and delta. The function BlackScholes_price implements the
analytical formula for the call option price, and BS_delta implements the analytical
formula for the delta of a call option:

def BS_d1(S, dt, r, sigma, K):
 return (np.log(S/K) + (r+sigma**2/2)*dt) / (sigma*np.sqrt(dt))

def BlackScholes_price(S, T, r, sigma, K, t=0):
 dt = T-t
 Phi = stats.norm(loc=0, scale=1).cdf
 d1 = BS_d1(S, dt, r, sigma, K)
 d2 = d1 - sigma*np.sqrt(dt)
 return S*Phi(d1) - K*np.exp(-r*dt)*Phi(d2)

def BS_delta(S, T, r, sigma, K, t=0):
 dt = T-t
 d1 = BS_d1(S, dt, r, sigma, K)
 Phi = stats.norm(loc=0, scale=1).cdf
 return Phi(d1)

5.1.2. Test results and plotting. The following functions are used to compute the key
metrics and related plots for evaluating the effectiveness of the hedge. The function
test_hedging_strategy computes different types of PnL, including CVaR, PnL, and
Hedge PnL. The function plot_deltas plots the comparison of the RL delta versus
Black-Scholes hedging at different time points. The function plot_strategy_pnl is
used to plot the total PnL of the RL-based strategy versus Black-Scholes hedging:

def test_hedging_strategy(deltas, paths, K, price, alpha, output=True):
 S_returns = paths[1:,:,0]-paths[:-1,:,0]
 hedge_pnl = np.sum(deltas * S_returns, axis=0)
 option_payoff = np.maximum(paths[-1,:,0] - K, 0)
 replication_portfolio_pnls = -option_payoff + hedge_pnl + price
 mean_pnl = np.mean(replication_portfolio_pnls)
 cvar_pnl = -np.mean(np.sort(replication_portfolio_pnls)\
 [:int((1-alpha)*replication_portfolio_pnls.shape[0])])
 if output:
 plt.hist(replication_portfolio_pnls)
 print('BS price at t0:', price)
 print('Mean Hedging PnL:', mean_pnl)
 print('CVaR Hedging PnL:', cvar_pnl)
 return (mean_pnl, cvar_pnl, hedge_pnl, replication_portfolio_pnls, deltas)

def plot_deltas(paths, deltas_bs, deltas_rnn, times=[0, 1, 5, 10, 15, 29]):
 fig = plt.figure(figsize=(10,6))
 for i, t in enumerate(times):

326 | Chapter 9: Reinforcement Learning

 plt.subplot(2,3,i+1)
 xs = paths[t,:,0]
 ys_bs = deltas_bs[t,:]
 ys_rnn = deltas_rnn[t,:]
 df = pd.DataFrame([xs, ys_bs, ys_rnn]).T

 plt.plot(df[0], df[1], df[0], df[2], linestyle='', marker='x')
 plt.legend(['BS delta', 'RNN Delta'])
 plt.title('Delta at Time %i' % t)
 plt.xlabel('Spot')
 plt.ylabel('Δ')
 plt.tight_layout()

def plot_strategy_pnl(portfolio_pnl_bs, portfolio_pnl_rnn):
 fig = plt.figure(figsize=(10,6))
 sns.boxplot(x=['Black-Scholes', 'RNN-LSTM-v1 '], y=[portfolio_pnl_bs, \
 portfolio_pnl_rnn])
 plt.title('Compare PnL Replication Strategy')
 plt.ylabel('PnL')

5.1.3. Hedging error for Black-Scholes replication. The following function is used to get
the hedging strategy based on the traditional Black-Scholes model, which is further
used for comparison against the RL-based hedging strategy:

def black_scholes_hedge_strategy(S_0, K, r, vol, T, paths, alpha, output):
 bs_price = BlackScholes_price(S_0, T, r, vol, K, 0)
 times = np.zeros(paths.shape[0])
 times[1:] = T / (paths.shape[0]-1)
 times = np.cumsum(times)
 bs_deltas = np.zeros((paths.shape[0]-1, paths.shape[1]))
 for i in range(paths.shape[0]-1):
 t = times[i]
 bs_deltas[i,:] = BS_delta(paths[i,:,0], T, r, vol, K, t)
 return test_hedging_strategy(bs_deltas, paths, K, bs_price, alpha, output)

5.2. Comparison between Black-Scholes and reinforcement learning. We will compare the
effectiveness of the hedging strategy by looking at the influence of the CVaR risk
aversion parameter and inspect how well the RL-based model can generalize the
hedging strategy if we change the moneyness of the option, the drift, and the volatil‐
ity of the underlying process.

5.2.1. Test at 99% risk aversion. As mentioned before, the CVaR represents the amount
of loss we want to minimize. We trained the model using a risk aversion of 50% to
minimize average loss. However, for testing purposes we increase the risk aversion to
99%, meaning that we want to avoid extreme loss. These results are compared against
the Black-Scholes model:

n_sims_test = 1000
Monte Carlo Path for the test set
alpha = 0.99

Case Study 2: Derivatives Hedging | 327

paths_test = monte_carlo_paths(S_0, T, vol, r, seed_test, n_sims_test, \
 timesteps)

We use the trained function and compare the Black-Scholes and RL models in the
following code:

with tf.Session() as sess:
 model_1.restore(sess, 'model.ckpt')
 #Using the model_1 trained in the section above
 test1_results = model_1.predict(paths_test, np.ones(paths_test.shape[1])*K, \
 alpha, sess)

,,_,portfolio_pnl_bs, deltas_bs = black_scholes_hedge_strategy\
(S_0,K, r, vol, T, paths_test, alpha, True)
plt.figure()
,,_,portfolio_pnl_rnn, deltas_rnn = test_hedging_strategy\
(test1_results[2], paths_test, K, 2.302974467802428, alpha, True)
plot_deltas(paths_test, deltas_bs, deltas_rnn)
plot_strategy_pnl(portfolio_pnl_bs, portfolio_pnl_rnn)

Output

BS price at t0: 2.3029744678024286
Mean Hedging PnL: -0.0010458505607415178
CVaR Hedging PnL: 1.2447953011695538
RL based BS price at t0: 2.302974467802428
RL based Mean Hedging PnL: -0.0019250998451393934
RL based CVaR Hedging PnL: 1.3832611348053374

328 | Chapter 9: Reinforcement Learning

For the first test set (strike 100, same drift, same vol) with a risk aversion of 99%, the
results look quite good. We see that the delta from both Black-Scholes and the RL-
based approach converge over time from day 1 to 30. The CVaRs of both strategies
are similar and lower in magnitude, with values of 1.24 and 1.38 for Black-Scholes
and RL, respectively. Also, the volatility of the two strategies is similar, as illustrated
in the second chart.

5.2.2. Changing moneyness. Let us now look at the comparison of the strategies, when
the moneyness, defined as the ratio of strike to spot price, is changed. In order to
change the moneyness, we decrease the strike price by 10. The code snippet is similar
to the previous case, and the output is shown below:

BS price at t0: 10.07339936955367
Mean Hedging PnL: 0.0007508571761945107
CVaR Hedging PnL: 0.6977526775080665
RL based BS price at t0: 10.073
RL based Mean Hedging PnL: -0.038571546628968216
RL based CVaR Hedging PnL: 3.4732447615593975

With the change in the moneyness, we see that the PnL of the RL strategy is signifi‐
cantly worse than that of the Black-Scholes strategy. We see a significant deviation of
the delta between the two across all the days. The CVaR and the volatility of the RL-
based strategy is much higher. The results indicate that we should be careful while
generalizing the model to different levels of moneyness and should train the model
with the option of using a variety of strikes before implementing it in a production
environment.

Case Study 2: Derivatives Hedging | 329

5.2.3. Changing drift. Let us now look at the comparison of the strategies when the
drift is changed. In order to change the drift, we assume the drift of the stock price is
4% per month, or 48% annualized. The output is shown below:

330 | Chapter 9: Reinforcement Learning

Output

BS price at t0: 2.3029744678024286
Mean Hedging PnL: -0.01723902964827388
CVaR Hedging PnL: 1.2141220199385756
RL based BS price at t0: 2.3029
RL based Mean Hedging PnL: -0.037668804359885316
RL based CVaR Hedging PnL: 1.357201635552361

Case Study 2: Derivatives Hedging | 331

The overall results look good for the change in drift. The conclusion is similar to
results when the risk aversion was changed, with the deltas for the two approaches
converging over time. Again, the CVaRs are similar in magnitude, with Black-Scholes
producing a value of 1.21, and RL a value of 1.357.

5.2.4. Shifted volatility. Finally, we look at the impact of shifting the volatility. In
order to change the volatility, we increase it by 5%:

Output

BS price at t0: 2.3029744678024286
Mean Hedging PnL: -0.5787493248269506
CVaR Hedging PnL: 2.5583922824407566
RL based BS price at t0: 2.309
RL based Mean Hedging PnL: -0.5735181045192523
RL based CVaR Hedging PnL: 2.835487824499669

Looking at the results, the delta, CVaR, and overall volatility of both models are simi‐
lar. Hence looking at the different comparisons overall, the performance of this RL-
based hedging is on par with Black-Scholes–based hedging.

332 | Chapter 9: Reinforcement Learning

Conclusion
In this case study, we compared the effectiveness of a call option hedging strategy
using RL. The RL-based hedging strategy did quite well even when certain input
parameters were modified. However, this strategy was not able to generalize the strat‐
egy for options at different moneyness levels. It underscores the fact that RL is a data-
intensive approach, and it is important to train the model with different scenarios,
which becomes more important if the model is intended to be used across a wide
variety of derivatives.

Although we found the RL and traditional Black-Scholes strategies comparable, the
RL approach offers a much higher ceiling for improvement. The RL model can be
further trained using a wide variety of instruments with different hyperparameters,
leading to performance enhancements. It would be interesting to explore the com‐
parison of these two hedging models for more exotic derivatives, given the trade-off
between these approaches.

Overall, the RL-based approach is model independent and scalable, and it offers effi‐
ciency boosts for many classical problems.

Case Study 2: Derivatives Hedging | 333

Case Study 3: Portfolio Allocation
As discussed in prior case studies, the most commonly used technique for portfolio
allocation, mean-variance portfolio optimization, suffers from several weaknesses,
including:

• Estimation errors in the expected returns and covariance matrix caused by the
erratic nature of financial returns.

• Unstable quadratic optimization that greatly jeopardizes the optimality of the
resulting portfolios.

We addressed some of these weaknesses in “Case Study 1: Portfolio Management:
Finding an Eigen Portfolio” on page 202 in Chapter 7, and in “Case Study 3: Hier‐
archical Risk Parity” on page 267 in Chapter 8. Here, we approach this problem from
an RL perspective.

Reinforcement learning algorithms, with the ability to decide the policy on their own,
are strong models for performing portfolio allocation in an automated manner,
without the need for continuous supervision. Automation of the manual steps
involved in portfolio allocation can prove to be immensely useful, specifically for
robo-advisors.

In an RL-based framework, we treat portfolio allocation not just as a one-step optimi‐
zation problem but as continuous control of the portfolio with delayed rewards. We
move from discrete optimal allocation to continuous control territory, and in the
environment of a continuously changing market, RL algorithms can be leveraged to
solve complex and dynamic portfolio allocation problems.

In this case study, we will use a Q-learning-based approach and DQN to come up
with a policy for optimal portfolio allocation among a set of cryptocurrencies. Over‐
all, the approach and framework in terms of the Python-based implementation is
similar to that in case study 1. Therefore, some repetitive sections or code explana‐
tion is skipped in this case study.

In this case study, we will focus on:

• Defining the components of RL in a portfolio allocation problem.
• Evaluating Q-learning in the context of portfolio allocation.
• Creating a simulation environment to be used in the RL framework.
• Extending the Q-learning framework used for trading strategy development to

portfolio management.

334 | Chapter 9: Reinforcement Learning

Blueprint for Creating a Reinforcement Learning–Based
Algorithm for Portfolio Allocation

1. Problem definition
In the reinforcement learning framework defined for this case study, the algorithm
performs an action, which is optimal portfolio allocation, depending on the current
state of the portfolio. The algorithm is trained using a deep Q-learning framework,
and the components of the model are as follows:

Agent
A portfolio manager, a robo-advisor, or an individual investor.

Action
Assignment and rebalancing of the portfolio weights. The DQN model provides
the Q-values, which are converted into portfolio weights.

Reward function
The Sharpe ratio. Although there can be a wide range of complex reward func‐
tions that provide a trade-off between profit and risk, such as percentage return
or maximum drawdown.

State
The state is the correlation matrix of the instruments based on a specific time
window. The correlation matrix is a suitable state variable for the portfolio allo‐
cation, as it contains the information about the relationships between different
instruments and can be useful in performing portfolio allocation.

Environment
The cryptocurrency exchange.

The dataset used in this case study is from the Kaggle platform. It contains the daily
prices of cryptocurrencies in 2018. The data contains some of the most liquid crypto‐
currencies, including Bitcoin, Ethereum, Ripple, Litecoin, and Dash.

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The standard Python packages are loaded in this
step. The details have already been presented in the previous case studies. Refer to the
Jupyter notebook for this case study for more details.

Case Study 3: Portfolio Allocation | 335

https://oreil.ly/613O2

2.2. Loading the data. The fetched data is loaded in this step:

dataset = read_csv('data/crypto_portfolio.csv',index_col=0)

3. Exploratory data analysis

3.1. Descriptive statistics. We will look at descriptive statistics and data visualizations
of the data in this section:

shape
dataset.shape

Output

(375, 15)

peek at data
set_option('display.width', 100)
dataset.head(5)

Output

The data has a total of 375 rows and 15 columns. These columns hold the daily prices
of 15 different cryptocurrencies in 2018.

4. Evaluate algorithms and models
This is the key step of the reinforcement learning model development, where we will
define all the functions and classes and train the algorithm.

4.1. Agent and cryptocurrency environment script. We have an Agent class that holds the
variables and member functions that perform the Q-learning. This is similar to the
Agent class defined in case study 1, with an additional function to convert the Q-
value output from the deep neural network to portfolio weights and vice versa. The
training module implements iteration through several episodes and batches and saves
the information of the state, action, reward, and next state to be used in training. We
skip the detailed description of the Python code of Agent class and the training mod‐
ule in this case study. Readers can refer to the Jupyter notebook in the code reposi‐
tory for this book for more details.

336 | Chapter 9: Reinforcement Learning

We implement a simulation environment for cryptocurrencies using a class called
CryptoEnvironment. The concept of a simulation environment, or gym, is quite com‐
mon in RL problems. One of the challenges of reinforcement learning is the lack of
available simulation environments on which to experiment. OpenAI gym is a toolkit
that provides a wide variety of simulated environments (e.g., Atari games, 2D/3D
physical simulations), so we can train agents, compare them, or develop new RL algo‐
rithms. Additionally, it was developed with the aim of becoming a standardized envi‐
ronment and benchmark for RL research. We introduce a similar concept in the
CryptoEnvironment class, where we create a simulation environment for cryptocur‐
rencies. This class has the following key functions:

getState

This function returns the state as well as the historical return or raw historical
data depending on the is_cov_matrix or is_raw_time_series flag

getReward

This function returns the reward (i.e., Sharpe ratio) of the portfolio, given the
portfolio weights and lookback period

class CryptoEnvironment:

 def __init__(self, prices = './data/crypto_portfolio.csv', capital = 1e6):
 self.prices = prices
 self.capital = capital
 self.data = self.load_data()

 def load_data(self):
 data = pd.read_csv(self.prices)
 try:
 data.index = data['Date']
 data = data.drop(columns = ['Date'])
 except:
 data.index = data['date']
 data = data.drop(columns = ['date'])
 return data

 def preprocess_state(self, state):
 return state

 def get_state(self, t, lookback, is_cov_matrix=True\
 is_raw_time_series=False):

 assert lookback <= t

 decision_making_state = self.data.iloc[t-lookback:t]
 decision_making_state = decision_making_state.pct_change().dropna()

 if is_cov_matrix:
 x = decision_making_state.cov()

Case Study 3: Portfolio Allocation | 337

 return x
 else:
 if is_raw_time_series:
 decision_making_state = self.data.iloc[t-lookback:t]
 return self.preprocess_state(decision_making_state)

 def get_reward(self, action, action_t, reward_t, alpha = 0.01):

 def local_portfolio(returns, weights):
 weights = np.array(weights)
 rets = returns.mean() # * 252
 covs = returns.cov() # * 252
 P_ret = np.sum(rets * weights)
 P_vol = np.sqrt(np.dot(weights.T, np.dot(covs, weights)))
 P_sharpe = P_ret / P_vol
 return np.array([P_ret, P_vol, P_sharpe])

 data_period = self.data[action_t:reward_t]
 weights = action
 returns = data_period.pct_change().dropna()

 sharpe = local_portfolio(returns, weights)[-1]
 sharpe = np.array([sharpe] * len(self.data.columns))
 ret = (data_period.values[-1] - data_period.values[0]) / \
 data_period.values[0]

 return np.dot(returns, weights), ret

Let’s explore the training of the RL model in the next step.

4.3. Training the data. As a first step, we initialize the Agent class and CryptoEnviron
ment class. Then, we set the number of episodes and batch size for the training
purpose. Given the volatility of cryptocurrencies, we set the state window size to 180
and rebalancing frequency to 90 days:

N_ASSETS = 15
agent = Agent(N_ASSETS)
env = CryptoEnvironment()
window_size = 180
episode_count = 50
batch_size = 32
rebalance_period = 90

Figure 9-10 provides a deep dive into the training of the DQN algorithm used for
developing the RL-based portfolio allocation strategy. If we look carefully, the chart is
similar to the steps defined in Figure 9-8 in case study 1, with minor differences in
the Q-Matrix, reward function, and action. Steps 1 to 7 describe the training and Cryp
toEnvironment module; steps 8 to 10 show what happens in the replay buffer func‐
tion (i.e., exeReplay function) in the Agent module.

338 | Chapter 9: Reinforcement Learning

Figure 9-10. DQN training for portfolio optimization

The details of steps 1 to 6 are:

1. Get the current state using the helper function getState defined in the CryptoEn
vironment module. It returns a correlation matrix of the cryptocurrencies based
on the window size.

2. Get the action for the given state using the act function of the Agent class. The
action is the weight of the cryptocurrency portfolio.

3. Get the reward for the given action using the getReward function in the Cryp
toEnvironment module.

4. Get the next state using the getState function. The detail of the next state is fur‐
ther used in the Bellman equation for updating the Q-function.

5. The details of the state, next state, and action are saved in the memory of the
Agent object. This memory is used further by the exeReply function.

6. Check if the batch is complete. The size of a batch is defined by the batch size
variable. If the batch is not complete, we move to the next time iteration. If the
batch is complete, then we move to the Replay buffer function and update the
Q-function by minimizing the MSE between the Q-predicted and the Q-target in
steps 8, 9, and 10.

As shown in the following charts, the code produces the final results along with two
charts for each episode. The first chart shows the total cumulative return over time,
while the second chart shows the percentage of each cryptocurrency in the portfolio.

Case Study 3: Portfolio Allocation | 339

Output

Episode 0/50 epsilon 1.0

Episode 1/50 epsilon 1.0

Episode 48/50 epsilon 1.0

340 | Chapter 9: Reinforcement Learning

Episode 49/50 epsilon 1.0

The charts outline the details of the portfolio allocation of the first two and last two
episodes. The details of other episodes can be seen in the Jupyter notebook under the
GitHub repository for this book. The black line shows the performance of the portfo‐
lio, and the dotted grey line shows the performance of the benchmark, which is an
equally weighted portfolio of cryptocurrencies.

In the beginning of episodes zero and one, the agent has no preconception of the
consequences of its actions, and it takes randomized actions to observe the returns,
which are quite volatile. Episode zero shows a clear example of erratic performance
behavior. Episode one displays more stable movement but ultimately underperforms
the benchmark. This is evidence that the cumulative reward per episode fluctuates
significantly in the beginning of training.

The last two charts of episodes 48 and 49 show the agent starting to learn from its
training and discovering the optimal strategy. Overall returns are relatively stable and
outperform the benchmark. However, the overall portfolio weights are still quite vol‐
atile due to the short time series and high volatility of the underlying cryptocurrency
assets. Ideally, we would be able to increase the number of training episodes and the
length of historical data to enhance the training performance.

Case Study 3: Portfolio Allocation | 341

Let us look at the testing results.

5. Testing the data
Recall that the black line shows the performance of the portfolio, and the dotted grey
line is that of an equally weighted portfolio of cryptocurrencies:

agent.is_eval = True

actions_equal, actions_rl = [], []
result_equal, result_rl = [], []

for t in range(window_size, len(env.data), rebalance_period):

 date1 = t-rebalance_period
 s_ = env.get_state(t, window_size)
 action = agent.act(s_)

 weighted_returns, reward = env.get_reward(action[0], date1, t)
 weighted_returns_equal, reward_equal = env.get_reward(
 np.ones(agent.portfolio_size) / agent.portfolio_size, date1, t)

 result_equal.append(weighted_returns_equal.tolist())
 actions_equal.append(np.ones(agent.portfolio_size) / agent.portfolio_size)

 result_rl.append(weighted_returns.tolist())
 actions_rl.append(action[0])

result_equal_vis = [item for sublist in result_equal for item in sublist]
result_rl_vis = [item for sublist in result_rl for item in sublist]

plt.figure()
plt.plot(np.array(result_equal_vis).cumsum(), label = 'Benchmark', \
color = 'grey',ls = '--')
plt.plot(np.array(result_rl_vis).cumsum(), label = 'Deep RL portfolio', \
color = 'black',ls = '-')
plt.xlabel('Time Period')
plt.ylabel('Cumulative Returnimage::images\Chapter9-b82b2.png[]')
plt.show()

Despite underperforming during the initial period, the model performance was better
overall, primarily due to avoiding the steep decline that the benchmark portfolio
experienced in the latter part of the test window. The returns appear very stable, per‐
haps due to rotating away from the most volatile cryptocurrencies.

342 | Chapter 9: Reinforcement Learning

Output

Let us inspect the return, volatility, Sharpe ratio, alpha, and beta of the portfolio and
benchmark:

import statsmodels.api as sm
from statsmodels import regression
def sharpe(R):
 r = np.diff(R)
 sr = r.mean()/r.std() * np.sqrt(252)
 return sr

def print_stats(result, benchmark):

 sharpe_ratio = sharpe(np.array(result).cumsum())
 returns = np.mean(np.array(result))
 volatility = np.std(np.array(result))

 X = benchmark
 y = result
 x = sm.add_constant(X)
 model = regression.linear_model.OLS(y, x).fit()
 alpha = model.params[0]
 beta = model.params[1]

 return np.round(np.array([returns, volatility, sharpe_ratio, \
 alpha, beta]), 4).tolist()

print('EQUAL', print_stats(result_equal_vis, result_equal_vis))
print('RL AGENT', print_stats(result_rl_vis, result_equal_vis))

Case Study 3: Portfolio Allocation | 343

Output

EQUAL [-0.0013, 0.0468, -0.5016, 0.0, 1.0]
RL AGENT [0.0004, 0.0231, 0.4445, 0.0002, -0.1202]

Overall, the RL portfolio performs better across the board, with a higher return,
higher Sharpe ratio, lower volatility, slight alpha, and negative correlation to the
benchmark.

Conclusion
In this case study, we went beyond the classic efficient frontier for portfolio optimiza‐
tion and directly learned a policy of dynamically changing portfolio weights. We
trained an RL-based model by setting up a standardized simulation environment.
This approach facilitated the training process and can be explored further for general
RL-based model training.

The trained RL-based model outperformed an equal-weight benchmark in the test
set. The performance of the RL-based model can be further improved by optimizing
the hyperparameters or using a longer time series for training. However, given the
high complexity and low interpretability of an RL-based model, testing should occur
across different time periods and market cycles before deploying the model for live
trading. Also, as discussed in case study 1, we should carefully select the RL compo‐
nents, such as the reward function and state, and ensure we understand their impact
on the overall model results.

The framework provided in this case study can enable financial practitioners to per‐
form portfolio allocation and rebalancing with a very flexible and automated
approach.

Chapter Summary
Reward maximization is one of the key principles that drives algorithmic trading,
portfolio management, derivative pricing, hedging, and trade execution. In this chap‐
ter, we saw that when we use RL-based approaches, explicitly defining the strategy or
policy for trading, derivative hedging, or portfolio management is unnecessary. The
algorithm determines the policy itself, which can lead to a much simpler and more
principled approach than other machine learning techniques.

In “Case Study 1: Reinforcement Learning–Based Trading Strategy” on page 298, we
saw that RL makes algorithmic trading a simple game, which may or may not involve
understanding fundamental information. In “Case Study 2: Derivatives Hedging” on
page 316, we explored the use of reinforcement learning for a traditional derivative
hedging problem. This exercise demonstrated that we can leverage the efficient

344 | Chapter 9: Reinforcement Learning

numerical calculation of RL in derivatives hedging to address some of the drawbacks
of the more traditional models. In “Case Study 3: Portfolio Allocation” on page 334,
we performed portfolio allocation by learning a policy of changing portfolio weights
dynamically in a continuously changing market environment, leading to further
automation of the portfolio management process.

Although RL comes with some challenges, such as being computationally expensive
and data intensive and lacking interpretability, it aligns perfectly with some areas in
finance that are suited for policy frameworks based on reward maximization. Rein‐
forcement learning has managed to achieve superhuman performance in finite action
spaces, such as those in the games of Go, chess, and Atari. Looking ahead, with the
availability of more data, refined RL algorithms, and superior infrastructure, RL will
continue to prove to be immensely useful in finance.

Exercises
• Using the ideas and concepts presented in case studies 1 and 2, implement a

trading strategy based on a policy gradient algorithm for FX. Vary the key com‐
ponents (i.e., reward function, state, etc.) for this implementation.

• Implement the hedging of a fixed income derivative using the concepts presented
in case study 2.

• Incorporate a transaction cost in case study 2 and see the impact on the overall
results.

• Based on the ideas presented in case study 3, implement a Q-learning-based
portfolio allocation strategy on a portfolio of stocks, FX, or fixed income
instruments.

Exercises | 345

CHAPTER 10

Natural Language Processing

Natural language processing (NLP) is a subfield of artificial intelligence used to aid
computers in understanding natural human language. Most NLP techniques rely on
machine learning to derive meaning from human languages. When text has been
provided, the computer utilizes algorithms to extract meaning associated with every
sentence and collect essential data from them. NLP manifests itself in different forms
across many disciplines under various aliases, including (but not limited to) textual
analysis, text mining, computational linguistics, and content analysis.

In the financial landscape, one of the earliest applications of NLP was implemented
by the US Securities and Exchange Commission (SEC). The group used text mining
and natural language processing to detect accounting fraud. The ability of NLP algo‐
rithms to scan and analyze legal and other documents at a high speed provides banks
and other financial institutions with enormous efficiency gains to help them meet
compliance regulations and combat fraud.

In the investment process, uncovering investment insights requires not only domain
knowledge of finance but also a strong grasp of data science and machine learning
principles. NLP tools may help detect, measure, predict, and anticipate important
market characteristics and indicators, such as market volatility, liquidity risks, finan‐
cial stress, housing prices, and unemployment.

News has always been a key factor in investment decisions. It is well established that
company-specific, macroeconomic, and political news strongly influence the finan‐
cial markets. As technology advances, and market participants become more connec‐
ted, the volume and frequency of news will continue to grow rapidly. Even today, the
volume of daily text data being produced presents an untenable task for even a large
team of fundamental researchers to navigate. Fundamental analysis assisted by NLP
techniques is now critical to unlock the complete picture of how experts and the
masses feel about the market.

347

In banks and other organizations, teams of analysts are dedicated to poring over, ana‐
lyzing, and attempting to quantify qualitative data from news and SEC-mandated
reporting. Automation using NLP is well suited in this context. NLP can provide in-
depth support in the analysis and interpretation of various reports and documents.
This reduces the strain that repetitive, low-value tasks put on human employees. It
also provides a level of objectivity and consistency to otherwise subjective interpreta‐
tions; mistakes from human error are lessened. NLP can also allow a company to gar‐
ner insights that can be used to assess a creditor’s risk or gauge brand-related
sentiment from content across the web.

With the rise in popularity of live chat software in banking and finance businesses,
NLP-based chatbots are a natural evolution. The combination of robo-advisors with
chatbots is expected to automate the entire process of wealth and portfolio
management.

In this chapter, we present three NLP-based case studies that cover applications of
NLP in algorithmic trading, chatbot creation, and document interpretation and auto‐
mation. The case studies follow a standardized seven-step model development pro‐
cess presented in Chapter 2. Key model steps for NLP-based problems are data
preprocessing, feature representation, and inference. As such, these areas, along with
the related concepts and Python-based examples, are outlined in this chapter.

“Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies” on page 362
demonstrates the usage of sentiment analysis and word embedding for a trading
strategy. This case study highlights key focus areas for implementing an NLP-based
trading strategy.

In “Case Study 2: Chatbot Digital Assistant” on page 383, we create a chatbot and
demonstrate how NLP enables chatbots to understand messages and respond appro‐
priately. We leverage Python-based packages and modules to develop a chatbot in a
few lines of code.

“Case Study 3: Document Summarization” on page 393 illustrates the use of an NLP-
based topic modeling technique to discover hidden topics or themes across docu‐
ments. The purpose of this case study is to demonstrate the usage of NLP to
automatically summarize large collections of documents to facilitate organization
and management, as well as search and recommendations.

In addition to the points mentioned above, this chapter will cover:

• How to perform NLP data preprocessing, including steps such as tokenization,
part-of-speech (PoS) tagging, or named entity recognition, in a few lines of code.

• How to use different supervised techniques, including LSTM, for sentiment
analysis.

348 | Chapter 10: Natural Language Processing

• Understanding the main Python packages (i.e., NLTK, spaCy and TextBlob) and
how to use them for several NLP-related tasks.

• How to build a data preprocessing pipeline using the spaCy package.
• How to use pretrained models, such as word2vec, for feature representation.
• How to use models such as LDA for topic modeling.

This Chapter’s Code Repository

The Python code for this chapter is included under the Chapter 10
- Natural Language Processing folder of the online GitHub reposi‐
tory for this chapter. For any new NLP-based case study, use the
common template from the code repository and modify the ele‐
ments specific to the case study. The templates are designed to run
on the cloud (i.e., Kaggle, Google Colab, and AWS).

Natural Language Processing: Python Packages
Python is one of the best options to build an NLP-based expert system, and a large
variety of open source NLP libraries are available for Python programmers. These
libraries and packages contain ready-to-use modules and functions to incorporate
complex NLP steps and algorithms, making implementation fast, easy, and efficient.

In this section, we will describe three Python-based NLP libraries we’ve found to be
the most useful and that we will be using in this chapter.

NLTK
NLTK is the most famous Python NLP library, and it has led to incredible break‐
throughs across several areas. Its modularized structure makes it excellent for learn‐
ing and exploring NLP concepts. However, it has heavy functionality with a steep
learning curve.

NLTK can be installed using the typical installation procedure. After installing
NLTK, NLTK Data needs to be downloaded. The NLTK Data package includes a pre‐
trained tokenizer punkt for English, which can be downloaded as well:

import nltk
import nltk.data
nltk.download('punkt')

TextBlob
TextBlob is built on top of NLTK. This is one of the best libraries for fast prototyping
or building applications with minimal performance requirements. TextBlob makes

Natural Language Processing: Python Packages | 349

https://oreil.ly/J2FFn
https://oreil.ly/J2FFn
https://www.nltk.org
https://oreil.ly/tABh4

text processing simple by providing an intuitive interface to NLTK. TextBlob can be
imported using the following command:

from textblob import TextBlob

spaCy
spaCy is an NLP library designed to be fast, streamlined, and production-ready. Its
philosophy is to present only one algorithm (the best one) for each purpose. We
don’t have to make choices and can focus on being productive. spaCy uses its own
pipeline to perform multiple preprocessing steps at the same time. We will demon‐
strate it in a subsequent section.

spaCy’s models can be installed as Python packages, just like any other module. To
load a model, use spacy.load with the model’s shortcut link or package name or a
path to the data directory:

import spacy
nlp = spacy.load("en_core_web_lg")

In addition to these, there are a few other libraries, such as gensim, that we will
explore for some of the examples in this chapter.

Natural Language Processing: Theory and Concepts
As we have already established, NLP is a subfield of artificial intelligence concerned
with programming computers to process textual data in order to gain useful insights.
All NLP applications go through common sequential steps, which include some com‐
bination of preprocessing textual data and representing the text as predictive features
before feeding them into a statistical inference algorithm. Figure 10-1 outlines the
major steps in an NLP-based application.

Figure 10-1. Natural language processing pipeline

350 | Chapter 10: Natural Language Processing

https://spacy.io

The next section reviews these steps. For a thorough coverage of the topic, the reader
is referred to Natural Language Processing with Python by Steven Bird, Ewan Klein,
and Edward Loper (O’Reilly).

1. Preprocessing
There are usually multiple steps involved in preprocessing textual data for NLP.
Figure 10-1 shows the key components of the preprocessing steps for NLP. These are
tokenization, stop words removal, stemming, lemmatization, PoS (part-of-speech)
tagging, and NER (Name Entity Recognition).

1.1. Tokenization
Tokenization is the task of splitting a text into meaningful segments, called tokens.
These segments could be words, punctuation, numbers, or other special characters
that are the building blocks of a sentence. A set of predetermined rules allows us to
effectively convert a sentence into a list of tokens. The following code snippets show
sample word tokenization using the NLTK and TextBlob packages:

#Text to tokenize
text = "This is a tokenize test"

The NLTK data package includes a pretrained Punkt tokenizer for English, which was
previously loaded:

from nltk.tokenize import word_tokenize
word_tokenize(text)

Output

['This', 'is', 'a', 'tokenize', 'test']

Let’s look at tokenization using TextBlob:

TextBlob(text).words

Output

WordList(['This', 'is', 'a', 'tokenize', 'test'])

1.2. Stop words removal
At times, extremely common words that offer little value in modeling are excluded
from the vocabulary. These words are called stop words. The code for removing stop
words using the NLTK library is shown below:

text = "S&P and NASDAQ are the two most popular indices in US"

from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
stop_words = set(stopwords.words('english'))
text_tokens = word_tokenize(text)

Natural Language Processing: Theory and Concepts | 351

https://www.oreilly.com/library/view/natural-language-processing/9780596803346

tokens_without_sw= [word for word in text_tokens if not word in stop_words]

print(tokens_without_sw)

Output

['S', '&', 'P', 'NASDAQ', 'two', 'popular', 'indices', 'US']

We first load the language model and store it in the stop words variable. The stop
words.words('english') is a set of default stop words for the English language
model in NLTK. Next, we simply iterate through each word in the input text, and if
the word exists in the stop word set of the NLTK language model, the word is
removed. As we can see, stop words, such as are and most, are removed from the sen‐
tence.

1.3. Stemming
Stemming is the process of reducing inflected (or sometimes derived) words to their
stem, base, or root form (generally a written word form). For example, if we were to
stem the words Stems, Stemming, Stemmed, and Stemitization, the result would be a
single word: Stem. The code for stemming using the NLTK library is shown here:

text = "It's a Stemming testing"

parsed_text = word_tokenize(text)

Initialize stemmer.
from nltk.stem.snowball import SnowballStemmer
stemmer = SnowballStemmer('english')

Stem each word.
[(word, stemmer.stem(word)) for i, word in enumerate(parsed_text)
 if word.lower() != stemmer.stem(parsed_text[i])]

Output

[('Stemming', 'stem'), ('testing', 'test')]

1.4. Lemmatization
A slight variant of stemming is lemmatization. The major difference between the two
processes is that stemming can often create nonexistent words, whereas lemmas are
actual words. An example of lemmatization is run as a base form for words like run‐
ning and ran, or that the words better and good are considered the same lemma. The
code for lemmatization using the TextBlob library is shown below:

text = "This world has a lot of faces "

from textblob import Word
parsed_data= TextBlob(text).words

352 | Chapter 10: Natural Language Processing

[(word, word.lemmatize()) for i, word in enumerate(parsed_data)
 if word != parsed_data[i].lemmatize()]

Output

[('has', 'ha'), ('faces', 'face')]

1.5. PoS tagging
Part-of-speech (PoS) tagging is the process of assigning a token to its grammatical cat‐
egory (e.g., verb, noun, etc.) in order to understand its role within a sentence. PoS
tags have been used for a variety of NLP tasks and are extremely useful since they
provide a linguistic signal of how a word is being used within the scope of a phrase,
sentence, or document.

After a sentence is split into tokens, a tagger, or PoS tagger, is used to assign each
token to a part-of-speech category. Historically, hidden Markov models (HMM) were
used to create such taggers. More recently, artificial neural networks have been lever‐
aged. The code for PoS tagging using the TextBlob library is shown here:

text = 'Google is looking at buying U.K. startup for $1 billion'
TextBlob(text).tags

Output

[('Google', 'NNP'),
 ('is', 'VBZ'),
 ('looking', 'VBG'),
 ('at', 'IN'),
 ('buying', 'VBG'),
 ('U.K.', 'NNP'),
 ('startup', 'NN'),
 ('for', 'IN'),
 ('1', 'CD'),
 ('billion', 'CD')]

1.6. Named entity recognition
Named entity recognition (NER) is an optional next step in data preprocessing that
seeks to locate and classify named entities in text into predefined categories. These
categories can include names of persons, organizations, locations, expressions of
times, quantities, monetary values, or percentages. The NER performed using spaCy
is shown below:

text = 'Google is looking at buying U.K. startup for $1 billion'

for entity in nlp(text).ents:
 print("Entity: ", entity.text)

Natural Language Processing: Theory and Concepts | 353

https://oreil.ly/OpuRm

Output

Entity: Google
Entity: U.K.
Entity: $1 billion

Visualizing named entities in text using the displacy module, as shown in
Figure 10-2, can also be incredibly helpful in speeding up development and debug‐
ging the code and training process:

from spacy import displacy
displacy.render(nlp(text), style="ent", jupyter = True)

Figure 10-2. NER output

1.7. spaCy: All of the above steps in one go. All the preprocessing steps shown above can
be performed in one step using spaCy. When we call nlp on a text, spaCy first tokeni‐
zes the text to produce a Doc object. The Doc is then processed in several different
steps. This is also referred to as the processing pipeline. The pipeline used by the
default models consists of a tagger, a parser, and an entity recognizer. Each pipeline
component returns the processed Doc, which is then passed on to the next compo‐
nent, as demonstrated in Figure 10-3.

Figure 10-3. spaCy pipeline (based on an image from the spaCy website.

Python code text = 'Google is looking at buying U.K. startup for $1 billion'
doc = nlp(text)
pd.DataFrame([[t.text, t.is_stop, t.lemma_, t.pos_]
 for t in doc],
 columns=['Token', 'is_stop_word', 'lemma', 'POS'])

Output

Token is_stop_word lemma POS
0 Google False Google PROPN

1 is True be VERB

2 looking False look VERB

3 at True at ADP

354 | Chapter 10: Natural Language Processing

https://oreil.ly/ZhMlp

Token is_stop_word lemma POS
4 buying False buy VERB

5 U.K. False U.K. PROPN

6 startup False startup NOUN

7 for True for ADP

8 $ False $ SYM

9 1 False 1 NUM

10 billion False billion NUM

The output for each of the preprocessing steps is shown in the preceding table. Given
that spaCy performs a wide range of NLP-related tasks in a single step, it is a highly
recommended package. As such, we will be using spaCy extensively in our case
studies.

In addition to the above preprocessing steps, there are other frequently used prepro‐
cessing steps, such as lower casing or nonalphanumeric data removing, that we can
perform depending on the type of data. For example, data scraped from a website has
to be cleansed further, including the removal of HTML tags. Data from a PDF report
must be converted into a text format.

Other optional preprocessing steps include dependency parsing, coreference resolu‐
tion, triplet extraction, and relation extraction:

Dependency parsing
Assigns a syntactic structure to sentences to make sense of how the words in the
sentence relate to each other.

Coreference resolution
The process of connecting tokens that represent the same entity. It is common in
languages to introduce a subject with their name in one sentence and then refer
to them as him/her/it in subsequent sentences.

Triplet extraction
The process of recording subject, verb, and object triplets when available in the
sentence structure.

Relation extraction
A broader form of triplet extraction in which entities can have multiple
interactions.

These additional steps should be performed only if they will help with the task at
hand. We will demonstrate examples of these preprocessing steps in the case studies
in this chapter.

Natural Language Processing: Theory and Concepts | 355

1 A customized deep learning–based feature representation model is built in case study 1 of this chapter.

2. Feature Representation
The vast majority of NLP-related data, such as news feed articles, PDF reports, social
media posts, and audio files, is created for human consumption. As such, it is often
stored in an unstructured format, which cannot be readily processed by computers.
In order for the preprocessed information to be conveyed to the statistical inference
algorithm, the tokens need to be translated into predictive features. A model is used
to embed raw text into a vector space.

Feature representation involves two things:

• A vocabulary of known words.
• A measure of the presence of known words.

Some of the feature representation methods are:

• Bag of words
• TF-IDF
• Word embedding

— Pretrained models (e.g., word2vec, GloVe, spaCy’s word embedding model)
— Customized deep learning–based feature representation1

Let’s learn more about each of these methods.

2.1. Bag of words—word count
In natural language processing, a common technique for extracting features from text
is to place all words that occur in the text in a bucket. This approach is called a bag of
words model. It’s referred to as a bag of words because any information about the
structure of the sentence is lost. In this technique, we build a single matrix from a
collection of texts, as shown in Figure 10-4, in which each row represents a token and
each column represents a document or sentence in our corpus. The values of the
matrix represent the count of the number of instances of the token appearing.

356 | Chapter 10: Natural Language Processing

https://oreil.ly/u9SZG

Figure 10-4. Bag of words

The CountVectorizer from sklearn provides a simple way to both tokenize a collec‐
tion of text documents and encode new documents using that vocabulary. The
fit_transform function learns the vocabulary from one or more documents and
encodes each document in the word as a vector:

sentences = [
'The stock price of google jumps on the earning data today',
'Google plunge on China Data!'
]
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
print(vectorizer.fit_transform(sentences).todense())
print(vectorizer.vocabulary_)

Output

[[0 1 1 1 1 1 1 0 1 1 2 1]
 [1 1 0 1 0 0 1 1 0 0 0 0]]
{'the': 10, 'stock': 9, 'price': 8, 'of': 5, 'google': 3, 'jumps':\
 4, 'on': 6, 'earning': 2, 'data': 1, 'today': 11, 'plunge': 7,\
 'china': 0}

We can see an array version of the encoded vector showing a count of one occurrence
for each word except the (index 10), which has an occurrence of two. Word counts
are a good starting point, but they are very basic. One issue with simple counts is that
some words like the will appear many times, and their large counts will not be very
meaningful in the encoded vectors. These bag of words representations are sparse
because the vocabularies are vast, and a given word or document would be repre‐
sented by a large vector comprised mostly of zero values.

Natural Language Processing: Theory and Concepts | 357

2.2. TF-IDF
An alternative is to calculate word frequencies, and by far the most popular method
for that is TF-IDF, which stands for Term Frequency–Inverse Document Frequency:

Term Frequency
This summarizes how often a given word appears within a document.

Inverse Document Frequency
This downscales words that appear a lot across documents.

Put simply, TF-IDF is a word frequency score that tries to highlight words that are
more interesting (i.e., frequent within a document, but not across documents). The
TfidfVectorizer will tokenize documents, learn the vocabulary and the inverse docu‐
ment frequency weightings, and allow you to encode new documents:

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
TFIDF = vectorizer.fit_transform(sentences)
print(vectorizer.get_feature_names()[-10:])
print(TFIDF.shape)
print(TFIDF.toarray())

Output

['china', 'data', 'earning', 'google', 'jumps', 'plunge', 'price', 'stock', \
'today']
(2, 9)
[[0. 0.29017021 0.4078241 0.29017021 0.4078241 0.
 0.4078241 0.4078241 0.4078241]
 [0.57615236 0.40993715 0. 0.40993715 0. 0.57615236
 0. 0. 0.]]

In the provided code snippet, a vocabulary of nine words is learned from the docu‐
ments. Each word is assigned a unique integer index in the output vector. The sen‐
tences are encoded as a nine-element sparse array, and we can review the final
scorings of each word with different values from the other words in the vocabulary.

2.3. Word embedding
A word embedding represents words and documents using a dense vector representa‐
tion. In an embedding, words are represented by dense vectors in which a vector rep‐
resents the projection of the word into a continuous vector space. The position of a
word within the vector space is learned from text and is based on the words that sur‐
round the word when it is used. The position of a word in the learned vector space is
referred to as its embedding.

Some of the models of learning word embeddings from text include word2Vec,
spaCy’s pretrained word embedding model, and GloVe. In addition to these carefully
designed methods, a word embedding can be learned as part of a deep learning

358 | Chapter 10: Natural Language Processing

model. This can be a slower approach, but it tailors the model to a specific training
dataset.

2.3.1. Pretrained model: Via spaCy
spaCy comes with built-in representation of text as vectors at different levels of word,
sentence, and document. The underlying vector representations come from a word
embedding model, which generally produces a dense, multidimensional semantic
representation of words (as shown in the following example). The word embedding
model includes 20,000 unique vectors with 300 dimensions. Using this vector repre‐
sentation, we can calculate similarities and dissimilarities between tokens, named
entities, noun phrases, sentences, and documents.

The word embedding in spaCy is performed by first loading the model and then pro‐
cessing text. The vectors can be accessed directly using the .vector attribute of each
processed token (i.e., word). The mean vector for the entire sentence is also calcula‐
ted simply by using the vector, providing a very convenient input for machine learn‐
ing models based on sentences:

doc = nlp("Apple orange cats dogs")
print("Vector representation of the sentence for first 10 features: \n", \
doc.vector[0:10])

Output:\

Vector representation of the sentence for first 10 features:
 [-0.30732775 0.22351399 -0.110111 -0.367025 -0.13430001
 0.13790375 -0.24379876 -0.10736975 0.2715925 1.3117325]

The vector representation of the sentence for the first 10 features of the pretrained
model is shown in the output.

2.3.2. Pretrained model: Word2Vec using gensim package
The Python-based implementation of the word2vec model using the gensim package
is demonstrated here:

from gensim.models import Word2Vec

sentences = [
['The','stock','price', 'of', 'Google', 'increases'],
['Google','plunge',' on','China',' Data!']]

train model
model = Word2Vec(sentences, min_count=1)

summarize the loaded model
words = list(model.wv.vocab)
print(words)
print(model['Google'][1:5])

Natural Language Processing: Theory and Concepts | 359

https://oreil.ly/p9hOJ

Output

['The', 'stock', 'price', 'of', 'Google', 'increases', 'plunge', ' on', 'China',\
' Data!']
[-1.7868265e-03 -7.6242397e-04 6.0105987e-05 3.5568199e-03
]

The vector representation of the sentence for the first five features of the pretrained
word2vec model is shown above.

3. Inference
As with other artificial intelligence tasks, an inference generated by an NLP applica‐
tion usually needs to be translated into a decision in order to be actionable. Inference
falls under three machine learning categories covered in the previous chapters (i.e.,
supervised, unsupervised, and reinforcement learning). While the type of inference
required depends on the business problem and the type of training data, the most
commonly used algorithms are supervised and unsupervised.

One of the most frequently used supervised methodologies in NLP is the Naive Bayes
model, as it can produce reasonable accuracy using simple assumptions. A more
complex supervised methodology is using artificial neural network architectures. In
past years, these architectures, such as recurrent neural networks (RNNs), have
dominated NLP-based inference.

Most of the existing literature in NLP focuses on supervised learning. As such, unsu‐
pervised learning applications constitute a relatively less developed subdomain in
which measuring document similarity is among the most common tasks. A popular
unsupervised technique applied in NLP is Latent Semantic Analysis (LSA). LSA looks
at relationships between a set of documents and the words they contain by producing
a set of latent concepts related to the documents and terms. LSA has paved the way
for a more sophisticated approach called Latent Dirichlet Allocation (LDA), under
which documents are modeled as a finite mixture of topics. These topics in turn are
modeled as a finite mixture over words in the vocabulary. LDA has been extensively
used for topic modeling—a growing area of research in which NLP practitioners build
probabilistic generative models to reveal likely topic attributions for words.

Since we have reviewed many supervised and unsupervised learning models in the
previous chapters, we will provide details only on Naive Bayes and LDA models in
the next sections. These are used extensively in NLP and were not covered in the pre‐
vious chapters.

3.1. Supervised learning example—Naive Bayes
Naive Bayes is a family of algorithms based on applying Bayes’s theorem with a strong
(naive) assumption that every feature used to predict the category of a given sample is
independent of the others. They are probabilistic classifiers and therefore will

360 | Chapter 10: Natural Language Processing

https://oreil.ly/bVeZK

calculate the probability of each category using Bayes’s theorem. The category with
the highest probability will be output.

In NLP, a Naive Bayes approach assumes that all word features are independent of
each other given the class labels. Due to this simplifying assumption, Naive Bayes is
very compatible with a bag-of-words word representation, and it has been demon‐
strated to be fast, reliable, and accurate in a number of NLP applications. Moreover,
despite its simplifying assumptions, it is competitive with (and at times even outper‐
forms) more complicated classifiers.

Let us look at the usage of Naive Bayes for the inference in a sentiment analysis prob‐
lem. We take a dataframe in which there are two sentences with sentiments assigned
to each. In the next step, we convert the sentences into a feature representation using
CountVectorizer. The features and sentiments are used to train and test the model
using Naive Bayes:

sentences = [
'The stock price of google jumps on the earning data today',
'Google plunge on China Data!']
sentiment = (1, 0)
data = pd.DataFrame({'Sentence':sentences,
 'sentiment':sentiment})

feature extraction
from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer().fit(data['Sentence'])
X_train_vectorized = vect.transform(data['Sentence'])

Running naive bayes model
from sklearn.naive_bayes import MultinomialNB
clfrNB = MultinomialNB(alpha=0.1)
clfrNB.fit(X_train_vectorized, data['sentiment'])

#Testing the model
preds = clfrNB.predict(vect.transform(['Apple price plunge',\
 'Amazon price jumps']))
preds

Output

array([0, 1])

As we can see, the Naive Bayes trains the model fairly well from the two sentences.
The model gives a sentiment of zero and one for the test sentences “Apple price
plunge” and “Amazon price jumps,” respectively, given the sentences used for train‐
ing also had the keywords “plunge” and “jumps,” with corresponding sentiment
assignments.

Natural Language Processing: Theory and Concepts | 361

3.2. Unsupervised learning example: LDA
LDA is extensively used for topic modeling because it tends to produce meaningful
topics that humans can interpret, assigns topics to new documents, and is extensible.
It works by first making a key assumption: documents are generated by first selecting
topics, and then, for each topic, a set of words. The algorithm then reverse engineers
this process to find the topics in a document.

In the following code snippet, we show an implementation of LDA for topic model‐
ing. We take two sentences and convert the sentences into a feature representation
using CountVectorizer. These features and the sentiments are used to train the
model and produce two smaller matrices representing the topics:

sentences = [
'The stock price of google jumps on the earning data today',
'Google plunge on China Data!'
]

#Getting the bag of words
from sklearn.decomposition import LatentDirichletAllocation
vect=CountVectorizer(ngram_range=(1, 1),stop_words='english')
sentences_vec=vect.fit_transform(sentences)

#Running LDA on the bag of words.
from sklearn.feature_extraction.text import CountVectorizer
lda=LatentDirichletAllocation(n_components=3)
lda.fit_transform(sentences_vec)

Output

array([[0.04283242, 0.91209846, 0.04506912],
 [0.06793339, 0.07059533, 0.86147128]])

We will be using LDA for topic modeling in the third case study of this chapter and
will discuss the concepts and interpretation in detail.

To review, in order to approach any NLP-based problem, we need to follow the pre‐
processing, feature extraction, and inference steps. Now, let’s dive into the case
studies.

Case Study 1: NLP and Sentiment Analysis–Based Trading
Strategies
Natural language processing offers the ability to quantify text. One can begin to ask
questions such as: How positive or negative is this news? and How can we quantify
words?

Perhaps the most notable application of NLP is its use in algorithmic trading. NLP
provides an efficient means of monitoring market sentiments. By applying

362 | Chapter 10: Natural Language Processing

NLP-based sentiment analysis techniques to news articles, reports, social media, or
other web content, one can effectively determine whether those sources have a posi‐
tive or negative senitment score. Sentiment scores can be used as a directional signal
to buy stocks with positive scores and sell stocks with negative ones.

Trading strategies based on text data are becoming more popular as the amount of
unstructured data increases. In this case study we are going to look at how one can
use NLP-based sentiments to build a trading strategy.

In this case study, we will focus on:

• Producing news sentiments using supervised and unsupervised algorithms.
• Enhancing sentiment analysis by using a deep learning model, such as LSTM.
• Comparison of different sentiment generation methodologies for the purpose of

building a trading strategy.
• Using sentiments and word vectors effectively as features in a trading strategy.
• Collecting data from different sources and preprocessing it for sentiment analy‐

sis.
• Using NLP Python packages for sentiment analysis.
• Building a framework for backtesting results of a trading strategy using available

Python packages.

This case study combines concepts presented in previous chapters. The overall model
development steps of this case study are similar to the seven-step model development
in prior case studies, with slight modifications.

Blueprint for Building a Trading Strategy Based on
Sentiment Analysis

1. Problem definition
Our goal is to (1) use NLP to extract information from news headlines, (2) assign a
sentiment to that information, and (3) use sentiment analysis to build a trading strat‐
egy.

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies | 363

2 The news can be downloaded by a simple web-scraping program in Python using packages such as Beautiful
Soup. Readers should talk to the website or follow its terms of service in order to use the news for commercial
purpose.

3 The source of this lexicon is Nuno Oliveira, Paulo Cortez, and Nelson Areal, “Stock Market Sentiment Lexi‐
con Acquisition Using Microblogging Data and Statistical Measures,” Decision Support Systems 85 (March
2016): 62–73.

The data used for this case study will be from the following sources:

News headlines data compiled from the RSS feeds of several news websites
For the purpose of this study, we will look only at the headlines, not at the full
text of the stories. Our dataset contains around 82,000 headlines from May 2011
through December 2018.2

Yahoo Finance website for stock data
The return data for stocks used in this case study is derived from Yahoo Finance
price data.

Kaggle
We will use the labeled data of news sentiments for a classification-based senti‐
ment analysis model. Note that this data may not be fully applicable to the case at
hand and is used here for demonstration purposes.

Stock market lexicon
Lexicon refers to the component of an NLP system that contains information
(semantic, grammatical) about individual words or word strings. This is created
based on stock market conversations in microblogging services.3

The key steps of this case study are outlined in Figure 10-5.

Figure 10-5. Steps in a sentiment analysis–based trading strategy

Once we are done with preprocessing, we will look at the different sentiment analysis
models. The results from the sentiment analysis step are used to develop the trading
strategy.

364 | Chapter 10: Natural Language Processing

https://www.kaggle.com

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. The first set of libraries to be loaded are the NLP-
specific libraries discussed above. Refer to the Jupyter notebook of this case study for
details of the other libraries.

from textblob import TextBlob
import spacy
import nltk
import warnings
from nltk.sentiment.vader import SentimentIntensityAnalyzer
nltk.download('vader_lexicon')
nlp = spacy.load("en_core_web_lg")

2.2. Loading the data. In this step, we load the stock price data from Yahoo Finance.
We select 10 stocks for this case study. These stocks are some of the largest stocks in
the S&P 500 by market share:

tickers = ['AAPL','MSFT','AMZN','GOOG','FB','WMT','JPM','TSLA','NFLX','ADBE']
start = '2010-01-01'
end = '2018-12-31'
df_ticker_return = pd.DataFrame()
for ticker in tickers:
 ticker_yf = yf.Ticker(ticker)
 if df_ticker_return.empty:
 df_ticker_return = ticker_yf.history(start = start, end = end)
 df_ticker_return['ticker']= ticker
 else:
 data_temp = ticker_yf.history(start = start, end = end)
 data_temp['ticker']= ticker
 df_ticker_return = df_ticker_return.append(data_temp)
df_ticker_return.to_csv(r'Data\Step3.2_ReturnData.csv')

df_ticker_return.head(2)

The data contains the price and volume data of the stocks along with their ticker
name. In the next step, we look at the news data.

3. Data preparation
In this step, we load and preprocess the news data, followed by combining the news
data with the stock return data. This combined dataset will be used for the model
development.

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies | 365

3.1. Preprocessing news data. The news data is downloaded from the News RSS feed,
and the file is available in JSON format. The JSON files for different dates are kept
under a zipped folder. The data is downloaded using the standard web-scraping
Python package Beautiful Soup, which is an open source framework. Let us look at
the content of the downloaded JSON file:

z = zipfile.ZipFile("Data/Raw Headline Data.zip", "r")
testFile=z.namelist()[10]
fileData= z.open(testFile).read()
fileDataSample = json.loads(fileData)['content'][1:500]
fileDataSample

Output

'li class="n-box-item date-title" data-end="1305172799" data-start="1305086400"
data-txt="Tuesday, December 17, 2019">Wednesday, May 11,2011<li
class="n-box-item sa-box-item" data-id="76179" data-ts="1305149244"><div
class="media media-overflow-fix"><div class-"media-left"><a class="box-ticker"
href="/symbol/CSCO" target="blank">CSCO</div><div class="media-body"<h4
class="media-heading"><a href="/news/76179" sasource="on_the_move_news_
fidelity" target="_blank">Cisco (NASDAQ:CSCO): Pr'

We can see that the JSON format is not suitable for the algorithm. We need to get the
news from the JSONs. Regex becomes the vital part of this step. Regex can find a pat‐
tern in the raw, messy text and perform actions accordingly. The following function
parses HTML by using information encoded in the JSON file:

def jsonParser(json_data):
 xml_data = json_data['content']

 tree = etree.parse(StringIO(xml_data), parser=etree.HTMLParser())

 headlines = tree.xpath("//h4[contains(@class, 'media-heading')]/a/text()")
 assert len(headlines) == json_data['count']

 main_tickers = list(map(lambda x: x.replace('/symbol/', ''),\
 tree.xpath("//div[contains(@class, 'media-left')]//a/@href")))
 assert len(main_tickers) == json_data['count']
 final_headlines = [''.join(f.xpath('.//text()')) for f in\
 tree.xpath("//div[contains(@class, 'media-body')]/ul/li[1]")]
 if len(final_headlines) == 0:
 final_headlines = [''.join(f.xpath('.//text()')) for f in\
 tree.xpath("//div[contains(@class, 'media-body')]")]
 final_headlines = [f.replace(h, '').split('\xa0')[0].strip()\
 for f,h in zip (final_headlines, headlines)]
 return main_tickers, final_headlines

Let us see how the output looks like after running the JSON parser:

jsonParser(json.loads(fileData))[1][1]

366 | Chapter 10: Natural Language Processing

Output

'Cisco Systems (NASDAQ:CSCO) falls further into the red on FQ4
 guidance of $0.37-0.39 vs. $0.42 Street consensus. Sales seen flat
 to +2% vs. 8% Street view. CSCO recently -2.1%.'

As we can see, the output is converted into a more readable format after JSON
parsing.

While evaluating the sentiment analysis models, we also analyze the relationship
between the sentiments and subsequent stock performance. In order to understand
the relationship, we use event return, which is the return that corresponds to the
event. We do this because at times the news is reported late (i.e., after market partici‐
pants are aware of the announcement) or after market close. Having a slightly wider
window ensures that we capture the essence of the event. Event return is defined as:

Rt –1 + Rt + Rt +1

where Rt –1, Rt +1 are the returns before and after the news data, and Rt is the return on
the day of the news (i.e., time t).

Let us extract the event return from the data:

#Computing the return
df_ticker_return['ret_curr'] = df_ticker_return['Close'].pct_change()
#Computing the event return
df_ticker_return['eventRet'] = df_ticker_return['ret_curr']\
 + df_ticker_return['ret_curr'].shift(-1) + df_ticker_return['ret_curr'].shift(1)

Now we have all the data in place. We will prepare a combined dataframe, which will
have the news headlines mapped to the date, the returns (event return, current
return, and next day’s return), and stock ticker. This dataframe will be used for build‐
ing the sentiment analysis model and the trading strategy:

combinedDataFrame = pd.merge(data_df_news, df_ticker_return, how='left', \
left_on=['date','ticker'], right_on=['date','ticker'])
combinedDataFrame = combinedDataFrame[combinedDataFrame['ticker'].isin(tickers)]
data_df = combinedDataFrame[['ticker','headline','date','eventRet','Close']]
data_df = data_df.dropna()
data_df.head(2)

Output

ticker headline date eventRet Close
5 AMZN Whole Foods (WFMI) –5.2% following a downgrade… 2011-05-02 0.017650 201.19

11 NFLX Netflix (NFLX +1.1%) shares post early gains a… 2011-05-02 –0.013003 33.88

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies | 367

4 We also train a sentiment analysis model on the financial data in the subsequent section and compare the
results against the TextBlob model.

Let us look at the overall shape of the data:

print(data_df.shape, data_df.ticker.unique().shape)

Output

(2759, 5) (10,)

In this step, we prepared a clean dataframe that has ticker, headline, event return,
return for a given day, and future return for 10 stock tickers, totaling 2,759 rows of
data. Let us evaluate the models for sentiment analysis in the next step.

4. Evaluate models for sentiment analysis
In this section, we will go through the following three approaches of computing sen‐
timents for the news:

• Predefined model—TextBlob package
• Tuned model—classification algorithms and LSTM
• Model based on financial lexicon

Let us go through the steps.

4.1. Predefined model—TextBlob package. The TextBlob sentiment function is a pre‐
trained model based on the Naive Bayes classification algorithm. The function maps
adjectives that are frequently found in movie reviews4 to sentiment polarity scores
ranging from –1 to +1 (negative to positive), converting a sentence to a numerical
value. We apply this on all headline articles. An example of getting the sentiment for
a news text is shown below:

text = "Bayer (OTCPK:BAYRY) started the week up 3.5% to €74/share in Frankfurt, \
touching their
highest level in 14 months, after the U.S. government said \
 a $25M glyphosate decision against the
company should be reversed."

TextBlob(text).sentiment.polarity

Output

0.5

368 | Chapter 10: Natural Language Processing

The sentiment for the statement is 0.5. We apply this on all headlines we have in the
data:

data_df['sentiment_textblob'] = [TextBlob(s).sentiment.polarity for s in \
data_df['headline']]

Let us inspect the scatterplot of the sentiments and returns to examine the correlation
between the two for all 10 stocks.

A plot for a single stock (APPL) is also shown in the following chart (see the code in
the Jupyter notebook in the GitHub repository for this book for more details on the
code):

From the scatterplots, we can see that there is not a strong relationship between the
news and the sentiments. The correlation between return and sentiments is positive
(4.27%), which means that news with positive sentiments leads to positive return and
is expected. However, the correlation is not very high. Even looking at the overall

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies | 369

scatterplot, we see the majority of the sentiments concentrated around zero. This
raises the question of whether a sentiment score trained on movie reviews is appro‐
priate for stock prices. The sentiment_assessments attribute lists the underlying val‐
ues for each token and can help us understand the reason for the overall sentiment of
a sentence:

text = "Bayer (OTCPK:BAYRY) started the week up 3.5% to €74/share\
in Frankfurt, touching their highest level in 14 months, after the\
U.S. government said a $25M glyphosate decision against the company\
should be reversed."
TextBlob(text).sentiment_assessments

Output

Sentiment(polarity=0.5, subjectivity=0.5, assessments=[(['touching'], 0.5, 0.5, \
None)])

We see that the statement has a positive sentiment of 0.5, but it appears the word
“touching” gave rise to the positive sentiment. More intuitive words, such as “high,”
do not. This example shows that the context of the training data is important for the
sentiment score to be meaningful. There are many predefined packages and functions
available for sentiment analysis, but it is important to be careful and have a thorough
understanding of the problem’s context before using a function or an algorithm for
sentiment analysis.

For this case study, we may need sentiments trained on the financial news. Let us take
a look at that in the next step.

4.2. Supervised learning—classification algorithms and LSTM
In this step, we develop a customized model for sentiment analysis based on available
labeled data. The label data for this is obtained from the Kaggle website:

sentiments_data = pd.read_csv(r'Data\LabelledNewsData.csv', \
encoding="ISO-8859-1")
sentiments_data.head(1)

Output

datetime headline ticker sentiment
0 1/16/2020 5:25 $MMM fell on hard times but could be set to re… MMM 0

1 1/11/2020 6:43 Wolfe Research Upgrades 3M $MMM to ¡§Peer Perf… MMM 1

The data has headlines for the news across 30 different stocks, totaling 9,470 rows,
and has sentiments labeled zero and one. We perform the classification steps using
the classification model development template presented in Chapter 6.

In order to run a supervised learning model, we first need to convert the news head‐
lines into a feature representation. For this exercise, the underlying vector

370 | Chapter 10: Natural Language Processing

https://www.kaggle.com

5 Refer to Chapter 5 for more details on RNN models.

representations come from a spaCy word embedding model, which generally produces
a dense, multidimensional semantic representation of words (as shown in the exam‐
ple below). The word embedding model includes 20,000 unique vectors with 300
dimensions. We apply this on all headlines in the data processed in the previous step:

all_vectors = pd.np.array([pd.np.array([token.vector for token in nlp(s)]).\
mean(axis=0)*pd.np.ones((300))\
 for s in sentiments_data['headline']])

Now that we have prepared the independent variable, we train the classification
model in a similar manner as discussed in Chapter 6. We have the sentiments label
zero or one as the dependent variable. We first divide the data into training and test
sets and run the key classification models (i.e., logistic regression, CART, SVM, ran‐
dom forest, and artificial neural network).

We will also include LSTM, which is an RNN-based model,5 in the list of models con‐
sidered. An RNN-based model performs well for NLP, because it stores the informa‐
tion for current features as well neighboring ones for prediction. It maintains a
memory based on past information, which enables the model to predict the current
output conditioned on long distance features and looks at the words in the context of
the entire sentence, rather than simply looking at the individual words.

For us to be able to feed the data into our LSTM model, all input documents must
have the same length. We use the Keras tokenizer function to tokenize the strings
and then use texts_to_sequences to make sequences of words. More details can be
found on the Keras website. We will limit the maximum review length to max_words
by truncating longer reviews and pad shorter reviews with a null value (0). We can
accomplish this using the pad_sequences function, also in Keras. The third parame‐
ter is the input_length (set to 50), which is the length of each comment sequence:

Create sequence
vocabulary_size = 20000
tokenizer = Tokenizer(num_words= vocabulary_size)
tokenizer.fit_on_texts(sentiments_data['headline'])
sequences = tokenizer.texts_to_sequences(sentiments_data['headline'])
X_LSTM = pad_sequences(sequences, maxlen=50)

In the following code snippet, we use the Keras library to build an artificial neural
network classifier based on an underlying LSTM model. The network starts with an
embedding layer. This layer lets the system expand each token to a larger vector,
allowing the network to represent a word in a meaningful way. The layer takes 20,000
as the first argument (i.e., the size of our vocabulary) and 300 as the second input
parameter (i.e., the dimension of the embedding). Finally, given that this is a classifi‐
cation problem and the output needs to be labeled as zero or one, the

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies | 371

https://oreil.ly/2YS-P

KerasClassifier function is used as a wrapper over the LSTM model to produce a
binary (zero or one) output:

from keras.wrappers.scikit_learn import KerasClassifier
def create_model(input_length=50):
 model = Sequential()
 model.add(Embedding(20000, 300, input_length=50))
 model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
 model.add(Dense(1, activation='sigmoid'))
 model.compile(loss='binary_crossentropy', optimizer='adam', \
 metrics=['accuracy'])
 return model
model_LSTM = KerasClassifier(build_fn=create_model, epochs=3, verbose=1, \
 validation_split=0.4)
model_LSTM.fit(X_train_LSTM, Y_train_LSTM)

The comparison of all the machine learning models is as follows:

As expected, the LSTM model has the best performance in the test set (accuracy of
96.7%) as compared to all other models. The performance of the ANN, with a train‐
ing set accuracy of 99% and a test set accuracy of 93.8%, is comparable to the LSTM-
based model. The performances of random forest (RF), SVM, and logistic regression
(LR) are reasonable as well. CART and KNN do not perform as well as other models.
CART shows high overfitting. Let us use the LSTM model for the computation of the
sentiments in the data in the following steps.

4.3. Unsupervised—model based on a financial lexicon
In this case study, we update the VADER lexicon with words and sentiments from a
lexicon adapted to stock market conversations in microblogging services:

372 | Chapter 10: Natural Language Processing

6 The source of this lexicon is Nuno Oliveira, Paulo Cortez, and Nelson Areal, “Stock Market Sentiment Lexi‐
con Acquisition Using Microblogging Data and Statistical Measures,” Decision Support Systems 85 (March
2016): 62–73.

Lexicons
Special dictionaries or vocabularies that have been created for analyzing senti‐
ments. Most lexicons have a list of positive and negative polar words with some
score associated with them. Using various techniques, such as the position of
words, the surrounding words, context, parts of speech, and phrases, scores are
assigned to the text documents for which we want to compute the sentiment.
After aggregating these scores, we get the final sentiment:

VADER (Valence Aware Dictionary for Sentiment Reasoning)
A prebuilt sentiment analysis model included in the NLTK package. It can give
both positive and negative polarity scores as well as the strength of the emotion
of a text sample. It is rule-based and relies heavily on human-rated texts. These
are words or any textual form of communication labeled according to their
semantic orientation as either positive or negative.

This lexical resource was automatically created using diverse statistical measures and
a large set of labeled messages from StockTwits, which is a social media platform
designed for sharing ideas among investors, traders, and entrepreneurs.6 The senti‐
ments are between –1 and 1, similar to the sentiments from TextBlob. In the follow‐
ing code snippet, we train the model based on the financial sentiments:

stock market lexicon
sia = SentimentIntensityAnalyzer()
stock_lex = pd.read_csv('Data/lexicon_data/stock_lex.csv')
stock_lex['sentiment'] = (stock_lex['Aff_Score'] + stock_lex['Neg_Score'])/2
stock_lex = dict(zip(stock_lex.Item, stock_lex.sentiment))
stock_lex = {k:v for k,v in stock_lex.items() if len(k.split(' '))==1}
stock_lex_scaled = {}
for k, v in stock_lex.items():
 if v > 0:
 stock_lex_scaled[k] = v / max(stock_lex.values()) * 4
 else:
 stock_lex_scaled[k] = v / min(stock_lex.values()) * -4

final_lex = {}
final_lex.update(stock_lex_scaled)
final_lex.update(sia.lexicon)
sia.lexicon = final_lex

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies | 373

Let us check the sentiment of a news item:

text = "AAPL is trading higher after reporting its October sales\
rose 12.6% M/M. It has seen a 20%+ jump in orders"

sia.polarity_scores(text)['compound']

Output

0.4535

We get the sentiments for all the news headlines based in our dataset:

vader_sentiments = pd.np.array([sia.polarity_scores(s)['compound']\
 for s in data_df['headline']])

Let us look at the relationship between the returns and sentiments, which is compu‐
ted using the lexicon-based methodology for the entire dataset.

There are not many instances of high returns for lower sentiment scores, but the data
may not be very clear. We will look deeper into the comparison of different types of
sentiment analysis in the next section.

4.4. Exploratory data analysis and comparison
In this section, we compare the sentiments computed using the different techniques
presented above. Let us look at the sample headlines and the sentiments from three
different methodologies, followed by a visual analysis:

374 | Chapter 10: Natural Language Processing

ticker headline sentiment_textblob sentiment_LSTM sentiment_lex
4620 TSM TSMC (TSM +1.8%) is trading higher after

reporting its October sales rose 12.6% M/M.
DigiTimes adds TSMC has seen a 20%+ jump
in orders from QCOM, NVDA, SPRD, and
Mediatek. The numbers suggest TSMC could
beat its Q4 guidance (though December tends
to be weak), and that chip demand could be
stabilizing after getting hit hard by inventory
corrections. (earlier) (UMC sales)

0.036667 1 0.5478

Looking at one of the headlines, the sentiment from this sentence is positive. How‐
ever, the TextBlob sentiment result is smaller in magnitude, suggesting that the senti‐
ment is more neutral. This points back to the previous assumption that the model
trained on movie sentiments likely will not be accurate for stock sentiments. The
classification-based model correctly suggests the sentiment is positive, but it is
binary. Sentiment_lex has a more intuitive output with a significantly positive
sentiment.

Let us review the correlation of all the sentiments from different methodologies ver‐
sus returns:

All sentiments have positive relationships with the returns, which is intuitive and
expected. The sentiments from the lexicon methodology are highest, which means
the stock’s event return can be predicted the best using the lexicon methodology.
Recall that this methodology leverages financial terms in the model. The LSTM-based
method also performs better than the TextBlob approach, but the performance is
slightly worse compared to the lexicon-based methodology.

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies | 375

Let us look at the performance of the methodology at the ticker level. We chose a few
tickers with the highest market cap for the analysis:

Looking at the chart, the correlation from the lexicon methodology is highest across
all stock tickers, which corroborates the conclusion from the previous analysis. It
means the returns can be predicted the best using the lexicon methodology. The
TextBlob-based sentiments show unintuitive results in some cases, such as with JPM.

376 | Chapter 10: Natural Language Processing

Let us look at the scatterplot for lexicon versus TextBlob methodologies for AMZN
and GOOG. We will set the LSTM-based method aside since the binary sentiments
will not be meaningful in the scatterplot:

The lexicon-based sentiments on the left show a positive relationship between the
sentiments and returns. Some of the points with the highest returns are associated
with the most positive news. Also, the scatterplot is more uniformly distributed in the
case of lexicon as compared to TextBlob. The sentiments for TextBlob are concentra‐
ted around zero, probably because the model is not able to categorize financial senti‐
ments well. For the trading strategy, we will be using the lexicon-based sentiments, as
these are the most appropriate based on the analysis in this section. The LSTM-based
sentiments are good as well, but they are labeled either zero or one. The more granu‐
lar lexicon-based sentiments are preferred.

5. Models evaluation—building a trading strategy
The sentiment data can be used in several ways for building a trading strategy. The
sentiments can be used as a stand-alone signal to decide buy, sell, or hold actions.
The sentiment score or the word vectors can also be used to predict the return or
price of a stock. That prediction can be used to build a trading strategy.

In this section, we demonstrate a trading strategy in which we buy or sell a stock
based on the following approach:

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies | 377

• Buy a stock when the change in sentiment score (current sentiment score/previ‐
ous sentiment score) is greater than 0.5. Sell a stock when the change in senti‐
ment score is less than –0.5. The sentiment score used here is based on the
lexicon-based sentiments computed in the previous step.

• In addition to the sentiments, we use moving average (based on the last 15 days)
while making a buy or sell decision.

• Trades (i.e., buy or sell) are in 100 shares. The initial amount available for trading
is set to $100,000.

The strategy threshold, the lot size, and the initial capital can be tweaked depending
on the performance of the strategy.

5.1. Setting up a strategy. To set up the trading strategy, we use backtrader, which is a
convenient Python-based framework for implementing and backtesting trading
strategies. Backtrader allows us to write reusable trading strategies, indicators, and
analyzers instead of having to spend time building infrastructure. We use the Quick‐
start code in the backtrader documentation as a base and adapt it to our sentiment-
based trading strategy.

The following code snippet summarizes the buy and sell logic for the strategy. Refer
to the Jupyter notebook of this case study for the detailed implementation:

buy if current close more than simple moving average (sma)
AND sentiment increased by >= 0.5
if self.dataclose[0] > self.sma[0] and self.sentiment - prev_sentiment >= 0.5:
 self.order = self.buy()

sell if current close less than simple moving average(sma)
AND sentiment decreased by >= 0.5
if self.dataclose[0] < self.sma[0] and self.sentiment - prev_sentiment <= -0.5:
 self.order = self.sell()

5.2. Results for individual stocks. First, we run our strategy on GOOG and look at the
results:

ticker = 'GOOG'
run_strategy(ticker, start = '2012-01-01', end = '2018-12-12')

The output shows the trading log for some of the days and the final return:

Output

Starting Portfolio Value: 100000.00
2013-01-10, Previous Sentiment 0.08, New Sentiment 0.80 BUY CREATE, 369.36
2014-07-17, Previous Sentiment 0.73, New Sentiment -0.22 SELL CREATE, 572.16
2014-07-18, OPERATION PROFIT, GROSS 22177.00, NET 22177.00
2014-07-18, Previous Sentiment -0.22, New Sentiment 0.77 BUY CREATE, 593.45
2014-09-12, Previous Sentiment 0.66, New Sentiment -0.05 SELL CREATE, 574.04

378 | Chapter 10: Natural Language Processing

https://oreil.ly/lyYs4
https://oreil.ly/lyYs4

7 Refer to the plotting section of the backtrader website for more details on the backtrader’s charts and the
panels.

2014-09-15, OPERATION PROFIT, GROSS -1876.00, NET -1876.00
2015-07-17, Previous Sentiment 0.01, New Sentiment 0.90 BUY CREATE, 672.93
.
.
.
2018-12-11, Ending Value 149719.00

We analyze the backtesting result in the following plot produced by the backtrader
package. Refer to the Jupyter notebook of this case study for the detailed version of
this chart.

The results show an overall profit of $49,719. The chart is a typical chart7 produced
by the backtrader package and is divided into four panels:

Top panel
The top panel is the cash value observer. It keeps track of the cash and the total
portolio value during the life of the backtesting run. In this run, we started with
$100,000 and ended with $149,719.

Second panel
This panel is the trade observer. It shows the realized profit/loss of each trade. A
trade is defined as opening a position and taking the position back to zero

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies | 379

https://oreil.ly/j2pT0

(directly or crossing over from long to short or short to long). Looking at this
panel, five out of eight trades are profitable for the strategy.

Third panel
This panel is buy sell observer. It indicates where buy and sell operations have
taken place. In general, we see that the buy action takes place when the stock
price is increasing, and the sell action takes place when the stock price has started
declining.

Bottom panel
This panel shows the sentiment score, varying between –1 and 1.

Now we choose one of the days (2015-07-17) when a buy action was triggered and
analyze the news for Google on that and the previous day:

GOOG_ticker= data_df[data_df['ticker'].isin([ticker])]
New= list(GOOG_ticker[GOOG_ticker['date'] == '2015-07-17']['headline'])
Old= list(GOOG_ticker[GOOG_ticker['date'] == '2015-07-16']['headline'])
print("Current News:",New,"\n\n","Previous News:", Old)

Output

Current News: ["Axiom Securities has upgraded Google (GOOG +13.4%, GOOGL +14.8%)
to Buy following the company's Q2 beat and investor-pleasing comments about
spending discipline, potential capital returns, and YouTube/mobile growth. MKM
has launched coverage at Buy, and plenty of other firms have hiked their targets.
Google's market cap is now above $450B."]

Previous News: ["While Google's (GOOG, GOOGL) Q2 revenue slightly missed
estimates when factoring traffic acquisitions costs (TAC), its ex-TAC revenue of
$14.35B was slightly above a $14.3B consensus. The reason: TAC fell to 21% of ad
revenue from Q1's 22% and Q2 2014's 23%. That also, of course, helped EPS beat
estimates.", 'Google (NASDAQ:GOOG): QC2 EPS of $6.99 beats by $0.28.']

Clearly, the news on the selected day mentions the upgrade of Google, a piece of posi‐
tive news. The previous day mentions the revenue missing estimates, which is nega‐
tive news. Hence, there was a significant change of the news sentiment on the
selected day, resulting in a buy action triggered by the trading algorithm.

Next, we run the strategy for FB:

ticker = 'FB'
run_strategy(ticker, start = '2012-01-01', end = '2018-12-12')

Output

Start Portfolio value: 100000.00
Final Portfolio Value: 108041.00
Profit: 8041.00

380 | Chapter 10: Natural Language Processing

The details of the backtesting results of the strategy are as follows:

Top panel
The cash value panel shows an overall profit of $8,041.

Second panel
The trade observer panel shows that six out of seven actions were profitable.

Third panel
The buy/sell observer shows that in general the buy (sell) action took place when
the stock price was increasing (decreasing).

Bottom panel
It shows a high number of positive sentiments for FB around the 2013–2014
period.

5.3. Results for multiple stocks. In the previous step, we executed the trading strategy
on individual stocks. Here, we run it on all 10 stocks for which we computed the
sentiments:

results_tickers = {}
for ticker in tickers:
 results_tickers[ticker] = run_strategy(ticker, start = '2012-01-01', \
 end = '2018-12-12')
pd.DataFrame.from_dict(results_tickers).set_index(\
 [pd.Index(["PerUnitStartPrice", StrategyProfit'])])

Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies | 381

Output

The strategy performs quite well and yields an overall profit for all the stocks. As
mentioned before, the buy and sell actions are performed in a lot size of 100. Hence,
the dollar amount used is proportional to the stock price. We see the highest nominal
profit from AMZN and GOOG, which is primarily attributed to the high dollar
amounts invested for these stocks given their high stock price. Other than overall
profit, several other metrics, such as Sharpe ratio and maximum drawdown, can be
used to analyze the performance.

5.4. Varying the strategy time period
In the previous analysis, we used the time period from 2011 to 2018 for our backtest‐
ing. In this step, to further analyze the effectiveness of our strategy, we vary the time
period of the backtesting and analyze the results. First, we run the strategy for all the
stocks for the time period between 2012 and 2014:

results_tickers = {}
for ticker in tickers:
 results_tickers[ticker] = run_strategy(ticker, start = '2012-01-01', \
 end = '2014-12-31')

Output

The strategy yields an overall profit for all the stocks except AMZN and WMT. Now
we run the strategy between 2016 and 2018:

results_tickers = {}
for ticker in tickers:
 results_tickers[ticker] = run_strategy(ticker, start = '2016-01-01', \
 end = '2018-12-31')

Output

382 | Chapter 10: Natural Language Processing

We see a good performance of the sentiment-based strategy across all the stocks
except AAPL, and we can conclude that it performs quite well on different time peri‐
ods. The strategy can be adjusted by modifying the trading rules or lot sizes. Addi‐
tional metrics can also be used to understand the performance of the strategy. The
sentiments can also be used along with the other features, such as correlated variables
and technical indicators for prediction.

Conclusion
In this case study, we looked at various ways in which unstructured data can be con‐
verted to structured data and then used for analysis and prediction using tools for
NLP. We have demonstrated three different approaches, including deep learning
models to develop a model for computing the sentiments. We performed a compari‐
son of the models and concluded that one of the most important steps in training the
model for sentiment analysis is using a domain-specific vocabulary.

We also used a pretrained English model by spaCy to convert a sentence into senti‐
ments and used the sentiments as signals to develop a trading strategy. The initial
results suggested that the model trained on a financial lexicon–based sentiment could
prove to be a viable model for a trading strategy. Additional improvements to this
can be made by using more complex pretrained sentiment analysis models, such as
BERT by Google, or different pretrained NLP models available in open source plat‐
forms. Existing NLP libraries fill in some of the preprocessing and encoding steps to
allow us to focus on the inference step.

We could build on the trading strategy by including more correlated variables, tech‐
nical indicators, or even improved sentiment analysis by using more sophisticated
preprocessing steps and models based on more relevant financial text data.

Case Study 2: Chatbot Digital Assistant
Chatbots are computer programs that maintain a conversation with a user in natural
language. They can understand the user’s intent and send responses based on an
organization’s business rules and data. These chatbots use deep learning and NLP to
process language, enabling them to understand human speech.

Chatbots are increasingly being implemented across many domains for financial
services. Banking bots enable consumers to check their balance, transfer money, pay
bills, and more. Brokering bots enable consumers to find investment options, make
investments, and track balances. Customer support bots provide instant responses,
dramatically increasing customer satisfaction. News bots deliver personalized current
events information, while enterprise bots enable employees to check leave balance,
file expenses, check their inventory balance, and approve transactions. In addition to

Case Study 2: Chatbot Digital Assistant | 383

automating the process of assisting customers and employees, chatbots can help
financial institutions gain information about their customers. The bot phenomenon
has the potential to cause broad disruption in many areas within the finance sector.

Depending on the way bots are programmed, we can categorize chatbots into two
variants:

Rule-based
This variety of chatbots is trained according to rules. These chatbots do not learn
through interactions and may sometimes fail to answer complex queries outside
of the defined rules.

Self-learning
This variety of bots relies on ML and AI technologies to converse with users.
Self-learning chatbots are further divided into retrieval-based and generative:

Retrieval-based
These chatbot are trained to rank the best response from a finite set of prede‐
fined responses.

Generative
These chatbots are not built with predefined responses. Instead, they are
trained using a large number of previous conversations. They require a very
large amount of conversational data to train.

In this case study, we will prototype a self-learning chatbot that can answer financial
questions.

This case study focuses on:

• Building a customized logic and rules parser using NLP for a chatbot.
• Understanding the data preparation required for building a chatbot.
• Understanding the basic building blocks of a chatbot.
• Leveraging available Python packages and corpuses to train a chatbot in a few

lines of code.

384 | Chapter 10: Natural Language Processing

Blueprint for Creating a Custom Chatbot Using NLP

1. Problem definition
The goal of this case study is to build a basic prototype of a conversational chatbot
powered by NLP. The primary purpose of this chatbot is to help a user retrieve a
financial ratio about a particular company. Such chatbots are designed to quickly
retrieve the details about a stock or an instrument that may help the user make a
trading decision.

In addition to retrieving a financial ratio, the chatbot could also engage in casual con‐
versations with a user, perform basic mathematical calculations, and provide answers
to questions from a list used to train it. We intend to use Python packages and func‐
tions for chatbot creation and to customize several components of the chatbot archi‐
tecture to adapt to our requirements.

The chatbot prototype created in this case study is designed to understand user
inputs and intention and retrieve the information they are seeking. It is a small proto‐
type that could be enhanced for use as an information retrieval bot in banking, bro‐
kering, or customer support.

2. Getting started—loading the libraries
For this case study, we will use two text-based libraries: spaCy and ChatterBot. spaCy
has been previously introduced; ChatterBot is a Python library used to create simple
chatbots with minimal programming required.

An untrained instance of ChatterBot starts off with no knowledge of how to commu‐
nicate. Each time a user enters a statement, the library saves the input and response
text. As ChatterBot receives more inputs, the number of responses it can offer and
the accuracy of those responses increase. The program selects the response by search‐
ing for the closest matching known statement to the input. It then returns the most
likely response to that statement based on how frequently each response is issued by
the people the bot communicates with.

2.1. Load libraries. We import spaCy using the following Python code:

import spacy #Custom NER model.
from spacy.util import minibatch, compounding

Case Study 2: Chatbot Digital Assistant | 385

https://oreil.ly/_1DPE

The ChatterBot library has the modules LogicAdapter, ChatterBotCorpusTrainer,
and ListTrainer. These modules are used by our bot in order to construct responses
to user queries. We begin by importing the following:

from chatterbot import ChatBot
from chatterbot.logic import LogicAdapter
from chatterbot.trainers import ChatterBotCorpusTrainer
from chatterbot.trainers import ListTrainer

Other libraries used in this exercise are as follows:

import random
from itertools import product

Before we move to the customized chatbot, let us develop a chatbot using the default
features of the ChatterBot package.

3. Training a default chatbot
ChatterBot and many other chatbot packages come with a data utility module that
can be used to train chatbots. Here are the ChatterBot components we will be using:

Logic adapters
Logic adapters determine the logic for how ChatterBot selects a response to a
given input statement. It is possible to enter any number of logic adapters for
your bot to use. In the example below, we are using two inbuilt adapters: Best‐
Match, which returns the best known responses, and MathematicalEvaluation,
which performs mathematical operations.

Preprocessors
ChatterBot’s preprocessors are simple functions that modify the input statement
a chatbot receives before the statement gets processed by the logic adapter. The
preprocessors can be customized to perform different preprocessing steps, such
as tokenization and lemmatization, in order to have clean and processed data. In
the example below, the default preprocessor for cleaning white spaces,
clean_whitespace, is used.

Corpus training
ChatterBot comes with a corpus data and utility module that makes it easy to
quickly train the bot to communicate. We use the already existing corpuses
english, english.greetings, and english.conversations for training the chatbot.

List training
Just like the corpus training, we train the chatbot with the conversations that can
be used for training using ListTrainer. In the example below, we have trained the
chatbot using some sample commands. The chatbot can be trained using a sig‐
nificant amount of conversation data.

386 | Chapter 10: Natural Language Processing

chatB = ChatBot("Trader",
 preprocessors=['chatterbot.preprocessors.clean_whitespace'],
 logic_adapters=['chatterbot.logic.BestMatch',
 'chatterbot.logic.MathematicalEvaluation'])

Corpus Training
trainerCorpus = ChatterBotCorpusTrainer(chatB)

Train based on English Corpus
trainerCorpus.train(
 "chatterbot.corpus.english"
)
Train based on english greetings corpus
trainerCorpus.train("chatterbot.corpus.english.greetings")

Train based on the english conversations corpus
trainerCorpus.train("chatterbot.corpus.english.conversations")

trainerConversation = ListTrainer(chatB)
Train based on conversations

List training
trainerConversation.train([
 'Help!',
 'Please go to google.com',
 'What is Bitcoin?',
 'It is a decentralized digital currency'
])

You can train with a second list of data to add response variations
trainerConversation.train([
 'What is Bitcoin?',
 'Bitcoin is a cryptocurrency.'
])

Once the chatbot is trained, we can test the trained chatbot by having the following
conversation:

>Hi
How are you doing?

>I am doing well.
That is good to hear

>What is 78964 plus 5970
78964 plus 5970 = 84934

>what is a dollar
dollar: unit of currency in the united states.

>What is Bitcoin?
It is a decentralized digital currency

Case Study 2: Chatbot Digital Assistant | 387

>Help!
Please go to google.com

>Tell me a joke
Did you hear the one about the mountain goats in the andes? It was "ba a a a d".

>What is Bitcoin?
Bitcoin is a cryptocurrency.

In this example, we see a chatbot that gives an intuitive reply in response to the input.
The first two responses are due to the training on the English greetings and English
conversation corpuses. Additionally, the responses to Tell me a joke and what is a
dollar are due to the training on the English corpus. The computation in the fourth
line is the result of the chatbot being trained on the MathematicalEvaluation logical
adapter. The responses to Help! and What is Bitcoin? are the result of the customized
list trainers. Additionally, we see two different replies to What is Bitcoin?, given that
we trained it using the list trainers.

Next, we move on to creating a chatbot designed to use a customized logical adapter
to give financial ratios.

4. Data preparation: Customized chatbot
We want our chatbot to be able to recognize and group subtly different inquiries. For
example, one might want to ask about the company Apple Inc. by simply referring to
it as Apple, and we would want to map it to a ticker—AAPL, in this case. Construct‐
ing commonly used phrases in order to refer to firms can be built by using a dictio‐
nary as follows:

companies = {
 'AAPL': ['Apple', 'Apple Inc'],
 'BAC': ['BAML', 'BofA', 'Bank of America'],
 'C': ['Citi', 'Citibank'],
 'DAL': ['Delta', 'Delta Airlines']
}

Similarly, we want to build a map for financial ratios:

ratios = {
 'return-on-equity-ttm': ['ROE', 'Return on Equity'],
 'cash-from-operations-quarterly': ['CFO', 'Cash Flow from Operations'],
 'pe-ratio-ttm': ['PE', 'Price to equity', 'pe ratio'],
 'revenue-ttm': ['Sales', 'Revenue'],
}

The keys of this dictionary can be used to map to an internal system or API. Finally,
we want the user to be able to request the phrase in multiple formats. Saying Get me
the [RATIO] for [COMPANY] should be treated similarly to What is the [RATIO] for
[COMPANY]? We build these sentence templates for our model to train on by build‐
ing a list as follows:

388 | Chapter 10: Natural Language Processing

string_templates = ['Get me the {ratio} for {company}',
 'What is the {ratio} for {company}?',
 'Tell me the {ratio} for {company}',
]

4.1. Data construction. We begin constructing our model by creating reverse
dictionaries:

companies_rev = {}
for k, v in companies.items():
 for ve in v:
 companies_rev[ve] = k
 ratios_rev = {}
 for k, v in ratios.items():
 for ve in v:
 ratios_rev[ve] = k
 companies_list = list(companies_rev.keys())
 ratios_list = list(ratios_rev.keys())

Next, we create sample statements for our model. We build a function that gives us a
random sentence structure, inquiring about a random financial ratio for a random
company. We will be creating a custom named entity recognition_ model in the
spaCy framework. This requires training the model to pick up the word or phrase in
a sample sentence. To train the spaCy model, we need to provide it with an example,
such as (Get me the ROE for Citi, {"entities”: [(11, 14, RATIO), (19, 23, COM‐
PANY)]}).

4.2. Training data. The first part of the training example is the sentence. The second is
a dictionary that consists of entities and the starting and ending index of the label:

N_training_samples = 100
def get_training_sample(string_templates, ratios_list, companies_list):
 string_template=string_templates[random.randint(0, len(string_templates)-1)]
 ratio = ratios_list[random.randint(0, len(ratios_list)-1)]
 company = companies_list[random.randint(0, len(companies_list)-1)]
 sent = string_template.format(ratio=ratio,company=company)
 ents = {"entities": [(sent.index(ratio), sent.index(ratio)+\
 len(ratio), 'RATIO'),
 (sent.index(company), sent.index(company)+len(company), \
 'COMPANY')]}
 return (sent, ents)

Let us define the training data:

TRAIN_DATA = [
get_training_sample(string_templates, ratios_list, companies_list) \
for i in range(N_training_samples)
]

Case Study 2: Chatbot Digital Assistant | 389

5. Model creation and training. Once we have the training data, we construct a blank
model in spaCy. spaCy’s models are statistical, and every decision they make—for
example, which part-of-speech tag to assign, or whether a word is a named entity—is
a prediction. This prediction is based on the examples the model has seen during
training. To train a model, you first need training data—examples of text and the
labels you want the model to predict. This could be a part-of-speech tag, a named
entity, or any other information. The model is then shown the unlabeled text and
makes a prediction. Because we know the correct answer, we can give the model feed‐
back on its prediction in the form of an error gradient of the loss function. This calcu‐
lates the difference between the training example and the expected output, as shown
in Figure 10-6. The greater the difference, the more significant the gradient, and the
more updates we need to make to our model.

Figure 10-6. Machine learning–based training in spaCy

nlp = spacy.blank("en")

Next, we create an NER pipeline to our model:

ner = nlp.create_pipe("ner")
nlp.add_pipe(ner)

Then we add the training labels that we use:

ner.add_label('RATIO')
ner.add_label('COMPANY')

5.1. Model optimization function
Now we start optimization of our models:

optimizer = nlp.begin_training()
move_names = list(ner.move_names)
pipe_exceptions = ["ner", "trf_wordpiecer", "trf_tok2vec"]
other_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions]
with nlp.disable_pipes(*other_pipes): # only train NER
 sizes = compounding(1.0, 4.0, 1.001)
 # batch up the examples using spaCy's minibatch
 for itn in range(30):
 random.shuffle(TRAIN_DATA)
 batches = minibatch(TRAIN_DATA, size=sizes)
 losses = {}

390 | Chapter 10: Natural Language Processing

 for batch in batches:
 texts, annotations = zip(*batch)
 nlp.update(texts, annotations, sgd=optimizer,
 drop=0.35, losses=losses)
 print("Losses", losses)

Training the NER model is akin to updating the weights for each token. The most
important step is to use a good optimizer. The more examples of our training data
that we provide spaCy, the better it will be at recognizing generalized results.

5.2. Custom logic adapter
Next, we build our custom logic adapter:

from chatterbot.conversation import Statement
class FinancialRatioAdapter(LogicAdapter):
 def __init__(self, chatbot, **kwargs):
 super(FinancialRatioAdapter, self).__init__(chatbot, **kwargs)
 def process(self, statement, additional_response_selection_parameters):
 user_input = statement.text
 doc = nlp(user_input)
 company = None
 ratio = None
 confidence = 0
 # We need exactly 1 company and one ratio
 if len(doc.ents) == 2:
 for ent in doc.ents:
 if ent.label_ == "RATIO":
 ratio = ent.text
 if ratio in ratios_rev:
 confidence += 0.5
 if ent.label_ == "COMPANY":
 company = ent.text
 if company in companies_rev:
 confidence += 0.5
 if confidence > 0.99: (its found a ratio and company)
 outtext = '''https://www.zacks.com/stock/chart\
 /{comanpy}/fundamental/{ratio} '''.format(ratio=ratios_rev[ratio]\
 , company=companies_rev[company])
 confidence = 1
 else:
 outtext = 'Sorry! Could not figure out what the user wants'
 confidence = 0
 output_statement = Statement(text=outtext)
 output_statement.confidence = confidence
 return output_statement

With this custom logic adapter, our chatbot will take each input statement and try to
recognize a RATIO and/or COMPANY using our NER model. If the model finds
exactly one COMPANY and exactly one RATIO, it constructs a URL to guide the
user.

Case Study 2: Chatbot Digital Assistant | 391

5.3. Model usage—training and testing
Now we begin using our chatbot by using the following import:

from chatterbot import ChatBot

We construct our chatbot by adding the FinancialRatioAdapter logical adapter that
we created above to the chatbot. Although the following code snippet only shows us
adding the FinancialRatioAdapter, note that other logical adapters, lists, and cor‐
puses used in the prior training of the chatbot are also included. Please refer to the
Jupyter notebook of the case study for more details.

chatbot = ChatBot(
 "My ChatterBot",
 logic_adapters=[
 'financial_ratio_adapter.FinancialRatioAdapter'
]
)

Now we test our chatbot using the following statements:

converse()

>What is ROE for Citibank?
https://www.zacks.com/stock/chart/C/fundamental/return-on-equity-ttm

>Tell me PE for Delta?
https://www.zacks.com/stock/chart/DAL/fundamental/pe-ratio-ttm

>What is Bitcoin?
It is a decentralized digital currency

>Help!
Please go to google.com

>What is 786940 plus 75869
786940 plus 75869 = 862809

>Do you like dogs?
Sorry! Could not figure out what the user wants

As shown above, the custom logic adapter for our chatbot finds a RATIO and/or
COMPANY in the sentence using our NLP model. If an exact pair is detected, the
model constructs a URL to guide the user to the answer. Additionally, other logical
adapters, such as mathematical evaluation, work as expected.

Conclusion
Overall, this case study provides an introduction to a number of aspects of chatbot
development.

392 | Chapter 10: Natural Language Processing

Using the ChatterBot library in Python allows us to build a simple interface to resolve
user inputs. To train a blank model, one must have a substantial training dataset. In
this case study, we looked at patterns available to us and used them to generate
training samples. Getting the right amount of training data is usually the hardest part
of constructing a custom chatbot.

This case study is a demo project, and significant enhancements can be made to each
component to extend it to a wide variety of tasks. Additional preprocessing steps can
be added to have cleaner data to work with. To generate a response from our bot for
input questions, the logic can be refined further to incorporate better similarity meas‐
ures and embeddings. The chatbot can be trained on a bigger dataset using more
advanced ML techniques. A series of custom logic adapters can be used to construct a
more sophisticated ChatterBot. This can be generalized to more interesting tasks,
such as retrieving information from a database or asking for more input from the
user.

Case Study 3: Document Summarization
Document summarization refers to the selection of the most important points and
topics in a document and arranging them in a comprehensive manner. As discussed
earlier, analysts at banks and other financial service organizations pore over, analyze,
and attempt to quantify qualitative data from news, reports, and documents. Docu‐
ment summarization using NLP can provide in-depth support in this analyzing and
interpretation. When tailored to financial documents, such as earning reports and
financial news, it can help analysts quickly derive key topics and market signals from
content. Document summarization can also be used to improve reporting efforts and
can provide timely updates on key matters.

In NLP, topic models (such as LDA, introduced earlier in the chapter) are the most
frequently used tools for the extraction of sophisticated, interpretable text features.
These models can surface key topics, themes, or signals from large collections of
documents and can be effectively used for document summarization.

In this case study, we will focus on:

• Implementing the LDA model for topic modeling.
• Understanding the necessary data preparation (i.e., converting a PDF for an

NLP-related problem).
• Topic visualization.

Case Study 3: Document Summarization | 393

Blueprint for Using NLP for Document Summarization

1. Problem definition
The goal of this case study is to effectively discover common topics from earnings call
transcripts of publicly traded companies using LDA. A core advantage of this techni‐
que compared to other approaches, is that no prior knowledge of the topics is
needed.

2. Getting started—loading the data and Python packages

2.1. Loading the Python packages. For this case study, we will extract the text from a
PDF. Hence, the Python library pdf-miner is used for processing the PDF files into a
text format. Libraries for feature extraction and topic modeling are also loaded. The
libraries for the visualization will be loaded later in the case study:

Libraries for pdf conversion

from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.converter import TextConverter
from pdfminer.layout import LAParams
from pdfminer.pdfpage import PDFPage
import re
from io import StringIO

Libraries for feature extraction and topic modeling

from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS

Other libraries

import numpy as np
import pandas as pd

3. Data preparation

The convert_pdf_to_txt function defined below pulls out all characters from a PDF
document except the images. The function simply takes in the PDF document,
extracts all characters from the document, and outputs the extracted text as a Python
list of strings:

def convert_pdf_to_txt(path):
 rsrcmgr = PDFResourceManager()

394 | Chapter 10: Natural Language Processing

 retstr = StringIO()
 laparams = LAParams()
 device = TextConverter(rsrcmgr, retstr, laparams=laparams)
 fp = open(path, 'rb')
 interpreter = PDFPageInterpreter(rsrcmgr, device)
 password = ""
 maxpages = 0
 caching = True
 pagenos=set()

 for page in PDFPage.get_pages(fp, pagenos,\
 maxpages=maxpages, password=password,caching=caching,\
 check_extractable=True):
 interpreter.process_page(page)

 text = retstr.getvalue()

 fp.close()
 device.close()
 retstr.close()
 return text

In the next step, the PDF is converted to text using the above function and saved in a
text file:

Document=convert_pdf_to_txt('10K.pdf')
f=open('Finance10k.txt','w')
f.write(Document)
f.close()
with open('Finance10k.txt') as f:
 clean_cont = f.read().splitlines()

Let us look at the raw document:

clean_cont[1:15]

Output

[' ',
 '',
 'SECURITIES AND EXCHANGE COMMISSION',
 ' ',
 '',
 'Washington, D.C. 20549',
 ' ',
 '',
 '\xa0',
 'FORM ',
 '\xa0',
 '',
 'QUARTERLY REPORT PURSUANT TO SECTION 13 OR 15(d) OF',
 ' ']

Case Study 3: Document Summarization | 395

The text extracted from the PDF document contains uninformative characters that
need to be removed. These characters reduce the effectiveness of our models as they
provide unnecessary count ratios. The following function uses a series of regular
expression (regex) searches as well as list comprehension to replace uninformative
characters with a blank space:

doc=[i.replace('\xe2\x80\x9c', '') for i in clean_cont]
doc=[i.replace('\xe2\x80\x9d', '') for i in doc]
doc=[i.replace('\xe2\x80\x99s', '') for i in doc]

docs = [x for x in doc if x != ' ']
docss = [x for x in docs if x != '']
financedoc=[re.sub("[^a-zA-Z]+", " ", s) for s in docss]

4. Model construction and training

The CountVectorizer function from the sklearn module is used with minimal
parameter tuning to represent the clean document as a document term matrix. This is
performed because our modeling requires that strings be represented as integers. The
CountVectorizer shows the number of times a word occurs in the list after the
removal of stop words. The document term matrix was formatted into a Pandas data‐
frame in order to inspect the dataset. This dataframe shows the word-occurrence
count of each term in the document:

vect=CountVectorizer(ngram_range=(1, 1),stop_words='english')
fin=vect.fit_transform(financedoc)

In the next step, the document term matrix will be used as the input data to the LDA
algorithm for topic modeling. The algorithm was fitted to isolate five distinct topic
contexts, as shown by the following code. This value can be adjusted depending on
the level of granularity one intends to obtain from the modeling:

lda=LatentDirichletAllocation(n_components=5)
lda.fit_transform(fin)
lda_dtf=lda.fit_transform(fin)

sorting=np.argsort(lda.components_)[:, ::-1]
features=np.array(vect.get_feature_names())

The following code uses the mglearn library to display the top 10 words within each
specific topic model:

import mglearn
mglearn.tools.print_topics(topics=range(5), feature_names=features,
sorting=sorting, topics_per_chunk=5, n_words=10)

Output

topic 1 topic 2 topic 3 topic 4 topic 5
-------- -------- -------- -------- --------
assets quarter loans securities value

396 | Chapter 10: Natural Language Processing

balance million mortgage rate total
losses risk loan investment income
credit capital commercial contracts net
period months total credit fair
derivatives financial real market billion
liabilities management estate federal equity
derivative billion securities stock september
allowance ended consumer debt december
average september backed sales table

Each topic in the table is expected to represent a broader theme. However, given that
we trained the model on only a single document, the themes across the topics may
not be very distinct from each other.

Looking at the broader theme, topic 2 discusses quarters, months, and currency units
related to asset valuation. Topic 3 reveals information on income from real estate,
mortgages, and related instrument. Topic 5 also has terms related to asset valuation.
The first topic references balance sheet items and derivatives. Topic 4 is slightly simi‐
lar to topic 1 and has words related to an investment process.

In terms of overall theme, topics 2 and 5 are quite distinct from the others. There
may also be some similarity between topics 1 and 4, based on the top words. In the
next section, we will try to understand the separation between these topics using the
Python library pyLDAvis.

5. Visualization of topics
In this section, we visualize the topics using different techniques.

5.1. Topic visualization. Topic visualization facilitates the evaluation of topic quality
using human judgment. pyLDAvis is a library that displays the global relationships
between topics while also facilitating their semantic evaluation by inspecting the
terms most closely associated with each topic and, inversely, the topics associated
with each term. It also addresses the challenge in which frequently used terms in a
document tend to dominate the distribution over words that define a topic.

Below, the pyLDAvis_ library is used to visualize the topic models:

from __future__ import print_function
import pyLDAvis
import pyLDAvis.sklearn

zit=pyLDAvis.sklearn.prepare(lda,fin,vect)
pyLDAvis.show(zit)

Case Study 3: Document Summarization | 397

Output

We notice that topics 2 and 5 are quite distant from each other. This is what we
observed in the section above from the overall theme and list of words under these
topics. Topics 1 and 4 are quite close, which validates our observation above. Such
close topics should be analyzed more intricately and might be combined if needed.
The relevance of the terms under each topic, as shown in the right panel of the chart,
can also be used to understand the differences. Topics 3 and 4 are relatively close as
well, although topic 3 is quite distant from the others.

5.2. Word cloud. In this step, a word cloud is generated for the entire document to
note the most recurrent terms in the document:

#Loading the additional packages for word cloud
from os import path
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud,STOPWORDS

#Loading the document and generating the word cloud
d = path.dirname(__name__)
text = open(path.join(d, 'Finance10k.txt')).read()

stopwords = set(STOPWORDS)
wc = WordCloud(background_color="black", max_words=2000, stopwords=stopwords)
wc.generate(text)

398 | Chapter 10: Natural Language Processing

plt.figure(figsize=(16,13))
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()

Output

The word cloud generally agrees with the results from the topic modeling, as recur‐
rent words, such as loan, real estate, third quarter, and fair value, are larger and
bolder.

By integrating the information from the steps above, we may come up with the list of
topics represented by the document. For the document in our case study, we see that
words like third quarter, first nine, and nine months occur quite frequently. In the
word list, there are several topics related to balance sheet items. So the document
might be a third-quarter financial balance sheet with all credit and assets values in
that quarter.

Conclusion
In this case study, we explored the use of topic modeling to gain insights into the
content of a document. We demonstrated the use of the LDA model, which extracts
plausible topics and allows us to gain a high-level understanding of large amounts of
text in an automated way.

We performed extraction of the text from a document in PDF format and performed
further data preprocessing. The results, alongside the visualizations, demonstrated
that the topics are intuitive and meaningful.

Case Study 3: Document Summarization | 399

Overall, the case study shows how machine learning and NLP can be applied across
many domains—such as investment analysis, asset modeling, risk management, and
regulatory compliance—to summarize documents, news, and reports in order to sig‐
nificantly reduce manual processing. Given this ability to quickly access and verify
relevant, filtered information, analysts may be able to provide more comprehensive
and informative reports on which management can base their decisions.

Chapter Summary
The field of NLP has made significant progress, resulting in technologies that have
and will continue to revolutionize how financial institutions operate. In the near
term, we are likely to see an increase in NLP-based technologies across different
domains of finance, including asset management, risk management, and process
automation. The adoption and understanding of NLP methodologies and related
infrastructure are very important for financial institutions.

Overall, the concepts in Python, machine learning, and finance presented in this
chapter through the case studies can be used as a blueprint for any other NLP-based
problem in finance.

Exercises
• Using the concepts from case study 1, use NLP-based techniques to develop a

trading strategy using Twitter data.
• In case study 1, use the word2vec word embedding method to generate the word

vectors and incorporate it into the trading strategy.
• Using the concepts from case study 2, test a few more logical adapters to the

chatbot.
• Using the concepts from case study 3, perform topic modeling on a set of finan‐

cial news articles for a given day and retrieve the key themes of the day.

400 | Chapter 10: Natural Language Processing

Index

A
accounting fraud, early use of NLP to detect,

347
accuracy (evaluation metric), 77
action

in reinforcement learning, 284
in trading, 287

action-value function (Q-value), 286
AdaGrad (adaptive gradient algorithm), 39
Adam (adaptive moment estimation), 39
adaptive boosting (AdaBoost), 68

advantages and disadvantages, 69
hyperparameters, 69
implementation in Python, 69

adaptive gradient algorithm (AdaGrad), 39
adjusted R² metric, 76
affinity propagation clustering, 242

grouping investors, 264
pairs trading, 254

agent (RL system)
definition, 9, 284
trading and, 287

agent class, 305-307
agglomerative hierarchical clustering, 241

(see also hierarchical clustering)
AI (artificial intelligence), defined, 6
algorithmic trading, 2
algorithms, comparing, 24
Amazon Web Services (AWS), 44
Anaconda, 15
ANNs (see artificial neural networks)
area under ROC curve (AUC), 78
ARIMA (autoregressive integrated moving

average) model, 91, 107, 110

artificial intelligence (AI), defined, 6
artificial neural networks (ANNs), 31-45

alternatives to running on CPU, 43
ANN-based supervised learning models, 71
architecture, 32-34
creating in Python, 40-44
derivative pricing with, 122
derivatives hedging with, 321-325
hyperparameters, 36-40
layers, 33
neurons, 32
reinforcement learning and, 292
running on cloud services, 44
running on GPU, 44
training, 34-36

asset price prediction, 4, 49
AUC (area under ROC curve), 78
autocorrelation, 88
automated trading systems (see algorithmic

trading)
automation, finance and, 3
autoregressive integrated moving average

(ARIMA) model (see ARIMA)

B
backpropagation, 35-36
backtesting

defined, 298
eigen portfolio, 214-216
hierarchical risk parity, 275-276

backtrader, 378
bag of words model, 356
bagging (bootstrap aggregation), 65
batch size, 40

Index | 401

Bellman equations, 288
Bellman optimality equation, 288
bias, defined, 73
bias-variance trade-off, 73
binary (decision) tree, 63
bitcoin trading: enhancing speed and accuracy,

227-236
data preparation, 228-230
evaluation of algorithms and models,

230-235
loading data and Python packages, 228

bitcoin trading: strategy, 179-190
data preparation, 181-185
data visualization, 184
evaluation of algorithms and models,

185-187
exploratory data analysis, 181
feature engineering, 182-184
finalizing the model, 187-190
loading data and Python packages, 180
model tuning and grid search, 187

Black–Scholes formula, 114
Black–Scholes model

for call option price, 115
reinforcement learning-based derivatives

hedging compared to, 325-332
bond market, yield curve and, 141
boosting, 65

C
CART (see classification and regression trees)
charge-off, 167
chatbots, 4, 383-393

data preparation for customized chatbot,
388

loading libraries, 385
model creation and training, 390-392
NLP case study, 383-393
rule-based versus self-learning, 384
training a default chatbot, 386-388

ChatterBot, 386
classification

defined, 8
evaluation metrics, 77
regression versus, 8, 49

classification and regression trees (CART),
63-65
advantages and disadvantages, 65
derivative pricing with, 122

hyperparameters, 65
implementation in Python, 65
learning a CART model, 63
pruning the tress, 64
representation, 63
stopping criterion, 64

clustering, 9, 237-277
affinity propagation, 242
defined, 9
dimensionality reduction versus, 237
hierarchical, 240-242
hierarchical risk parity (see hierarchical risk

parity)
investors (see clustering investors)
k-means, 239
pairs trading and (see pairs trading)
techniques, 239-243

clustering investors, 259-267
affinity propagation, 264
cluster intuition, 265
data preparation, 262
evaluation of algorithms and models,

263-265
exploratory data analysis, 261
k-means clustering, 263-264
loading data and Python packages, 261

cointegration, 257-259
comparison of algorithms, 24
comparison of models, 24
Conda, 15
confusion matrix, 78
cost functions, 38, 52
credit (see loan default probability)
credit card underwriting, 3
cross validation, 74
cross-entropy (log loss), 39
cumulative discounted reward, 285

D
dashboard, for robo-advisor, 138-140
data cleaning, steps in, 21
data preparation, steps in, 21
data science, defined, 7
data transformation, in model development, 23
data visualization, 19
data, sample code for loading, 17
datasets, splitting training/testing, 24
decision (binary) tree, 63

402 | Index

decision tree classifiers (see classification and
regression trees (CART))

deep learning
ANNs and, 31
defined, 6
reinforcement learning and, 292
RNNs and, 92
time series modeling with, 92-94

deep neural networks
ANN-based supervised learning models, 72
defined, 34

deep Q-network (DQN), 296
dendrograms, 241
deploying a model, 28
derivative pricing, 4, 114-125

data generation, 117
data preparation/analysis, 120
defining functions and parameters, 116
evaluation of models, 120-125
exploratory data analysis, 118
loading data and Python packages, 116-118
removing volatility data, 123
tuning/finalizing model, 122

derivatives hedging, 316-333
evaluation of algorithms and models,

321-325
exploratory data analysis, 320
generating data, 319
loading Python packages, 319
policy gradient script, 321-324
testing the data, 325-332
training the data, 325

descriptive statistics, in model development, 18
deterministic policy, 285
dimensionality reduction, 195-236

bitcoin trading (see bitcoin trading: enhanc‐
ing speed and accuracy)

clustering versus, 237
defined, 8, 195
kernel PCA, 201
principal component analysis (PCA),

198-201
t-distributed stochastic neighbor embed‐

ding, 202
techniques, 197-202
yield curve construction (see yield curve

construction/interest rate modeling)
direct policy search, 293
discounting factor, 285

divisive hierarchical clustering, 241
document summarization, 393-400

data preparation, 394-396
loading data and Python packages, 394
model construction and training, 396
visualization of topics, 397-399

document term matrix, 396
DQN (deep Q-network), 296
drift, 330

E
Eigen decomposition, 199
eigen portfolio, 202-217

backtesting, 214-216
data preparation, 205
evaluation of algorithms and models,

207-216
exploratory data analysis, 204
loading data and Python packages, 203
Sharpe ratio to determine best portfolio,

210-213
elastic net (EN), 56, 106
elbow method (k-means clustering), 247
ensemble models (supervised learning), 65-71

adaptive boosting, 68
extra trees, 68
gradient boosting method, 70
random forest, 66-67

environment
reinforcement learning, 284
trading and, 287

epoch, 40
epsilon greedy algorithm, 307
epsilon variable, 313
error gradient, 390
Euclidean distance, 60
evaluation metrics, identifying, 24
evaluation of models, steps in, 23
event return, 367
experience replay, 296, 307
exploratory data analysis, in model develop‐

ment, 18-20
extra trees (extremely randomized trees), 68

F
feature engineering, 179
feature representation in NLP, 356-360

bag of words model, 356
TF-IDF, 358

Index | 403

word embedding, 358
feature selection, in model development, 22
finalizing a model, steps in, 27-28
financial news, sentiment analysis of, 5
fixed income market, yield curve and, 141
forward propagation, 34
fraud detection, 3, 153-165

data preparation, 156
evaluation of models, 156-159
exploratory data analysis, 155
loading data and Python packages, 154
model tuning, 159-165

future reward, 285

G
gamma, 313
gates, 93
generative chatbots, 384
gensim, 359
geometric Brownian motion (GBM), 114
Gini cost function, 64
Google Colaboratory, 44
gradient ascent, 298
gradient boosting method (GBM), 70

advantages and disadvantages, 71
hyperparameters, 70
implementation in Python, 70

gradient descent, 35
grid search, 25, 53
gym (simulation environment), 337

H
helper functions, 308
hidden layers, 34, 36
hierarchical clustering, 240-242, 251-254
hierarchical risk parity (HRP), 267-277

backtesting, 275-276
building hierarchy graph/dendrogram, 270
comparison against other asset allocation

methods, 273
data preparation, 269
evaluation of algorithms and models,

270-274
getting portfolio weights for all types of

asset allocation, 274
loading data and Python packages, 269
quasi-diagonalization, 271
recursive bisection, 272
stages of HRP algorithm, 271-274

HRP (see hierarchical risk parity)
hyperparameters

activation functions, 37
ANNs and, 36-40
batch size, 40
cost functions, 38
epoch, 40
learning rate, 36
model tuning and, 25
number of hidden layers and nodes, 36
optimizers, 39

I
inertia, 239
inference (natural language processing),

360-362
LDA implementation, 362
Naive Bayes approach, 360

input layer, ANN, 33
insurance underwriting, 3
intelligent investors, 128
intuition, model/variable, 28
investors, clustering (see clustering investors)

K
k-folds cross validation, 134
k-means clustering, 239

for pairs trading, 247-251
grouping investors, 263-264
hyperparameters, 240
implementation in Python, 240

k-nearest neighbors (KNN), 60
advantages and disadvantages, 61
hyperparameters, 61

Kaggle, running ANNs on, 44
Keras, 15, 40
kernel, 59
kernel PCA (KPCA), 201
KNN (see k-nearest neighbors)

L
L1 regularization, 55
L2 regularization, 56
lasso regression (LASSO), 55, 106
latent Dirichlet allocation (LDA), 360-362
latent semantic analysis (LSA), 360
layers, ANN, 33
LDA (latent Dirichlet allocation), 360-362

404 | Index

LDA (linear discriminant analysis), 62
learning rate, 36
lemmatization, 352
lexicons, defined, 373
linear (identity) function, 37
linear discriminant analysis (LDA), 62
linear regression, 52-54

advantages and disadvantages, 54
grid search, 53
implementation in Python, 52
regularized regression versus, 55
training a model, 52

linkage method, 251
loan default probability, 166-179

data preparation, 167-169
evaluation of algorithms and models, 175
feature selection, 169-175
finalizing the model, 177
loading data and Python packages, 167
model tuning and grid search, 177

loan underwriting, 3
log loss (cross-entropy), 39
logistic regression, 57

advantages and disadvantages, 58
hyperparameters, 58

long short-term memory (LSTM), 93
sentiment analysis, 370-372
stock price prediction, 108

loss (cost) functions, 38, 52
LSA (latent semantic analysis), 360

M
machine learning

defined, 6
supervised, 7
types of, 7-10

MAE (mean absolute error), 76
Manhattan distance, 61
Markov decision processes (MDPs), 289-292
Markowitz mean-variance portfolio optimiza‐

tion (see mean-variance portfolio (MVP)
optimization)

Matplotlib, 14
matrix seriation, 271
MDPs (Markov decision processes), 289-292
mean absolute error (MAE), 76
mean reversion, 243
mean squared error (MSE), 38, 76
mean-variance portfolio (MVP) optimization

hierarchical risk parity versus, 267-277
weaknesses of, 334

model development
data preparation, 21
data transformation, 23
exploratory data analysis, 18-20
feature selection, 22
finalizing the model, 27-28
identifying evaluation metrics, 24
loading data and packages, 17
model tuning, 25
performance on test set, 27
saving and deploying, 28
splitting training/testing datasets, 24

model evaluation, steps in, 23
model finalization, steps in, 27-28
model intuition, 28
model tuning, 25
model-based algorithms, 293
model-free algorithms, 293
momentum (MOM), 183
momentum optimizers, 39
momentum technical indicators, 182
money laundering, 5
moneyness, 116, 329
moving average, 182
MSE (mean squared error), 38, 76
multivariate plot types, Python code for, 20
MVP optimization (see mean-variance portfo‐

lio optimization)

N
naive Bayes

NLP and, 360
TextBlob and, 368

named entity recognition (NER), 353
natural language processing (NLP), 347-400

chatbot digital assistant (see chatbots)
defined, 10
feature representation, 356-360
inference, 360-362
lemmatization, 352
named entity recognition (NER), 353
NLTK library, 349
PoS tagging, 353
preprocessing, 351-355
Python packages for, 349
spaCy library, 350, 354-355
stemming, 352

Index | 405

stop words removal, 351
TextBlob library, 349
theory and concepts, 350-362
tokenization, 351

NER (named entity recognition), 353
neuron weights, 34
neurons, 32
NLP (see natural language processing)
NLTK (Natural Language Took Kit), 349

stemming code, 352
stop words removal, 351
tokenizer, 351

nonparametric models, 84
normalization, 23
NumPy, 14

O
OpenAI gym, 337
optimizers, 39
ordinary least squares (OLS) regression, 52-54

(see also linear regression)
output layer, ANN, 34
overfitting, 54, 73

P
P (transition probability function), 286
pairs trading, 243-259

affinity propagation, 254
cluster evaluation, 255-257
data preparation, 245
defined, 237
evaluation of algorithms and models,

247-257
exploratory data analysis, 245
hierarchical clustering, 251-254
k-means clustering, 247-251
loading data and Python packages, 244
pairs selection, 257-259

Pandas, 14
parameter optimization, 298
parametric models, 84
part-of-speech (PoS) tagging, 353
partially observable Markov decision process

(POMDP), 288
PCA (see principal component analysis)
pickle module, 28
pip, 15
policy development, 298
policy gradient, 297, 321-324

policy, defined, 285
policy-based algorithms, 293
POMDP (partially observable Markov decision

process), 288
portfolio allocation, 334-344

agent and cryptocurrency environment
script, 336

evaluation of algorithms and models,
336-341

exploratory data analysis, 336
loading data and Python packages, 335
testing the data, 342-344
training the data, 338-341

portfolio management
clustering investors (see clustering invest‐

ors)
hierarchical risk parity (see hierarchical risk

parity)
robo-advisors and, 2

portfolio weights, 208-210
PoS (part-of-speech) tagging, 353
precision (evaluation metric), 77
predicted value, 34
principal component analysis (PCA), 198-201

asset allocation, 207-216
bitcoin trading speed/accuracy enhance‐

ment, 231-233
Eigen decomposition, 199
singular value decomposition, 200
yield curve construction, 222-226

processing pipeline, 354
Python (generally), 13-29

advantages of using, 13
creating an artificial neural network model

in, 40-44
machine learning packages, 14
model development blueprint, 16-28
package installation, 15
steps for model development in Python eco‐

system, 15-28
Python, creating an ANN model in, 40-44

compiling the model, 42
evaluating the model, 43
fitting the model, 43
installing Keras and machine learning pack‐

ages, 40
model construction, 41

406 | Index

Q
Q-learning, 294
Q-value, 286
qualitative data, 348
quasi-diagonalization, 271

R
radial basis function (rbf), 201
random forest, 66-67

advantages and disadvantages, 67
hyperparameters, 67
implementation in Python, 67

random under-sampling, 161-165
rate of change (ROC), 182
rbf (radial basis function), 201
recall (evaluation metric), 78
rectified linear unit (ReLU) function, 37
recurrent neural networks (RNNs), 92

derivatives hedging with, 321
LSTM, 93

recursive binary splitting, 63
recursive bisection, 272
regex, 366
regression, 83-150

classification versus, 8, 49
defined, 8
supervised (see supervised regression)
time series models versus, 84

regularization, defined, 55
regularized regression, 55-57
reinforcement learning (RL), 281-345

artificial neural networks/deep learning, 292
Bellman equations, 288
components, 284-288
components in trading context, 287
deep Q-network, 296
defined, 9
derivatives hedging (see derivatives hedg‐

ing)
Markov decision processes, 289-292
model definition, 286
model-based algorithms, 293
model-free algorithms, 293
modeling framework, 288-293
models, 293-298
policy, 285
policy gradient method, 297
portfolio allocation (see portfolio allocation)
Q-learning, 294

Q-value, 286
SARSA, 295
shortcomings, 298
temporal difference learning, 292
theory and concepts, 283-283
trading strategy (see trading strategy,

reinforcement-learning based)
value function, 285

relative strength index (RSI), 182
ReLU (rectified linear unit) function, 37
rescaling, 23
residual sum of squares (RSS), 52
retrieval-based chatbots, 384
reward function, 287, 301
reward, defined, 284
ridge regression, 56
risk management, 4
risk tolerance and robo-advisor case study,

125-141
data preparation, 128-131
evaluation of models, 134
feature selection, 131-134
finalizing the model, 136
loading data and Python packages, 127
model tuning and grid search, 135
robo-advisor dashboard, 138-140

risk-free assets, 128
risky assets, 128
RL (see reinforcement learning)
RMSProp (root mean square propagation), 39
RNNs (see recurrent neural networks)
robo-advisors, 2

(see also risk tolerance and robo-advisor
case study)

ROC (rate of change), 182
root mean square propagation (RMSProp), 39
root mean squared error (RMSE), 24, 76
RSI (relative strength index), 182
RSS (residual sum of squares), 52
rule-based chatbots, 384
R² metric, 76

S
SARSA, 295
saving a model, 28
Scikit-learn, 14
SciPy, 14
Seaborn, 15
seasonal variation, 87

Index | 407

Securities and Exchange Commission (SEC),
347

self-learning chatbots, 384
sensitivity (recall), 78
sentiment analysis, 5
sentiment analysis-based trading strategies,

362-383
data preparation, 365-368
evaluating models for sentiment analysis,

368-377
exploratory data analysis and comparison,

374-377
loading data and Python packages, 365
models evaluation, 377-383
results for individual stocks, 378-381
results for multiple stocks, 381
setting up a strategy, 378
supervised learning: classification algo‐

rithms and LSTM, 370-372
unsupervised learning: model based on

financial lexicon, 373-374
varying the strategy time period, 382

Sequential model (Keras), 41
Sharpe radio, 210-213
sigmoid function, 37, 300
silhouette method (k-means clustering), 248
simulation environment, 337
singular value decomposition (SVD), 200,

231-233
sklearn, 14, 60, 67
spaCy, 350, 354-355

importing, 385
word embedding via, 359

standardization, 23
state (definition), 284, 300
state (value) function, 285
stationary time series, 89
StatsModels, 15
stemming, 352
stochastic oscillators, 182
stochastic policy, 285
stock price prediction, 95-113

data preparation, 103
data visualization, 100-102
descriptive statistics, 100
evaluation of models, 103-110
exploratory data analysis, 100-103
features useful for, 96
finalizing the model, 112

loading data, 99
loading Python packages, 98
model tuning and grid search, 110-112
time series analysis, 102

sum of squared residuals (RSS), 52
sum squared error, 64
supervised classification, 151-191

bitcoin trading strategy (see bitcoin trading:
strategy)

fraud detection (see fraud detection)
loan default probability (see loan default

probability)
selecting an evaluation metric for, 79

supervised learning, 49-82
ANN-based models, 71
classification, 151-191

(see also classification)
classification and regression trees, 63-65
classification metrics, 77
cross validation, 74
defined, 7, 49
ensemble models, 65-71
evaluation metrics, 75-79
factors for model selection, 79
hyperparameters, 62
k-nearest neighbors, 60
linear discriminant analysis, 62
linear regression, 52-54
logistic regression, 57
model performance, 73-79
model selection, 79-82
model trade-off, 81
overfitting/underfitting, 73
overview of models, 51-73
regression, 8
regularized regression, 55-57
selecting evaluation metric for supervised

regression, 76
support vector machine, 58-60

supervised regression
time series models versus, 84
yield curve prediction (see yield curve pre‐

diction)
support vector machine (SVM), 58-60

advantages and disadvantages, 60
hyperparameters, 60

SVD (singular value decomposition), 200,
231-233

408 | Index

T
t-distributed stochastic neighbor embedding (t-

SNE), 202, 233
tanh function, 37
temporal difference (TD) learning, 292

Q-learning and, 294
SARSA, 295

TensorFlow, 15
testing datasets, 24, 27
TextBlob, 349, 368-370
TF–IDF (term frequency–inverse document

frequency), 358
Theano, 15
time series (defined), 86
time series analysis (defined), 84
time series models

ARIMA, 91
autocorrelation, 88
basics, 86-95
deep learning approach to modeling, 92-94
differencing, 90
modifying data for supervised learning

model, 95
stationarity, 89
supervised regression versus, 84
time series components, 87
traditional models, 90-92

time series prediction, 72
tokenization, 351
topic modeling, LDA for, 362
topic visualization, 397
trade settlement, 5
trading strategy, reinforcement-learning based,

298-316
agent class, 305-307
data preparation, 303
evaluation of algorithms and models,

303-314
exploratory data analysis, 302
helper functions, 308
implementation steps and modules, 304
loading data and Python packages, 301
model tuning, 313
testing the data, 314-315
training the model, 308-313

training datasets, 24
training, for ANNs, 34-36

backpropagation, 35-36
forward propagation, 34

transition probability function (P), 286
trend, defined, 87
true positive rate (recall), 78
truncated SVD, 200, 231-233
tuning a model, 25

U
under-sampling, 161-165
underfitting, 73
underwriting, 3
univariate plot types, Python code for, 19
unsupervised learning

defined, 8, 195
LDA for topic modeling, 362

V
VADER (Valence Aware Dictionary for Senti‐

ment Reasoning), 373
value function, 285

Q-value and, 286
variable intuition, 28
variance, defined, 73
visualization of data, 19
volatility, 116

W
weights, neuron, 34
word cloud, 398
word embedding, 358

via spaCy, 359
via word2vec model, 359

Y
yield curve construction/interest rate modeling

case study, 217-227
data preparation, 220
data visualization, 219-220
evaluation of algorithms and models,

222-226
exploratory data analysis, 219-220
loading data and Python packages, 218

yield curve prediction, 141-149
data visualization, 144-146
evaluation of models, 146
exploratory data analysis, 144-146
loading data and Python packages, 143
model tuning and grid search, 147-149

Index | 409

About the Authors
Hariom Tatsat currently works as a vice president in the Quantitative Analytics
Division of an investment bank in New York. Hariom has extensive experience as a
quant in the areas of predictive modeling, financial instrument pricing, and risk man‐
agement in several global investment banks and financial organizations. He comple‐
ted his MS at UC Berkeley and his BE at IIT Kharagpur (India). Hariom has also
completed FRM (Financial Risk Manager) certification and CQF (Certificate in
Quantitative Finance) and is a candidate for CFA Level 3.

Sahil Puri works as a quantitative researcher. His work involves testing model
assumptions and finding strategies for multiple asset classes. Sahil has applied multi‐
ple statistical and machine learning–based techniques to a wide variety of problems.
Examples include generating text features, labeling curve anomalies, nonlinear risk
factor detection, and time series prediction. He completed his MS at UC Berkeley and
his BE at Delhi College of Engineering (India).

Brad Lookabaugh works as a VP of Portfolio Management at Union Home Owner‐
ship Investors, a real estate investment startup based in San Francisco. His work
focuses on the implementation of machine learning and investment decision models
in business processes, internal systems, and consumer-facing products. Similar to his
coauthors, Brad completed his MS in financial engineering at UC Berkeley.

Colophon
The animal on the cover of Machine Learning and Data Science Blueprints for
Finance is the common quail (Coturnix coturnix), a migratory bird that breeds in
Europe, Turkey, and central Asia to China, wintering in parts of southeast Asia and
across the continent of Africa.

The common quail is small and round, streaked brown with a white eyestripe and, in
males, a white chin. It has long wings to benefit its migratory nature, and is several
inches in length. Its size and plumage allow it to blend well into its environment. Its
appearance in combination with its secretive nature means the common quail is
rarely seen and more often detected by the male’s emphatic whistle.

Common quail consume mostly seeds, grains, and nuts, but females require a high
protein diet for breeding, dining on beetles, ants, and earwigs among other small
insects. Whether pecking at wind-scattered seeds or insects, the quail feeds mainly on
the ground. Though it travels great migratory distances, the common quail is reluc‐
tant to fly even when disturbed.

The common quail has been depicted in Egyptian hieroglyphs dating back to circa
5000 B.C.E. and have been raised for human consumption since the construction of
the Great Pyramids. Common quail in Europe lay up to 13 eggs per clutch, and
chicks can fly when they are just 11 days old.

While the common quail’s conservation status is currently listed as of least concern,
industrial scale trapping is driving the species into decline. Many of the animals on
O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engrav‐
ing from Shaw’s Zoology. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	Part I: The Framework
	Part II: Supervised Learning
	Part III: Unsupervised Learning
	Part IV: Reinforcement Learning and Natural Language Processing

	Conventions Used in This Book
	Using Code Presented in the Book
	Python Libraries
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Special Thanks from Hariom
	Special Thanks from Sahil
	Special Thanks from Brad

	Part I. The Framework
	Chapter 1. Machine Learning in Finance:
The Landscape
	Current and Future Machine Learning Applications
in Finance
	Algorithmic Trading
	Portfolio Management and Robo-Advisors
	Fraud Detection
	Loans/Credit Card/Insurance Underwriting
	Automation and Chatbots
	Risk Management
	Asset Price Prediction
	Derivative Pricing
	Sentiment Analysis
	Trade Settlement
	Money Laundering

	Machine Learning, Deep Learning, Artificial Intelligence, and Data Science
	Machine Learning Types
	Supervised
	Unsupervised
	Reinforcement Learning

	Natural Language Processing
	Chapter Summary
	Next Steps

	Chapter 2. Developing a Machine Learning
Model in Python
	Why Python?
	Python Packages for Machine Learning
	Python and Package Installation

	Steps for Model Development in Python Ecosystem
	Model Development Blueprint

	Chapter Summary
	Next Steps

	Chapter 3. Artificial Neural Networks
	ANNs: Architecture, Training, and Hyperparameters
	Architecture
	Training
	Hyperparameters

	Creating an Artificial Neural Network Model in Python
	Installing Keras and Machine Learning Packages
	Running an ANN Model Faster: GPU and Cloud Services

	Chapter Summary
	Next Steps

	Part II. Supervised Learning
	Chapter 4. Supervised Learning: Models and Concepts
	Supervised Learning Models: An Overview
	Linear Regression (Ordinary Least Squares)
	Regularized Regression
	Logistic Regression
	Support Vector Machine
	K-Nearest Neighbors
	Linear Discriminant Analysis
	Classification and Regression Trees
	Ensemble Models
	ANN-Based Models

	Model Performance
	Overfitting and Underfitting
	Cross Validation
	Evaluation Metrics

	Model Selection
	Factors for Model Selection
	Model Trade-off

	Chapter Summary

	Chapter 5. Supervised Learning: Regression
(Including Time Series Models)
	Time Series Models
	Time Series Breakdown
	Autocorrelation and Stationarity
	Traditional Time Series Models (Including the ARIMA Model)
	Deep Learning Approach to Time Series Modeling
	Modifying Time Series Data for Supervised Learning Models

	Case Study 1: Stock Price Prediction
	Blueprint for Using Supervised Learning Models to Predict a Stock Price

	Case Study 2: Derivative Pricing
	Blueprint for Developing a Machine Learning Model for Derivative Pricing

	Case Study 3: Investor Risk Tolerance and Robo-Advisors
	Blueprint for Modeling Investor Risk Tolerance and Enabling a Machine Learning–Based Robo-Advisor

	Case Study 4: Yield Curve Prediction
	Blueprint for Using Supervised Learning Models to Predict the Yield Curve

	Chapter Summary
	Exercises

	Chapter 6. Supervised Learning: Classification
	Case Study 1: Fraud Detection
	Blueprint for Using Classification Models to Determine Whether a Transaction Is Fraudulent

	Case Study 2: Loan Default Probability
	Blueprint for Creating a Machine Learning Model for Predicting Loan Default Probability

	Case Study 3: Bitcoin Trading Strategy
	Blueprint for Using Classification-Based Models to Predict Whether to Buy or Sell in the Bitcoin Market

	Chapter Summary
	Exercises

	Part III. Unsupervised Learning
	Chapter 7. Unsupervised Learning:
Dimensionality Reduction
	Dimensionality Reduction Techniques
	Principal Component Analysis
	Kernel Principal Component Analysis
	t-distributed Stochastic Neighbor Embedding

	Case Study 1: Portfolio Management: Finding an Eigen Portfolio
	Blueprint for Using Dimensionality Reduction for Asset Allocation

	Case Study 2: Yield Curve Construction and Interest Rate Modeling
	Blueprint for Using Dimensionality Reduction to Generate a Yield Curve

	Case Study 3: Bitcoin Trading: Enhancing Speed and Accuracy
	Blueprint for Using Dimensionality Reduction to Enhance a Trading Strategy

	Chapter Summary
	Exercises

	Chapter 8. Unsupervised Learning: Clustering
	Clustering Techniques
	k-means Clustering
	Hierarchical Clustering
	Affinity Propagation Clustering

	Case Study 1: Clustering for Pairs Trading
	Blueprint for Using Clustering to Select Pairs

	Case Study 2: Portfolio Management: Clustering Investors
	Blueprint for Using Clustering for Grouping Investors

	Case Study 3: Hierarchical Risk Parity
	Blueprint for Using Clustering to Implement Hierarchical Risk Parity

	Chapter Summary
	Exercises

	Part IV. Reinforcement Learning and Natural Language Processing
	Chapter 9. Reinforcement Learning
	Reinforcement Learning—Theory and Concepts
	RL Components
	RL Modeling Framework
	Reinforcement Learning Models
	Key Challenges in Reinforcement Learning

	Case Study 1: Reinforcement Learning–Based Trading Strategy
	Blueprint for Creating a Reinforcement Learning–Based Trading Strategy

	Case Study 2: Derivatives Hedging
	Blueprint for Implementing a Reinforcement Learning–Based Hedging Strategy

	Case Study 3: Portfolio Allocation
	Blueprint for Creating a Reinforcement Learning–Based Algorithm for Portfolio Allocation

	Chapter Summary
	Exercises

	Chapter 10. Natural Language Processing
	Natural Language Processing: Python Packages
	NLTK
	TextBlob
	spaCy

	Natural Language Processing: Theory and Concepts
	1. Preprocessing
	2. Feature Representation
	3. Inference

	Case Study 1: NLP and Sentiment Analysis–Based Trading Strategies
	Blueprint for Building a Trading Strategy Based on Sentiment Analysis

	Case Study 2: Chatbot Digital Assistant
	Blueprint for Creating a Custom Chatbot Using NLP

	Case Study 3: Document Summarization
	Blueprint for Using NLP for Document Summarization

	Chapter Summary
	Exercises

	Index
	About the Authors
	Colophon

